
Bounded Synthesis for
Streett, Rabin, and CTL∗

Ayrat Khalimov and Roderick Bloem?

Graz University of Technology, Austria

Abstract. SMT-based bounded synthesis uses an SMT solver to synthe-
size systems from LTL properties by going through co-Büchi automata.
In this paper, we show how to extend the ranking functions used in
Bounded Synthesis, and thus the bounded synthesis approach, to Büchi,
Parity, Rabin, and Streett conditions. We show that we can handle both
existential and universal properties this way, and therefore, that we can
extend Bounded Synthesis to CTL∗. Thus, we obtain the first Safraless
synthesis approach and the first synthesis tool for (conjunctions of) the
acceptance conditions mentioned above, and for CTL∗.

1 Introduction

Reactive synthesis is the problem of constructing a correct system from a spec-
ification given as a temporal logic formula or an automaton. For Linear Tem-
poral Logic [22], the standard approach to synthesis involves Safra’s relatively
complex construction [26,20] to determinize Büchi automata [23]. Over the last
decade, alternatives to this approach have led to a boom in reactive synthe-
sis. Besides methods that limit the expressibility of the logic [5] and complete
methods including [12,28], Kupferman and Vardi’s Safraless approach [17] and
Finkbeiner and Schewe’s Bounded Synthesis [27] provide relatively simple and
efficient methods to synthesize LTL formulas.

The idea behind Bounded Synthesis is the following. LTL properties can be
translated to Büchi automata [29] and verification of LTL properties can be re-
duced to deciding emptiness of the product of this automaton and the Kripke
structure representing an implementation [19,30]. This product is a nondeter-
ministic Büchi automaton in its own right. Finkbeiner and Schewe made two
important observations: (1) Using a ranking function, the emptiness problem
of nondeterministic Büchi automata can be encoded as a Satisfiability modulo
Theories (SMT) query, and (2) by fixing its size, the Kripke structure can be left
uninterpreted, resulting in an SMT query for a system that fulfills the property.
Because the size of the system is bounded by Safra’s construction, this yields
an approach to LTL synthesis that is complete in principle. (Although proofs of
unrealizability are usually computed differently.)

The reduction to SMT used by Bounded Synthesis provides two benefits: the
performance progress of SMT solvers and the flexibility. With the latter, it is easy

? The authors order was defined by a fair coin.

to adapt the SMT constraints produced by Bounded Synthesis to build semi-
complete synthesizers for distributed [27], self-stabilising [6], parameterized [13],
assume-guarantee [7], probabilistic [3], and partially implemented systems.

In this paper, we extend Bounded Synthesis in two directions. First, we show
how we can directly encode into SMT that some path of a system is accepted
by an X automaton, for X ∈ {Büchi, co-Büchi, Parity, Streett, Rabin}. We do
this by introducing new ranking functions, circumventing the need to explicitly
translate these automata into Büchi automata.

Second, we extend Bounded Synthesis to branching logics. The branching
logics allow the user to specify structural properties of the system. For example,
if g is system output and r is system input, then the CTL∗ formula AGEF g says
that a state satisfying g is always reachable; and the CTL∗ formula EFG(g ∧ r)
roughly says that a state satisfying g is reachable and it has a self-loop satisfy-
ing r. In both cases, the existential path quantifier E allows us to refrain from
specifying the exact path that leads to such states.

We show two approaches to the bounded synthesis for CTL∗. First, we show
that we can use the ranking functions for X automata to either decide that some
path of a system fulfills such a condition, or that all paths of the system do.
Once we have established this fact, we can extend Bounded Synthesis to logics
like CTL∗ by replacing all state subformulas by fresh atomic propositions and
encoding them each by a Büchi automaton. This approach follows the classical
construction [9] of model checking CTL∗, extending it to synthesis setting. Alter-
native, we show that we can use a translation of CTL∗ to Hesitant Alternating
Automata [18] to obtain a relatively simple encoding to SMT.

Thus, we obtain a relatively simple, Safraless synthesis procedure to (conjunc-
tions of) various acceptance conditions and CTL∗. This gives us a full decision
procedure that is efficient when the specification is satisfied by a small system,
but is admittedly impractical at showing unrealizability. Just like Bounded Syn-
thesis does for LTL synthesis, it also gives us a semi-decision procedure for unde-
cidable problems such as distributed [24] or parameterized synthesis [13,15]. We
have implemented the CTL∗ synthesis approach in a tool which to our knowledge
is the only tool that supports CTL∗ synthesis.

2 Definitions

Notation: B = {true, false} is the set of Boolean values, N is the set of natural
numbers (excluding 0), [k] is the set {i ∈ N | i ≤ k} and [0, k] is the set [k]∪{0}
for k ∈ N.

In this paper we consider finite systems and automata.
A (Moore) system M is a tuple (I,O, T, t0, τ, out) where I and O are disjoint

sets of input and output variables, T is the set of states, t0 ∈ T is the initial
state, τ : T × 2I → T is a transition function, out : T → 2O is the output
function that labels each state with a set of output variables. Note that systems
have no dead ends and have a transition for every input.

For the rest of the section, fix a system M = (I,O, T, t0, τ, out).

A system path is a sequence t1t2... ∈ Tω such that for every i ∈ N there
is e ∈ 2I with τ(ti, e) = ti+1. An input-labeled system path is a sequence
(t1, e1)(t2, e2)... ∈ (T × 2I)ω where τ(ti, ei) = ti+1 for every i ∈ N. A system
trace starting from t1 ∈ T is a sequence (o1 ∪ e1)(o2 ∪ e2)... ∈ (2I∪O)ω for which
there exists an input-labeled system path (t1, e1)(t2, e2)... and oi = out(ti) for
every i ∈ N. Note that since systems are Moore, the output oi cannot “react” to
input ei, the outputs are “delayed” with respect to inputs.

A word automaton A is a tuple (Σ,Q, q0, δ, acc) where Σ is an alphabet, Q
is a set of states, q0 ∈ Q is initial, δ : Q × Σ → 2Q is a transition relation,
acc : Qω → B is a path acceptance condition. Note that automata have no dead
ends and have a transition for every letter of the alphabet.

For the rest of the section, fix automaton A = (Σ,Q, q0, δ, acc) with Σ =
2I∪O.

A path in automaton A is a sequence q0q1... ∈ Qω starting in the initial state
such that there exists ai ∈ Σ for every i ≥ 0 such that (qi, ai, qi+1) ∈ δ(qi).
A sequence a0a1 · · · ∈ Σω generates a path π = q0q1 . . . iff for every i ≥ 0:
(qi, ai, qi+1) ∈ δ. A path π is accepted iff acc(π) holds.

We distinguish two types of automata: universal and non-deterministic. The
type defines when the automaton accepts a given infinite sequence.

