Towards Efficient Fibre Fractionation Equipment

Fractionation of Fibre Pulp in a Hydrodynamic Fractionation Device

Jakob D. Redlinger-Pohn1, Wolfgang Bauer2, and Stefan Radl1

1Institute of Process and Particle Engineering, Graz University of Technology
2Institute of Paper, Pulp, and Fibre Technology, Graz University of Technology
Pulp Fractionation: Why and How?

- Process efficiency
 - e.g. decrease energy consumption by fractionated refining of pulp

- Defined and/or improved paper properties for a fixed fines content

- Novel products
 - e.g. use of paper fines as MCC source
 - e.g. long fibres for improving strength of polymers

02.11.2017
Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology

www.flippr.at

Fractionation Process

Is

Action

Want
Agenda

(1) Hydrodynamic Fractionation Mechanism
 (i) Fibre Network Formation in Channel
 (ii) Fluid Separation by Side-Channel

(2) Hydrodynamic Fractionation Device

(3) Experimental Investigation
 (i) Image Analysis and Prediction
 (ii) Operational Design Space
 (iii) Fibre Suspension Flow

(4) Conclusion and Outlook
Mechanism 1 | Fibre Network Formation

- **Flexible fibres** in suspension flow aggregate and form *flocs*

- Floc formation and network strength depend on
 - fibre flexibility (fibre coarseness cs)
 - fibre length (L_1)
 - fibre concentration (C)

- Crowding number N_{CW}
 \[N_{CW} = 5 \frac{C L_1^2}{cs} \]

© Melanie Mayr, IPZ, Graz Univ. Tech.
Mechanism 1 | Fibre Network Formation

- **Flexible fibres** in suspension flow aggregate and form **flocs**

- **Regime** of fibre suspension flow depends on flow rate / **Reynolds number**:
 - plug flow
 - annular plug flow
 - fluidized fibre flow

- **Fluid shear** has to overcome network **yield strength**

Increasing Reynolds number Re

- Dense fibre network
- Loose fibre network

Mechanism 2 | Fluid Separation by Side Channel

- Separation of fluid via a side channel
 - **exit layer** divides accept from reject
 - **particles entrained** in accept are **removed**

- **Increase** of accept flow
 - increases the removal efficiency, however
 - deteriorates the fractionation efficiency

Hydrodynamic Fractionation Principle

- Hydrodynamic Fractionation utilizes fibre network formation to separate fibres from fines

- Flow rate is adjusted to realize annular plug flow

- Accept flow rate is adjusted to remove gap fluid only

Increasing Reynolds number Re

Bad | Good | Bad

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
Hydrodynamic Fractionation Device for laboratory tests

- Rectangular channel 15 by 3 mm
- Back facing separation channel, 780 mm downstream
- Purge option for plug-free continuous operation
- Feed and accept flow rate separately controlled
Hydrodynamic Fractionation Device

- **Flow regime** identified via high-speed imaging
- Determine exit layer height H^* relative to network interface
- Fractionation performance: evaluate the grade efficiency $T(l_{\text{Fibre}})$, and
- total **fines removal** versus fibre loss

$$ H^* = \phi^+ = \frac{m(\text{Accept})}{m(\text{Feed})} $$

$$ T(l_{\text{Fibre}}) = 1 - \frac{\text{Accept}(l_{\text{Fibre}})}{\text{Feed}(l_{\text{Fibre}})} $$
Experiments at channel Reynolds numbers Re of 1300, 2500, and 3700

Acquisition frequency adjusted to flow rate: consistent fibre images
Image based prediction of the grade efficiency

Goal: optimum fractionation

Setting: Reynolds number

Image analysis:
- Average grey value
 - Re 1300: 0.20
 - Re 2500: 0.10
 - Re 3700: 0.02

Wall
Exit layer
HDF | Fibre Motion in Channel Flow

➢ Image based prediction of the grade efficiency

➢ **Goal:** optimum fractionation

➢ **Setting:** Reynolds number

➢ **Image analysis:** average grey value

➢ **Prediction** of fractionation performance from image analysis
HDF | Fractionation Performance

Separation Benchmark Definition

- Test pulp: unrefined, chemical sulphite pulp, 100% spruce, bleached and washed from Sappi Gratkorn,
- Fibre concentration 0.1%: N_{CW} 9.5
- Variation of feed and accept flow rate:
 - Reynolds number Re (flow regime), and
 - Accept flow rate Φ^+ setting exit layer height
- Fractionation results summarized in design space, and
- Compared to the flow regime

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
Operational Design Space

- Conclusions on the fractionation performance:
 1. More fines are removed
 2. Fibres more sensitive to Re
 3. Best fractionation at low Re

![Diagram showing fractionation performance](image-url)
HDF | Fractionation Performance

