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Abstract

We propose a method for urban 3D reconstruction that is a hybrid between a volumet-
ric 3D reconstruction approach and a plane fitting approach in order to obtain a denoised
and compact representation of the scene. In our hybrid approach, a single global opti-
mization, using visibility as main information, defines whether the final reconstructed
surface should align with a detected plane or rather follow the details of the input data.
Our method is based on an established tetrahedral occupancy labeling approach which
we taylor for urban reconstruction by adding the possibility to favor an alignment of
the surface with detected planes. We further add novel regularization terms that favor
Manhattan-like structures and which allow to control the level of detail of the output
model. A variety of experiments demonstrate state-of-the-art performance and show that
our approach is suitable for both indoor and outdoor environments.

1 Introduction
The 3D reconstruction of urban scenes is an increasingly important topic for the engineering
and construction industry for planning, building and verification purposes, because original
building plans are often either not available or outdated. Especially with the increasing
accuracy and popularity of image-based 3D reconstruction techniques and the availability
of low-cost scanning devices, these approaches are increasingly included into project work
cycles. Additionally, map services like Google Maps want to offer 3D views for visualization
and need a representation suitable for internet transmission. However, the output of typical
dense 3D reconstruction approaches is often not directly useful for many applications for
which compact and simplified 3D models are often preferred or required. Therefore, scanned
3D models often require large amounts of tedious manual post-processing in order to obtain
building information models which are useful for industry applications.

In this work, we aim to minimize manual 3D model post-processing by including typical
model simplification steps into the 3D reconstruction process. We present a reconstruction
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Labatut et al. [20] proposed, αLoD = 375K proposed, textured (using [49])
Figure 1: Our approach combines generic 3D reconstruction (like Labatut et al. [20]) with
plane fitting and level-of-detail adjustment. Our method produces sharp edges and planar
surfaces while simultaneously keeping details like the structures on the roof.

method which favors planar and orthogonal structures like building facades without affecting
free-form shapes like vegetation. An example output of our method is depicted in Fig. 1.
Contributions. We present a hybrid approach between generic 3D reconstruction and plane-
based urban reconstruction: In contrast to many works that focus only on urban structure
reconstruction, our approach is able to deal with a mixture of urban and natural surface
structures. Our method robustly deals with noisy, missing and outlier data by computing
a consistent watertight surface of arbitrary topology via volumetric occupancy labeling of
tetrahedrons via graph-cuts. We present a unified 3D reconstruction framework to jointly
favor planar surfaces and orthogonal structures - without explicitly enforcing a Manhattan
structure, as well as enforcing user-specified smoothness and level of detail properties. We
provide a consistent and minimal approach to account for previously detected planes in the
tetrahedral labeling graph by splitting the tetrahedra into smaller ones and adapting the graph
and corresponding cost values accordingly. Without any learning, the priors of our method
are very generic which makes it well suited for reconstructing any mixture of urban and
nature scenes as well as both indoor and outdoor scenarios.