A non-deterministic automaton A accepts an infinite sequence from Σω iff
there exists an accepted path generated by the sequence. Universal automata
require all paths generated by the sequence to be accepted. For an automaton
A, write L(A) for the set of all infinite sequences accepted by A.

The product M × A is the automaton (Q × T, (q0, t0), ∆, acc′) such that for
all (q, t) ∈ Q × T : ∆(q, t) = {(δ(q, a ∪ out(t)), τ(q, a)) | a ∈ 2I}. Define acc′ to
return true for a given π ∈ (Q × T)ω iff acc returns true for the corresponding
projection of π into Q. Note that M × A has the 1-letter alphabet (not shown
in the tuple).

We distinguish between two path quantifiers, E and A: M |= E(A) iff there
is a system trace (o0 ∪ e0)(o1 ∪ e1)... accepted by the automaton; M |= A(A) iff
every system trace is accepted by the automaton.

Finally, we define different acceptance conditions. For a given infinite se-
quence π ∈ Qω, let Inf(π) be the elements of Q appearing in π infinitely often
and let Fin(π) = Q \ Inf(π). Then:

– Büchi acceptance is defined by a set F ⊆ Q: acc(π) holds iff Inf(π) ∩ F 6= ∅.
– Co-Büchi acceptance is defined by a set F ⊆ Q: acc(π) holds iff F ⊆ Fin(π).
– Streett acceptance is defined by pairs {(Ai ⊆ Q,Gi ⊆ Q)}i∈[k]: acc(π) holds

iff ∀i ∈ [k] : Inf(π) ∩Ai 6= ∅ → Inf(π) ∩Gi 6= ∅.
– Rabin acceptance is defined by pairs {(Fi, Ii)}i∈[k]: acc(π) holds iff ∃i ∈ [k] :
Fi ⊆ Fin(π) ∧ Inf(π) ∩ Ii 6= ∅.

– Parity acceptance is defined by a priority function p : Q → [0, k]: acc(π)
holds iff the minimal priority appearing infinitely often in p(π) is even.

In addition to the above acceptance conditions, we define generalized versions.
Generalized Büchi acceptance condition is defined by a set {Fi}i∈[k]: acc(π)

holds iff the Büchi condition holds wrt. every Fi where i ∈ [k]. Similarly define
Generalized co-Büchi, Streett, Rabin, and Parity conditions.

Abbreviations. We use the standard three letter abbreviation for automata
{U,N,D}×{B,C, S, P,R}×{W}. For example, NBW means Nondeterministic
Büchi Word automaton, UCW — Universal co-Büchi Word automaton.

3 Synthesis from Büchi, Streett, Rabin, Parity Automata

In this section we describe how to verify and synthesize properties described
by Büchi, co-Büchi, Parity, Streett, and Rabin conditions. For each acceptance
condition X ∈ {Büchi, co-Büchi, Parity, Streett, Rabin}, we can handle the
question whether (the word defined by) some path of a system is in the language
of a nondeterministic X automata, as well as the question of whether all paths
of the system are in the language defined by a universal X automaton. There
does not appear to be an easy way to mix these queries (“do all paths of the
system fulfill the property defined by a given nondeterministic automaton?”).

3.1 Ranking Functions

In the following, given a system M = (I,O, T, t0, τ, out) and a nondeterministic
(universal) automaton A = (2I∪O, Q, q0, δ, acc), we will describe how to build
an SMT query ΦM,A that is satisfiable iff some path (all paths, resp.) of M are
in L(A). That is, we focus on the verification problem. When the verification
problem is solved, we obtain the solution to the synthesis problem easily, follow-
ing the Bounded Synthesis approach: Given an automaton A, we ask the SMT
solver whether there is a system M such that ΦM,A is satisfiable. More precisely,
for increasing k, we fix a set of k states and ask the SMT solver for a transition
relation τ and a labeling out for which ΦM,A is satisfiable.

For the following, fix a system M = (I,O, T, t0, τ, out) and an automaton
A = (2I∪O, Q, q0, δ, acc).

Our constructions use ranking functions. A ranking function is a function
ρ : Q× T → D for some well-founded domain D. A rank comparison relation is
a relation . ⊆ Q ×D ×D. In the following, we write ρ(q, t) .q ρ(q′, t′) to mean
(q, ρ(q, t), ρ(q′, t′)) ∈ ..

We will first establish how to use these to check existential and universal
properties and then define the ranking functions for the different acceptance
conditions. Given a rank comparison function ., we define the following formula
to check an existential property:

Φ.E(M,A) =rch(q0, t0)∧∧
q,t∈Q×T

rch(q, t)→
∨

(q,i∪o,q′)∈δ

out(t)=o ∧ rch(q′, τ(t, i)) ∧ ρ(q, t) .qρ(q′, τ(t, i)).

Similarly, to check universal properties, we define

Φ.A(M,A) =rch(q0, t0)∧∧
q,t∈Q×T

rch(q, t)→
∧

(q,i∪o,q′)∈δ

out(t)=o→ rch(q′, τ(t, i)) ∧ ρ(q, t) .qρ(q′, τ(t, i)).

In these formulas,

– the free variable rch : Q × T → B is an uninterpreted function that marks
reachable states in the product of M and A, and

– the free variable ρ : Q× T → N is an uninterpreted ranking function.

Intuitively, Φ.E encodes that there is an accepting loop in the product au-
tomaton, while Φ.A ensures that all loops are accepting.

Given a path π = (q1, t1)(q2, t2) · · · ∈ (Q × T)ω and a rank comparison
relation ., we say that π satisfies ., denoted by π |= ., iff there exists a ranking
function ρ such that ρ(qi, ti) .q ρ(qi+1, ti+1) holds for every i > 0.

Let us look at the properties of these equations.

Lemma 1. For any rank comparison relation .: Φ.E(M,A) is satisfiable iff M×
A has an infinite path π = (q1, t1)(q2, t2) . . . that satisfies ..

Proof idea. Direction⇐. Assume that the product contains a path π = (q1, t1) . . .
such that π |= .. By definition of π |= ., there is ρ such that ρ(qi, ti).ρ(qi+1, ti+1)
holds for every i > 0. If we use the same ρ for Φ.E(M,A) and set rch(q, t) to true
for (q, t) ∈ π and to false for the other states, then the query is satisfied.

Direction⇒. Assume that Φ.E is satisfied. We use the ranking function ρ from
the model of Φ.E to construct a lasso-shaped infinite path that satisfies ..

Let acc be an acceptance condition on (Q×T)ω. We say that . expresses an
acceptance condition acc iff

∀π ∈ (Q× T)ω : π |= . ↔ acc(π).

In words: (1) if an infinite path π = (q1, t1) . . . is accepted by acc, then there
is ρ : Q × T → N such that ρ(qi, ti) .q ρ(qi+1, ti+1) holds for all i; (2) if for an
infinite path there is ρ such that ρ(qi, ti) .q ρ(qi+1, ti+1) holds for all i, then the
path is accepted by acc.