Operational Design Space

- Conclusions on the fractionation performance:
 1. More fines are removed
 2. Fibres more sensitive to Re
 3. Best fractionation at low Re

- Process parameter selection for desired performance

- Operational window to balance changes in feed flow rate (Re) by setting accept

Fines < 0.2 mm

Fibres > 0.2 mm

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
Experimental Cases

Reynolds number Re_{1300}

ϕ^+

0.02 0.05 0.10 0.15 0.20

Wall Interface Exit Layer

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
Experimental Cases

Reynolds number Re 1300

<table>
<thead>
<tr>
<th>ϕ^+</th>
<th>ϕ^+</th>
<th>ϕ^+</th>
<th>ϕ^+</th>
<th>ϕ^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.05</td>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
HDF | Fibre Suspension Flow

Experimental Cases

Reynolds number $Re = 1300$

$\Phi^+ = 0.02, 0.05, 0.10, 0.15, 0.20$

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
HDF | Fibre Suspension Flow

Experimental Cases

Reynolds number Re 2500

ϕ^+

0.02 0.05 0.10 0.15 0.20

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
Experimental Cases

Reynolds number Re 2500

ϕ^+ values:
- 0.02
- 0.05
- 0.10
- 0.15
- 0.20

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
Experimental Cases

Reynolds number $Re = 3700$

Fines

- $\phi^+ = 0.02$
- $\phi^+ = 0.05$
- $\phi^+ = 0.10$
- $\phi^+ = 0.15$
- $\phi^+ = 0.20$

Fibre

Wall

Exit Layer

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
HDF | Fibre Suspension Flow

Experimental Cases

Reynolds number $Re \ 3700$

$\phi^+ \ \ \ \ \phi^+ \ \ \ \ \phi^+$

$0.02 \ \ \ \ \ 0.05 \ \ \ \ 0.10 \ \ \ \ 0.15 \ \ \ \ 0.20$

Mass flow per fibre length class for different exit layer heights

$\text{Rel. Mass Removal} = \frac{\text{Accept} \cdot C_{\text{Accept}} \cdot \Delta Q_{i,\text{Accept}}}{\text{Feed} \cdot C_{\text{Feed}} \cdot \Delta Q_{i,\text{Feed}}}$

Jakob D. Redlinger-Pohn
Institute of Process and Particle Engineering, Graz University of Technology
Variation of accept flow rate ϕ^+ allows investigation of exit layer height H^* variation on fibres and fines removal.

Fines are not homogeneously distributed across channel height!

![Graphs showing exit layer height H^* vs. relative mass removal for different Reynolds numbers (Re 3700, Re 2500, Re 1300)].

- Homogeneous distribution
- Fines 0 - 0.2 mm
- Fibre 0.2 - 1 mm
- Fibre 1 - 5 mm
HDF | Conclusion

➢ **Hydrodynamic Fractionation** describes fractionation of fines from fibres where
 ➢ fines are excluded from **network** formed by **long fibres**, and the **fines rich suspension** is removed.

➢ Fractionation performance is dominated by the **relative position** of the **exit layer** and the **network-fluid interface**.
 ➢ The **network-suspension interface** position is a function of the **network strength** and the Reynolds number **Re**.
 ➢ Image analysis can be used to determine the network-suspension interface.
 ➢ The exit layer position is set by the **accept flow rate** Φ^+.

Increasing Reynolds number Re

Reject

Accept

Bad Good Bad
Open scientific questions, that are subject of current research are:

➢ What is the impact of fibre network strength on the fractionation?
 ➢ Fractionation of softwood-hardwood mixtures

➢ What is the nature of fines in the accept as a function of process and pulp parameters?
 ➢ Accept fines fraction >> Britt Jar tester
 ➢ Fines are studied by use of light microscopy and customized evaluation algorithms
 ➢ Method: Melanie Mayr, Tuesday, Session 3
PROJECT MEMBERS

Industrial partners:

- Norske Skog
- Bruck
- mondi
- heinzelpulp
- sappi

Scientific Partners:

- BOKU (University of Natural Resources and Life Sciences, Vienna)
- TU Graz
- Wegener Center
- UNIGRAZ
The K-Project Flippr ° is within the scope of COMET - Competence Centers for Excellent Technologies sponsored by BMVIT, BMWFJ, Province of Styria and Carinthia. The COMET program is managed by FFG.
Towards Efficient Fibre Fractionation Equipment

Fractionation of Fibre Pulp in a Hydrodynamic Fractionation Device

Jakob D. Redlinger-Pohn1, Wolfgang Bauer2, and Stefan Radl1

1Institute of Process and Particle Engineering, Graz University of Technology
2Institute of Paper, Pulp, and Fibre Technology, Graz University of Technology