2 Related Work
Urban reconstruction has attracted a large amount of research in the past years, a broad
overview is given in the survey by Musialski et al. [30]. The most common property in urban
environment is that object surfaces often follow simple geometric shapes such as planes,
cuboids, cylinders, spheres and cones. Once detected, they can serve as a strong local shape
prior in order to deal with the most common problems in 3D reconstruction, namely: noise,
outliers, as well as inconsistent and missing data.
Primitive Fitting. The most common approach is to detect typical primitives in the input
point cloud. General methods for fitting arbitrary primitives are presented in [24, 41], but
there are also methods for fitting particular primitives like boxes [23], or cylinders, spheres,
and cones [19, 22]. The vast majority of works that search for primitives in point cloud data
focus on detecting or fitting planes [4, 10, 16, 21, 22, 23, 27, 35, 36, 40, 45]. Some of these
approaches are capable of performing real-time plane fitting and geometry simplification [10,
45]. Most approaches that detect planes, simply remove all plane inlier points and replace
them with a single polygon. In contrast, our approach combines primitive information with
a generic 3D reconstruction approach and lets a global optimization decide whether and
where the reconstructed surface should follow a detected plane. To simplify the search and
regularization problem a further common assumption for urban scene reconstruction is to
only look for axis-aligned piecewise planar structures in an purely orthogonal arrangement,
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commonly known has the Manhattan-world assumption [13, 23, 40, 50]. In [43], this
assumption is slightly relaxed and a mixture of Manhattan frames is computed within a
probabilistic approach. Although the above mentioned assumptions are very generic, the
majority of works on urban 3D reconstruction focus on either indoor or outdoor scenes.
Indoor Urban Scene Reconstruction. While most primitive fitting approaches use RANSAC
[11] for detection, especially methods for indoor reconstruction often rely on a horizon-
tal slicing approach in which all 3D points are vertically projected and collected in a his-
togram which then shows all walls and major structures as easily detectable maxima [2, 29,
34, 35, 37, 46, 50]. Therefore, these methods additionally require information about the
vertical direction. Beyond the reconstruction of walls, several works also segment rooms
[5, 16, 29, 32, 46], doors and windows [16, 25, 33], focus on the reconstruction of objects
and furniture in indoor environments [17, 26, 42], or on their semantic classification [5, 31].
Outdoor Urban Scene Reconstruction. In [38], a real-time 3D reconstruction system is
presented that is mostly generic, but plane sweeping directions for stereo and a depth map
hole filling leverage urban structure assumptions. In [36], an iterative approach between
plane fitting and plane relationship regularization minimizes the amount of plane directions
and has shown to work well on both indoor and outdoor urban environments. The algorithm
is specialized to perform fast plane detection and alignment but does not work well on free-
form shapes. Similarly, the Manhattan-world reconstruction approach [23] is very fast and
works well on outdoor scenes as long as there are no oblique angles or slanted surfaces in
the scene. Duan and Lafarge [9] present a work on city reconstruction from satellite images.
Starting from a super-pixel segmentation, the algorithms assigns each of the super-pixels a
height value, resulting in a very efficient algorithm which allows arbitrary building ground
shapes, but similar to other 2.5D approaches [3, 51, 52] they disallow any real 3D structures
like overhanging roofs, balconies or bridges.

Approaches like [14, 15] follow the horizontal slicing idea in order to detect walls and
cannot model vertically slanted surfaces which leads to stair-casing artifacts for slanted struc-
tures like roofs. Moreover, these approaches are specialized to only reconstruct buildings
and are not suitable for a hybrid 3D reconstruction of mixed urban and natural scenes. Some
building reconstruction approaches explicitly handle level of detail (LoD) control [3, 47, 51].
Generic 3D Reconstruction Approaches. Since we follow a hybrid approach we briefly
mention related volumetric 3D reconstruction approaches which typically perform global
optimization to compute the scene topology and a surface geometry which best explains the
input images for given photometric constraints and pre-defined surface regularity properties.
Our work is based on [18, 20, 48] which compute a tetrahedral Delaunay tessellation of the
scene from 3D points that have been found as matches in the input images. Subsequently,
a graph-cut approach labels each of the tetrahedra as either occupied or empty. Generally,
generic reconstruction approaches do not leverage the information that urban scenes are
mostly composed of simple geometric shapes.
Hybrid 3D Reconstruction Approaches. In a series of works, Lafarge et al. [19, 21, 22]
presented several hybrid primitive fitting and 3D reconstruction approaches. In [19], they
first fit primitives and subsequently mesh remaining unfitted scene parts using Delaunay
triangulation, but this is not robust to outliers and often fails to reconstruct free-form parts
well. In [21], the tetrahedral solution space is augmented with pre-detected planes. We
propose an improved plane augmentation which does not require a dense over-sampling of
planes and avoids many unnecessary additional objective variables. A substantially different
hybrid reconstruction approach was proposed in [22], in which free-form mesh patches and
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primitives are jointly optimized within a non-convex setting via a jump-diffusion process.
In sum, detected primitives often only partially explain the data at hand and the major-

ity of urban reconstruction methods rely on simply heuristics to locally decide whether data
deviations from a primitive are due to noise or indeed represent important shape details that
should be kept in the final reconstruction. We therefore strive for a hybrid reconstruction
approach which is suitable for both indoor and outdoor scenes and in which model simplifi-
cations are part of a global optimization process which adheres to consistency with the input
data as well as to user-defined properties for surface regularity and level of detail.