The following theorem connects the previous lemma with automata.

Theorem 1 (Soundness and completeness for E(NXW)). Given a nonde-
terministic X automaton A and a system M . Let . express acc. Then: Φ.E(M,A)
is satisfiable iff M |= E(A).

The formula Φ.A has similar properties, but in general only direction⇒ holds.
The other direction we prove separately for each . presented in the paper.

Lemma 2. Given a system M , an automaton A, and any .: if Φ.A(M,A) is
satisfiable, then all paths of M ×A satisfy ..

Proof idea. Assume that Φ.A(M,A) is satisfied by ranking function ρ. Consider
an arbitrary path π in M ×A. By the deinfition of Φ.A, rch holds for every state
of π and . holds for every two consecutive states. Thus, π satisfies ..

Theorem 2 (Soundness for A(UXW)). Given a universal X automaton
A = (2I∪O, Q, q0, δ, acc) and a system M = (I,O, T, t0, τ, out), let . express
acc. Then: if Φ.A(M,A) is satisfiable, then M |= A(A).

3.2 Encoding for Büchi Automata

In the next sections, we describe rank comparison relations . for the acceptance
conditions Büchi, co-Büchi, Streett, Rabin, and Parity. We prove correctness
only for Streett acceptance — the cases of Büchi, co-Büchi, and Parity follows
as special cases. The correctness of . constraints for Rabin acceptance follows
from the work of Piterman et al. [21]. For didactical purposes, let us start with
the relatively simple Büchi and co-Büchi conditions.

Büchi conditions were also presented in [8] and implicitly in [3]. Given a Büchi
automaton A = (2I∪O, Q, q0, δ, F), we define the rank comparison relation .AB as

ρ(q, t) .AB ρ(q′, t′) =

{
true if q ∈ F
ρ(q, t) > ρ(q′, t′) if q 6∈ F

(1)

We have that .B expresses the Büchi condition. Intuitively, given an infinite
path, we can use the natural numbers as the ranking domain and associate each
state with the distance to the next acceptance condition on the path. If the path
does not contain infinitely many accepting states, this ranking is not possible
for a well-founded domain.

3.3 Encoding for co-Büchi Automata

This case was presented in the original paper [27] on Bounded Synthesis. Given
a co-Büchi automaton A = (2I∪O, Q, q0, δ, F), the ranking constraint relation .AC
for co-Büchi is defined as

ρ(q, t) .AC ρ(q′, t′) =

{
ρ(q, t) > ρ(q′, t) if q ∈ F
ρ(q, t) ≥ ρ(q′, t′) if q 6∈ F.

(2)

We have that .C expresses the co-Büchi condition. Intuitively, a ranking of
a path with infinitely many rejecting states is not possible, because the domain
does not have an infinitely descending chain. If the number is finite, we can label
each state with the number of rejecting states that are yet to come.

3.4 Encoding for Streett Automata

Given a Streett automaton A = (2I∪O, Q, q0, δ, {(Ai, Gi)}i∈[k]), we take the do-

main D = N and define the rank comparison relation .S =
∧
i ρ(q, t).A,iS ρ(q′, t′),

where

ρ(q, t) .A,iS ρ(q′, t′) =

true if q ∈ Gi
ρi(q, t) > ρi(q

′, t′) if q ∈ Ai ∧ q 6∈ Gi

ρi(q, t) ≥ ρi(q′, t′) if q 6∈ Ai ∪Gi
(3)

Theorem 3. The rank comparison relation .S expresses the Streett condition.

In Section 3.1, we have shown that we can check for the existence of a path
satisfying an acceptance condition if we are given a rank comparison relation that
expresses the condition. We have also shown the soundness of the construction
for checking whether all paths satisfy the condition. It remains to show that this
construction is complete.

Theorem 4. Given a Streett automaton A = (2I∪O, Q, q0, δ, {(Ai, Gi)}i∈[k]) and

a system M = (I,O, T, t0, τ, out): if M |= A(A), then Φ
.AS
A (M,A) is satisfiable.

Proof. Let M |= A(A). We construct a model (ρ and rch) that satisfies the query.
Let rch(q, t) = true iff (q, t) ∈ Q × T is reachable in the product Γ = M × A,
and let ρi(q, t) = 0 for every unreachable (q, t) ∈ Q × T . Now let us remove all
unreachable states from Γ . Then for each i ∈ [k], ρi is defined as follows.

– For every (q, t) ∈ ∪i∈[k]Gi × T , let ρi(q, t) = 0.
– Define an SCC S of a graph to be any maximal subset of the graph states

such that for any s ∈ S, s′ ∈ S, the graph has a path π = s, ..., s′ of length
≥ 2, where the length is the number of states appearing on the path. Thus,
a single-state SCC can appear only if the state has a self-loop.

– Remove all outgoing edges from every state (q, t) of Γ with q ∈ Gi. The
resulting graph Γ ′ has no SCCs that have a state (q, t) with q ∈ ∪i∈[k]Ai.

– Let us define the graph Γ ′′. Let S be the set of all SCCs of Γ ′. Then Γ ′′ has
the states VΓ ′′ = S ∪ {{s} | s 6∈ ∪S∈SS}, i.e., each state is either an SCC or
a singleton-set containing a state outside of any SCC (but in both cases, a
state of Γ ′ is a set of states of Γ). The edges EΓ ′′ of Γ ′′ are: (S1, S2) ∈ EΓ ′′

iff ∃s1 ∈ S1, s2 ∈ S2 : S1 6= S2 ∧ (s1, s2) ∈ EΓ ′ . Intuitively, Γ ′′ is a graph
derived from Γ by turning all accepting states into leafs, and by making
SCCs the new states. Note that the graph Γ ′′ is a DAG.

– Given a path π = S1, ..., Sm in Γ ′′, let nb(π) be the number of “bad” states
visited on the path, i.e., nb = |π ∩ {{(q, t)} : q ∈ ∪i∈[k]Ai}|. Such a number
exists since all paths of Γ ′′ are finite.

– For all (q, t) ∈ S ∈ VΓ ′′ with q 6∈ Gi, let ρi(q, t) be the max number of “bad”
states visited on any path from S: ρi(q, t) = max({nb(π) | π is a path from S}).
Such a number exists since the number of paths in Γ ′′ is finite.

Remark 1 (Comparison with ranking from [21]). Piterman et al. [21] introduced
ranking functions to solve Streett games. Our ranking functions can be adapted
to solve games, too. (Recall that our SMT encoding describes model checking
with an uninterpreted system.) It may seem that in the case of games, our

construction uses fewer counters than [21], but that is not the case. Given a DSW
with k Streett pairs and n states, a winning strategy in the corresponding Streett
game may require a memory of size k!. In this case, the size of system×automaton
is k!n. Our construction introduces 2k counters with the domain [k!n] → [k!n]
to associate a rank with each state. In contrast, [21] introduces k!k counters
with the domain [n] → [0, n]. Encoding these counters into SAT would require
2k · k!n · log2(k!n) bits for our construction, and k!k · n · log2(n) bits for the
construction of [21]. Thus, our construction introduces 2(1 + log2(k!)/log2(n))
times more bits. On the positive side, our construction is much simpler.

3.5 Encoding for Parity Automata

Given a Parity automaton A = (2I∪O, Q, q0, δ, p) with indices 0, . . . , k − 1, it
is well known that we can translate it into the Streett automaton with pairs
(A1, G1), . . . , (Am/2, Gm/2), where Ai = {q | p(q) = 2i − 1}, Gi = {q | p(q) ∈
{0, 2, . . . , 2i − 2}}. We can then apply the encoding for Streett automata. The
resulting ranking is essentially Jurdziński’s progress measure [14].

3.6 Encoding for Rabin Automata

Given a Rabin automaton A = (2I∪O, Q, q0, δ, {Fi, Ii}i∈[k]) and a system M =
(I,O, T, t0, τ, out), we use ranking contraints described by Piterman et al. [21]
to construct a rank comparison relation. We define the ranking domain D to
consist of tuples of numbers (b, j1, d1, . . . , jk, dk), where ρ(q, t) has the following
meaning. For each l ∈ [k],

– jl ∈ [k] is the index of a Rabin pair,
– b ∈ [0, |Q×T |] is an upper bound on the number of times the set Fj1 can be

visited from (q, t),
– dl ∈ [0, |Q× T |] is the maximal distance from (q, t) to the set Ijl ,

We define .AR as ρ(q, t) .q ρ(q′, t′) iff there exists l ∈ [k] such that one of the
following holds:

b > b′,

(b, . . . , jl−1, dl−1) = (b′, . . . , j′l−1, d
′
l−1) ∧ jl > j′l ∧ q 6∈ ∪

m∈[l−1]
Fjm ,

(b, . . . , jl) = (b′, . . . , j′l) ∧ dl > d′l ∧ q 6∈ ∪
m∈[l]

Fjm

(b, . . . , jl) = (b′, . . . , j′l) ∧ q ∈ Ijl ∧ q 6∈ ∪
m∈[l]

Fjm

(4)

Here is the intutition. The first line bounds the number of visits to Fj1 (b de-
creases each time Fj1 is visited). The second line limits the changes of order
j1, . . . , jk in rank b, j1, d1, . . . , jk, dk to a finite number. Together, these two
lines ensure that on any path some Fm is not visited infinitely often. The third
and fourth lines require Ijl to be visited within dl steps; once it is visited, the
distance dl can be reset to any number ≤ |Q× T |.

We can encode rank comparison constraints . in Eq. 4 into SMT as follows.
For each of j1 . . . jk introduce an uninterpreted function: Q× T → [k]. For each
of b, d1, . . . , dk introduce an uninterpreted function: Q×T → [0, |Q×T |]. Finally,
replace in Eq. 4 counters b, j, d, b′, j′, d′ with expressions b(q, t), j(q, t), d(q, t),
b(q′, t′), j(q′, t′), d(q′, t′) resp.

3.7 Generalized Automata

The extension to generalized automata is simple: replace ρ(q, t) . ρ(q′, t′) with∧
i ρi(q, t).ρi(q

′, t′) where ρi describes the ranking of ith automaton component.
Note that all components use the same rch variables.

4 Synthesis for CTL∗

We describe two ways to encode model checking for CTL∗ into SMT. The first
one, direct encoding (Sec. 4.2), resembles bottom-up CTL∗ model checking [9].
The second encoding (Sec. 4.3) follows the automata-theoretic approach [18] and
goes via hesitant tree automata. As usual, replacing a concrete system function
with an uninterpreted one of a fixed size gives a bounded synthesis procedure.

Let us compare the approaches. In the direct encoding, the main difficulty
is the procedure that generates the constraints: we need to walk through the
formula and generate constraints for nondeterministic Büchi or universal co-
Büchi subformulas. In the approach via hesitant tree automata, we first translate
a given CTL∗ into a hesitant tree automaton A, and then encode the non-
emptiness problem of the product of A and the system into an SMT query. In
contrast to the direct encoding, the difficult part is to construct the automaton,
while the definition of the rank comparison relation is very easy.

In the next section we define CTL∗ with inputs and then describe two ap-
proaches. The approaches are conceptually the same, thus automata fans are
invited to read Sec. 4.3 about the approach using hesitant automata, while the
reader who prefers bottom-up CTL∗ model checking is welcomed to Sec. 4.2.

4.1 CTL∗ with Inputs

For this section, fix a system M = (I,O, T, t0, τ, out).
Below we define CTL∗ with inputs. The definition is slightly unusual (it dif-

ferentiates inputs and outputs, see Remark 2) and is specific to Moore machines.

Syntax of CTL∗ with inputs. State formulas have the grammar:

Φ = true | false | o | ¬o | Φ ∧ Φ | Φ ∨ Φ | Aϕ | Eϕ

where o ∈ O and ϕ is a path formula. Path formulas are defined by the grammar:

ϕ = Φ | i | ¬i | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ,

where i ∈ I. The temporal operators G and F are defined as usual.

The above grammar describes the CTL∗ formulas in the positive normal
form. The general CTL∗ formula (in which negations can appear anywhere) can
be converted into the formula of this form with no size blowup, using equivalence
¬(a U b) ≡ ¬a R ¬b.
Semantics of CTL∗ with inputs. We define the semantics of CTL∗ with
respect to a system M . The definition is very similar to the standard one [2],
except for a few cases involving inputs (marked with “+”).

Let t ∈ T , and o ∈ O. Then:

– t 6|= Φ iff t |= Φ does not hold
– t |= true and t 6|= false
– t |= o iff o ∈ out(t), t |= ¬o iff o 6∈ out(t)
– t |= Φ1 ∧ Φ2 iff t |= Φ1 and t |= Φ2. Similarly for Φ1 ∨ Φ2.
+ t |= Aϕ iff for all input-labeled system paths π starting from t: π |= ϕ. For

Eϕ, replace “for all” with “there exists”.

Let π = (t1, e1)(t2, e2)... ∈ (T × 2I)ω be an input-labeled system path and i ∈ I.
For k ∈ N, define π[k:] = (tk, ek)..., i.e., the suffix of π starting from (tk, ek).
Then:

– π |= Φ iff t1 |= Φ
+ π |= i iff i ∈ e1, π |= ¬i iff i 6∈ e1
– π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2. Similarly for ϕ1 ∨ ϕ2.
– π |= Xϕ iff π[2:] |= ϕ
– π |= ϕ1 U ϕ2 iff ∃l ∈ N : (π[l:] |= ϕ2 ∧ ∀m ∈ [1, l − 1] : π[m:] |= ϕ1)
– π |= ϕ1 R ϕ2 iff (∀l ∈ N : π[l:] |= ϕ2) ∨ (∃l ∈ N : π[l:] |= ϕ1 ∧ ∀m ∈ [1, l] :
π[m:] |= ϕ2)

A system M satisfies a CTL∗ state formula Φ, written M |= Φ, iff the initial
state satisfies it.

Note that M |= i ∧ o is not defined, since i ∧ o is not a state formula.

Remark 2 (Inputs vs. outputs). Let r ∈ I and g ∈ O. According to the semantics,
Er∧E¬r is valid, while Eg∧E¬g (≡ g∧¬g) is unsatisfiable. Vice versa, Ar∨A¬r is
unsatisfiable, while Ag∨A¬g (≡ g∨¬g) is valid. This distinction is a consequence
of the way we group inputs and outputs into traces.

4.2 Direct Encoding

We can encode CTL∗ model checking in SMT following the classical model check-
ing approach [9] with the exception that system is described by uninterpreted
functions.

Let Φ be a CTL∗ state formula. We define the SMT query as follows.

1) Replace each subformula fi of Φ that starts with A or E with a new proposi-
tion pi, and let P = {p1, . . . , pk}. Thus, each pi corresponds to some E/Aϕi
where ϕi is a path formula over I ∪O ∪ P .

2) For each f ∈ {f1, . . . , fk}, we do the following. If f is of the form Aϕ, we
translate ϕ into a UCW1, otherwise into an NBW; let the resulting automa-
ton be Aϕ = (2I∪O∪P , Q, q0, δ, F). Then for all (q, t) ∈ Q × T the query
contains the constraints:

2a) If Aϕ is an NBW, then:

rch(q, t) →
∨

(i,q′)∈δ(q,out(t),P (t))

rch(q′, t′) ∧ ρ(q, t) .B ρ(q′, t′)

2b) If Aϕ is a UCW, then:

rch(q, t) →
∧

(i,q′)∈δ(q,out(t),P (t))

rch(q′, t′) ∧ ρ(q, t) .C ρ(q′, t′)

In both cases, we have: P (t) = {pi ∈ P | rch(qpi0 , t) = true}, qpi0 is the
initial state of Aϕi , .B and .C are the Büchi and co-Büchi rank comparison
functions wrt. Aϕ (see Eq. 1 and 2), and t′ = τ(t, i). Intuitively, P (t) under-
approximates the subformulas that hold in t: if pi ∈ P (t), then t |= fi.

3) Let Φ̃ be the top-level Boolean formula of Φ. Then the query contains the

constraint Φ̃[pi ←[rch(qpi0 , t0)], where qpi0 is the initial state of Aϕi . For
example, for Φ = ¬g∧AGEF¬g the constraint is ¬g(t0)∧ rch(qp20 , t0) where:
g ∈ O, p2 corresponds to AG p1, p1 corresponds to EF¬g.

Theorem 5 (Correctness of direct encoding). Given a CTL∗ formula Φ
over inputs I and outputs O and a system M = (I,O, T, t0, τ, out): M |= Φ iff
the query is satisfiable.

Here is the intuition behind the proof. The standard bottom-up model checker
marks every system state with state subformulas it satisfies. The model checker
returns “Yes” iff the initial state satisfies the top-level Boolean formula. The
direct encoding conceptually follows that approach. If for some system state t,
rch(qpi0 , t) holds, then t satisfies the corresponding to pi state formula fi. Thus, if
the top-level Boolean constraint (3) holds, then t0 |= Φ. And vice versa: if model
checker returns “Yes”, then the marking it produced can be used to satisfy the
SMT constraints. Finally, the positive normal form of Φ allows us to get away
with encoding of positive obligations only (rch(qpi0 , t)⇒ t |= fi), eliminating the
need to encode ¬rch(qpi0 , t)⇒ t |= ¬fi.

Example 1. Let I = {r}, O = {g}, Φ = g∧AGEF¬g. We associate p1 with EF¬g
and p2 with AG p1. Automata for p1 and p2 are in Fig. 1, the SMT constraints
are in Fig. 2.

1 To translate ϕ into a UCW, translate ¬ϕ into an NBW and treat it as a UCW.

q0 q1

g

¬g

1

(a) NBW for F¬g

v0 v1

p1

¬p1

1

(b) UCW for Gp1

Fig. 1: Automata for Example 1

g(t) ∧ rch(q0, t0)∧
t∈T,r∈B

rch(v0, t) ∧ rch(q0, t)→ rch(v0, τ(t, r)) ∧ ρ(v0, t) ≥ ρ(v0, τ(t, r))

∧
t∈T,r∈B

rch(v0, t) ∧ ¬rch(q0, t)→ rch(v1, τ(t, r)) ∧ ρ(v0, t) ≥ ρ(v1, τ(t, r))

∧
t∈T,r∈B

rch(v1, t)→ rch(v1, τ(t, r)) ∧ ρ(v1, t) > ρ(v1, τ(t, r))

∧
t∈T,r∈B

rch(q0, t) ∧ g(t)→ rch(q0, τ(t, r)) ∧ ρ(q0, t) > ρ(q0, τ(t, r))

∧
t∈T,r∈B

rch(q0, t) ∧ ¬g(t)→ rch(q1, τ(t, r)) ∧ ρ(q0, t) > ρ(q1, τ(t, r))

∧
t∈T,r∈B

rch(q1, t)→ rch(q1, τ(t, r))

Fig. 2: SMT constraints for Example 1

4.3 Encoding via Alternating Hesitant Tree Automata

A CTL∗ property can be converted into a hesitant tree automaton [18]. Then
model checking a system with respect to a CTL∗ property is equivalent to check-
ing non-emptiness of the product of the system and the hesitant automaton. The
non-emptiness question can be reduced to solving a 1-Rabin game, and that is
what the SMT query will express. The query will be satisfiable iff the product is
non-empty. Below we define hesitant tree automata and describe the encoding.

Definitions. Intuitively, for a given CTL∗ formula, the alternating hesitant
automaton expresses proof obligations encoded in (1)–(4) in Sec. 4.2, but in the
form of an automaton. Thus, it is a mix of Büchi and co-Büchi automata.

Let B+(Q) be the set of all positive Boolean formulas over variables Q. Fix
two disjoint finite sets, I and O. An alternating hesitant tree automaton (AHT)
is a tuple (Σ,D,Q, q0, δ, Acc), where Σ = 2O, D = 2I , q0 ∈ Q is the initial state,
δ : Q × Σ → B+(D × Q) is the transition relation, Acc ⊆ Q is the acceptance
condition, and the following restrictions hold.

– Q can be partitioned into QN1 , . . . , Q
N
kN

, QU1 , . . . , Q
U
kU

, QT1 , . . . , Q
T
kT

, where
superscript N means nondeterministic, U means universal, and T means
transient. Also, let QN =

⋃
QNi , QU =

⋃
QUi , and QT =

⋃
QTi .

– There is a partial order on {QN1 , . . . , QNkN , Q
U
1 , . . . , Q

U
kU
, QT1 , . . . , Q

T
kT
}.

– The transition function δ satisfies: for any q ∈ Q, a ∈ Σ
• if q ∈ QTi , then: δ(q, a) contains no elements of QTi ; every element of
δ(q, a) belongs to a lower set (with respect to the partial order);

• if q ∈ QNi , then: δ(q, a) contains only disjunctively related1 elements of
QNi ; every element of δ(q, a) outside of QNi belongs to a lower set;

• if q ∈ QUi , then: δ(q, a) contains only conjunctively related1 elements of
QUi ; every element of δ(q, a) outside of QUi belongs to a lower set.

We later define the acceptance of a system by such an automaton.

A 1-letter alternating hesitant word automaton (1-AHW) is an AHW (Q, q0, δ :
Q→ B+(Q), Acc ⊆ Q). Its alphabet has only one letter (not shown in the tuple)
and the automaton satisfies restrictions on δ and Q similar to those for AHTs.

A run of a 1-AHW (Q, q0, δ : Q → B+(Q), Acc ⊆ Q) is a labeled tree
defined in a standard way. Its nodes are from Q∗, the root is q0, the labeling
l maps a node (in Q∗) to the last element (in Q), and for any reachable node,
l(succ(n)) |= δ(l(n)) where l(succ(n)) is the set of labels of the successors of node
n. A run is accepting if all paths of the tree satisfy the acceptance condition. A
run tree path satisfies the acceptance condition Acc iff one of the following holds:

– the corresponding path in the 1-AHW gets trapped in some QU and visits
Acc ∩QU only finitely often, or

– the corresponding path in the 1-AHW gets trapped in some QN and visits
some state of Acc ∩QN infinitely often.

Intuitively, the 1-AHW acceptance condition is a mix of Büchi and co-Büchi
acceptance conditions. It can also be seen as a Rabin acceptance with one pair
(F, I) where F = Acc ∩QU and I = (Acc ∩QN) ∪ (QU \Acc).

Note that any path of a run tree of a 1-AHW is trapped in some QNi or QUi .

The non-emptiness question of 1-AHW is “does the automaton has an ac-
cepting run?”.

A product of an AHT (2O, 2I , Q, q0, δ, Acc) and a system (I,O, T, t0, τ, out) is
a 1-AHW (Q× T, (q0, t0), ∆,Acc′) s.t. Acc′ = {(q, t) | q ∈ Acc} and for all (q, t):

∆(q, t) = δ(q, out(t))[(d, q′) 7→ (τ(t, d), q′)].

A system is accepting by an AHT iff their product (1-AHW) is non-empty.

Encoding. Given a system M and a CTL∗ formula ϕ, we convert φ into an
AHT A [18]. Then, we encode the non-emptiness of the 1-AHW M ×A into an

1 In a Boolean formula, atoms E are disjunctively (conjunctively) related iff the for-
mula can be written into DNF (CNF) in such a way that each cube (clause) has at
most one element from E.

SMT query:

rch(q0, t0)∧∧
q,t

rch(q, t)→ δ(q, out(t)) [(d, q′) 7→ rch(q′, τ(t, d)) ∧ ρ(q, t) .q,q′ ρ(q′, τ(t, d))]

(5)
where .q,q′ is:

– if q and q′ are in the same QNi , then the Büchi rank comparison .
QNi
B ;

– if q and q′ are in the same QUi , then the co-Büchi rank comparison .
QNi
C ;

– otherwise, true.

Note: For ease of explanation, .q,q′ depends on q and q′, but it can also be
defined to depend on q only. Intuitively, states from different Qi correspond to
different state subformulas of Φ.

Theorem 6. Given a system (I,O, T, t0, τ, out) and CTL∗ formula Φ over in-
puts I and outputs O: system |= Φ iff the SMT query in Eq. 5 is satisfiable.

Proof idea. Direction⇒. Let (Q, q0, δ, Acc) be the 1-AHW representing the prod-
uct system×AHT (AHT of Φ). We will use the following observation.

Observation:The 1-AHW non-emptiness can be reduced to solving the
following 1-Rabin game. The game states are Q, the game graph cor-
responds to δ, there is one Rabin pair (F, I) with F = Acc ∩ QU ,
I = (Acc ∩QN) ∪ (QU \Acc). Let us view δ to be in the DNF. Then, in
state q of the game, the “existential” player (Automaton) chooses a dis-
junct in δ(q), while the “universal” player (Pathfinder) chooses a state in
that disjunct. Automaton’s strategy is winning iff for any Pathfinder’s
strategy the resulting play satisfies the Rabin acceptance (F, I). Note
that Automaton has a winning strategy iff the 1-AHW is non-empty;
also, memoryless strategies suffice for Automaton.

Since the 1-AHW is non-empty, Automaton has a memoryless winning strategy.
We will construct rch and ρ from this strategy. For rch: set it to true if there is
a strategy for Pathfinder such that the state will reached. Let us prove that ρ
exists.

Since states from different Qi can never form a cycle (due to the partial
order), ρ of states from different Qi are independent. Hence we consider two
cases separately: ρ for some QNi and for some QUi .

– The case of QNi is simple: by the definition of the 1-AHW, we can have only
simple loops within QNi . Any such reachable loop visits some state from
Acc ∩ QNi . Consider such a loop: assign ρ for state q of the loop to be the
minimal distance from any state Acc ∩QNi .

– The case of QUi : in contrast, we can have simple and non-simple loops within
QUi . But none of such loops visits Acc ∩ QUi . Then, for each q ∈ QUi assign
ρ to be the maximum bad-distance from any state of QUi . The bad-distance
between q and q′ is the maximum number of Acc∩QU states visited on any
path from q to q′.

Direction ⇐. The query is satisfiable means there is a model for rch. Note
that the query is Horn-like (. . . → . . .), hence there is a minimal marking rch
of states that still satisfies the query23. Wlog., assume rch is minimal. Consider
the subset of the states of the 1-AHW that are marked with rch, and call it U .
Note that U is a 1-AHW and it has only universal transitions (i.e., we never
mark more than one disjunct of δ on the right side of . . .→ δ(. . .)). Intuitively,
U represents a finite-state folding of the run tree of the original 1-AHW.

Claim: the run tree (the unfolding of U) is accepting. Suppose it is not:
there is a run tree path that violates the acceptance. Consider the case
when the path is trapped in some QUi . Then the path visits a state in
QUi ∩ Acc infinitely often. But this is impossible since we use co-Büchi
ranking for QUi . Contradiction. The case when the path is trapped in
some QNi is similar — the Büchi ranking prevents from not visiting
Acc ∩QNi infinitely often.

Thus, the 1-AHW is non-empty since it has an accepting run (U unfolded).

5 Prototype Synthesizer for CTL∗

We implemented both approaches to CTL∗ synthesis described in Sections 4.2
and 4.3 inside the tool PARTY [15]: https://github.com/5nizza/party-elli
(branch “cav17”). In this section we illustrate the approach via AHTs.

The synthesizer works as follows:

1) Parse the specification that describes inputs, outputs, and CTL∗ formula Φ.
2) Convert Φ into a hesitant tree automaton using the procedure described in

[18], using LTL3BA [1] to convert path formulas into NBWs.
3) For each system size k in increasing order:

• encode “∃Mk : Mk ×AHT 6= ∅?” into SMT using Eq. 5 where |Mk| = k
• call Z3 solver [11]: if the solver returns “unsatisfiable”, goto next itera-

tion; otherwise print the model in the dot graph format.

This procedure is complete, because there is a 22
|Φ|

bound on the size of the
system, although reaching it is impractical.

Running example: resettable 1-arbiter. Let I = {r}, O = {g}. Consider a
simple CTL∗ property of an arbiter

EG(¬g) ∧ AG(r → F g) ∧ AGEF¬g.

The property says: there is a path from the initial state where the system never
grants (including the initial state); every request should be granted;

2 Minimal in the sense that it is not possible to reduce the number of rch truth values
by falsifying some of rch.

3 Non-minimality appears when δ of the alternating automaton has OR and the SMT
solver marks with rch more than one OR argument. Another case is when the solver
marks some state with rch but there is no antecedent requiring that.

https://github.com/5nizza/party-elli

q0

p0

r0

s0

t0 >

s1

¬g
Ar

Ar

Er

¬g
Er ¬g

g

Er

Ar

g

Er

¬g

g

Ar

r

Ar

¬g
¬g

r

Ar

q0,m

p0,m
r0,m

s0,m

s1,m

≤

>
≤

<

Fig. 3: On the left: AHT for the CTL∗ formula EG¬g ∧AGEF¬g ∧AG(r → F g).
Green states are from the nondeterministic partion, red states are from the
universal partition, double states are final (a red final state is rejecting, a green
final state is accepting). Falling out of red (universal) states is allowed, falling out
of green (nondeterministic) states is not allowed. State > denotes an accepting
state. In this automaton all transitions out of black dots are conjuncted. For
example, δ(q0,¬g) = ((r, p0) ∨ (¬r, p0)) ∧ ((r, r0) ∧ (¬r, r0)) ∧ (r, s1) ∧ ((r, s0) ∧
(¬r, s0)). States s0 and s1 describe the property AG(r → F g), state p0 — EG¬g,
states r0 and t0 — AGEF¬g, state t0 — EF¬g.
On the right side is the product (1-AHW) of the AHT with the one state system

that never grants (thus it has m
true→ m and out(m) = ¬g). The edges are labeled

with the relation .q,q′ defined in Eq. 5. The product has no plausible annotatation

due to the cycle (s1,m)
>→ (s1,m), thus the system does not satisfy the property.

0

¬g
1

g

¬r

r

true

and finally, a state without the grant should always be
reachable. We now invite the reader to Figure 3. It con-
tains the AHT produced by our tool, and on its right side
we show the product of the AHT with the one-state sys-
tem that does not satisfy the property. The correct system
needs at least two states and is on the right.

Resettable 2-arbiter. Let I = {r1, r2}, O = {g1, g2}. Consider the formula

EG(¬g1 ∧ ¬g2) ∧ AGEF(¬g1 ∧ ¬g2) ∧
AG(r1 → F g1) ∧ AG(r2 → F g2) ∧ AG(¬(g1 ∧ g2)).

Note that without the properties with E, the synthesizer can produce the system
in Figure 4a which starts in the state without grants and then always grants one
or another client. Our synthesizer output the system in Figure 4b (in one second).

0

¬g1¬g2

1

¬g1g2

2

g1¬g2

r1 ∨ r2 true

r2

¬r2¬r1¬r2

(a) The case without E properties

0

¬g1¬g2

1

¬g1g2

2

g1¬g2

r2

¬r1¬r2 r1¬r2
¬r2

true

r2

(b) The case with E properties

Fig. 4: Synthesized systems for the resettable arbiter example

0 wire ≡ ¬i1¬i2

(a) The sender (Mealy machine)

0

o1¬o2

3

¬o1o2

1

o1o2

2

¬o1¬o2

¬wire

wire

¬wire

w
ire

true

wire¬w
ir
e

(b) The receiver (Moore machine)

Fig. 5: The synthesized system for the sender-receiver example

Sender-receiver system. Consider a sender-receiver system of the following
structure. It has two modules, the sender (S) with inputs {i1, i2} and output wire
and the receiver (R) with input wire and outputs {o1, o2}.

S R

i1
i2

wire
o1
o2

The sender can send one bit over the wire to the
receiver. We would like to synthesize the sender and
receiver modules that satisfy the following CTL∗

formula over I = {i1, i2} and O = {o1, o2}:

AG((i1 ∧ i2)→ F(o1 ∧ o2))∧
AG((i1 ∧ i2 ∧ o1 ∧ o2)→ X(o1 ∧ o2))∧
AG(EF(o1 ∧ ¬o2) ∧ EF(¬o1 ∧ o2) ∧ EF(¬o1 ∧ ¬o2) ∧ EF(o1 ∧ o2)).

Our tool does not support the distributed synthesis, so we manually adapted the
SMT query it produced, by introducing the following uninterpreted functions.

– For the sender: the transition function τs : Ts×2{i1,i2} → Ts and the output
function outs : Ts × 2{i1,i2} → B. We set Ts to have a single state.

– For the receiver: the transition function τr : Tr × 2{wire} → Tr and the
output functions o1 : Tr → B and o2 : Tr → B. We set Tr to have four states.

It took Z3 solver about 1 minute to find the solution shown in Figure 5.

6 Related Work and Conclusion

The closest is the work by Beyene et al. [4] on solving infinite-state games using
SMT solvers. Conceptually, they use co-Büchi and Büchi ranking functions to
encode game winning into SMT, which was also partially done by Schewe and
Finkbeiner [27] a few years earlier (for finite-state systems). The authors focused
on co-Büchi and Büchi automata, while we also considered Rabin and Streett
automata (for finite-state systems). Although they claimed their approach can
be extended to µ-calculus (and thus to CTL∗), they did not elaborate beyond
noting that CTL∗ verification can be reduced to games.

In this paper, we showed how the research on ranking functions [21,14] can
be used to easily derive synthesis procedures. We also described two approaches
to the CTL∗ synthesis and the only (to our knowledge) synthesizer supporting
CTL∗. (For CTL synthesis see [16,10,25], and [3] for PCTL.) The two approaches
are conceptually similar. The approach via direct encoding is easier to code. The
approach via alternating hesitant automata, for example, hints at how to reduce
CTL∗ synthesis to solving safety games: via bounding the number of visits to
co-Büchi final states and bounding the distance to Büchi final states, and then
determinizing the resulting automaton. A possible future direction is to extend
the approach to the logic ATL* and distributed systems.

Acknowledgements. We thank Swen Jacobs and Bernd Finkbeiner for early dis-
cussions on bounded synthesis for GR(1), Nir Piterman for explaining Streett/Rabin
ranking constructions and alternating automata. This work was supported by the Aus-
trian Science Fund (FWF) under the RiSE National Research Network (S11406).

References

1. Babiak, T., Kret́ınský, M., Rehák, V., Strejcek, J.: LTL to Büchi automata trans-
lation: Fast and more deterministic. In: TACAS. LNCS, vol. 7214, pp. 95–109.
Springer (2012)

2. Baier, C., Katoen, J.P.: Principles of model checking, vol. 26202649. MIT press
Cambridge (2008)

3. Bertrand, N., Fearnley, J., Schewe, S.: Bounded Satisfiability for PCTL. In:
Cégielski, P., Durand, A. (eds.) CSL. LIPICS, vol. 16, pp. 92–106. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2012), http:

//drops.dagstuhl.de/opus/volltexte/2012/3666

4. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based ap-
proach to solving games on infinite graphs. SIGPLAN Not. 49(1), 221–233 (Jan
2014), http://doi.acm.org/10.1145/2578855.2535860

5. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences 78, 911–938 (2012)

6. Bloem, R., Braud-Santoni, N., Jacobs, S.: Synthesis of self-stabilising and
byzantine-resilient distributed systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV.
Lecture Notes in Computer Science, vol. 9779, pp. 157–176. Springer (2016),
http://dx.doi.org/10.1007/978-3-319-41528-4_9

7. Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthesis
for concurrent reactive programs with partial information. In: Baier, C., Tinelli, C.

http://drops.dagstuhl.de/opus/volltexte/2012/3666
http://drops.dagstuhl.de/opus/volltexte/2012/3666
http://doi.acm.org/10.1145/2578855.2535860
http://dx.doi.org/10.1007/978-3-319-41528-4_9

(eds.) TACAS. pp. 517–532. Springer Berlin Heidelberg, Berlin, Heidelberg (2015),
http://dx.doi.org/10.1007/978-3-662-46681-0_50

8. Bloem, R., Chockler, H., Ebrahimi, M., Strichman, O.: Synthesizing non-
vacuous systems. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI. pp. 55–72.
Springer International Publishing, Cham (2017), http://dx.doi.org/10.1007/

978-3-319-52234-0_4

9. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986), http://doi.acm.org/10.1145/5397.5399

10. De Angelis, E., Pettorossi, A., Proietti, M.: Synthesizing concurrent programs using
answer set programming. Fundamenta Informaticae 120(3-4), 205–229 (2012)

11. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337–340
(2008)

12. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL
synthesis. Formal Methods in System Design 39(3), 261–296 (2011), http://dx.
doi.org/10.1007/s10703-011-0115-3

13. Jacobs, S., Bloem, R.: Parameterized synthesis. In: Flanagan, C., König, B. (eds.)
TACAS. LNCS, vol. 7214, pp. 362–276. Springer (2012)

14. Jurdziński, M.: Small progress measures for solving parity games. In: Annual Sym-
posium on Theoretical Aspects of Computer Science. pp. 290–301. Springer (2000)

15. Khalimov, A., Jacobs, S., Bloem, R.: Party parameterized synthesis of token
rings. In: International Conference on Computer Aided Verification. pp. 928–933.
Springer (2013)

16. Klenze, T., Bayless, S., Hu, A.J.: Fast, flexible, and minimal ctl synthesis via
smt. In: International Conference on Computer Aided Verification. pp. 136–156.
Springer (2016)

17. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS. pp. 531–542
(2005)

18. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (Mar 2000), http://doi.
acm.org/10.1145/333979.333987

19. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal
logic specifications. In: Kozen, D. (ed.) Logics of Programs, Workshop, Yorktown
Heights, New York, May 1981. Lecture Notes in Computer Science, vol. 131, pp.
253–281. Springer (1981), http://dx.doi.org/10.1007/BFb0025786

20. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: LICS. pp. 255–264. IEEE Computer Society (2006), http:
//dx.doi.org/10.1109/LICS.2006.28

21. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August
2006, Seattle, WA, USA, Proceedings. pp. 275–284 (2006), http://dx.doi.org/
10.1109/LICS.2006.23

22. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
1977., 18th Annual Symposium on. pp. 46–57. IEEE (1977)

23. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989. pp. 179–190. ACM Press
(1989), http://doi.acm.org/10.1145/75277.75293

24. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,

http://dx.doi.org/10.1007/978-3-662-46681-0_50
http://dx.doi.org/10.1007/978-3-319-52234-0_4
http://dx.doi.org/10.1007/978-3-319-52234-0_4
http://doi.acm.org/10.1145/5397.5399
http://dx.doi.org/10.1007/s10703-011-0115-3
http://dx.doi.org/10.1007/s10703-011-0115-3
http://doi.acm.org/10.1145/333979.333987
http://doi.acm.org/10.1145/333979.333987
http://dx.doi.org/10.1007/BFb0025786
http://dx.doi.org/10.1109/LICS.2006.28
http://dx.doi.org/10.1109/LICS.2006.28
http://dx.doi.org/10.1109/LICS.2006.23
http://dx.doi.org/10.1109/LICS.2006.23
http://doi.acm.org/10.1145/75277.75293

USA, October 22-24, 1990, Volume II. pp. 746–757. IEEE Computer Society (1990),
http://dx.doi.org/10.1109/FSCS.1990.89597

25. Prezza, N.: Ctl (computation tree logic) sat solver, https://github.com/

nicolaprezza/CTLSAT

26. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988. pp. 319–327. IEEE Computer Society (1988), http://dx.doi.org/10.1109/
SFCS.1988.21948

27. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Automated Technology for Ver-
ification and Analysis (ATVA’07). pp. 474–488 (2007)

28. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of
reactive systems. STTT 15(5-6), 433–454 (2013), http://dx.doi.org/10.1007/

s10009-012-0224-3

29. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994), http://dx.doi.org/10.1006/inco.1994.1092

30. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths
(extended abstract). In: 24th Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, USA, 7-9 November 1983. pp. 185–194. IEEE Computer
Society (1983), http://dx.doi.org/10.1109/SFCS.1983.51

http://dx.doi.org/10.1109/FSCS.1990.89597
https://github.com/nicolaprezza/CTLSAT
https://github.com/nicolaprezza/CTLSAT
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1007/s10009-012-0224-3
http://dx.doi.org/10.1007/s10009-012-0224-3
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1109/SFCS.1983.51

	Bounded Synthesis for Streett, Rabin, and CTL*