3 Surface Reconstruction with Plane-based
Regularization

In this section, we describe our method for creating regularized 3D reconstructions of urban
environments. After detecting planes in the input point cloud, we partition the point cloud
(which can be obtained from any stereo reconstruction algorithm) into tetrahedra via De-
launay triangulation. Although our approach can theoretically deal with any kind of shape
primitive, we focus only on planar structures since they represent the most common case
in urban environments and more complex shapes can often be decomposed or well approx-
imated with piecewise planar structures. Similar to the generic tetrahedra-based 3D recon-
struction approach [20] we compute the reconstructed surface as the interface of a volumetric
inside/outside labeling. In order to ensure that detected planes can be part of the solution,
we augment the solution space by intersecting the tetrahedralization with detected planes in
the scene. We add a pairwise smoothness term which favors Manhattan-like structures and a
further data term to adjust the level of detail of the reconstruction.

3.1 Plane Detection
As a first step, we detect planes in the input point cloud using a RANSAC [11]-based ap-
proach and use this planes later to denoise the point cloud and further subdivide tetrahedra.
The inlier points supporting the plane hypotheses are defined as points with a maximum
distance of dinlier to the plane, which is computed as the median minimum point-to-point
distance of the whole point cloud multiplied by 5. For every plane, point clusters on the
computed plane are estimated using Mean Shift [8]. Finally, there are several detected plane
segments for every detected plane.

We chose this RANSAC-based plane detection method, because it estimates the geo-
metric structure of urban or indoor environments sufficiently well. However, our approach
could use any shape detection method as preprocessing step which can be approximated by
a piecewise planar structure (triangles).

3.2 Plane-based Point Cloud Denoising
We consider all inlier points within the distance dinlier around the plane as noisy samples of
the plane. To remove this small noise, we project all inlier points onto the plane. This roughly
maintains the original point density in the point cloud and is more efficient than the dense
over-sampling of the plane in [21] to enforce the plane to be part of the tetrahedralization. In
contrast, we subdivide tetrahedra if necessary for this purpose (see Sec. 3.6).
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3.3 Point Cloud Tetrahedralization
We compute a tetrahedralization T of the point cloud via Delaunay triangulation which is
defined as follows [6]: Given a point set P = {p1, ..., pn}, the Voronoi cell associated to
each point pi is the region surrounding the point pi in which every point is closer to pi than
to any other point in P . The Delaunay triangulation Del(P) of P is defined as the geometric
dual of the Voronoi diagram. Thus, there is an edge between two points if and only if their
corresponding Voronoi cells have a non-empty intersection. Such a Delaunay triangulation
leads to a partition of the convex hull of P into d-dimensional simplices, corresponding to
triangles in 2D and to tetrahedra in 3D space.

3.4 Tetrahedra Occupancy Labeling
We aim to compute a dense watertight surface as the interface between two disjoint sets
labeling every tetrahedron in the scene as either inside or outside. Hence, the surface is fully
described by a binary labeling ` : T →{0,1}. To this end, we formulate the following energy
minimization problem which expresses each of our goals with a particular energy term:

minimize
`

EVis(`)+αManEMan(`)+αLoDELoD(`) . (1)

Each of these terms enforces or favors a different property. In particular, EVis scores the face
visibility of tetrahedra, EMan favors Manhattan-like solutions and ELoD allows for level of
detail adjustment. The corresponding weights αMan,αLoD ∈ R≥0 balance the impact of each
term. We compute the globally optimal solution of this energy minimization problem by
using Graph Cuts [7]. The visibility-based energy corresponds to the energy minimized in
[18], but we slightly modify the overall energy to suit our needs. The following subsections
will detail these modifications and will explain all of the terms in Eq. (1).

3.5 Visibility-based Unary and Pairwise Costs
For each cell and for each face, costs are computed using the visibility information that can
be derived from given camera-point correspondences. These visibility-based costs EVis(`)
are defined as described in [18]. We define unary costs providing a point-wise prior on the
cell occupancy, as well as pairwise costs which locally favor or penalize labeling transitions.
Unary Costs. The unary costs derived from the visibility information are defined as follows:
Every cell containing a camera and every infinite cell is labeled as outside by adding infinite
weights. Contrarily, every point which is directly behind a vertex (seen from the camera)
is labeled as inside. For this, the cell behind the point gets a finite weight for each camera
where the point is visible in. Here, we explicitly avoid using infinite weights, since point
measurements are prone to noise and may contain outliers.
Pairwise Costs. The pairwise costs are set to penalize ray conflicts for every camera to point
correspondence. The pairwise costs are only added in one direction, since faces cannot exist
in front of a measured point. Hence, every intersection of a camera-to-point ray with a face
gets a constant penalty. In addition to the visibility-based costs, we add constant pairwise
costs as a simple regularization term. Although more complicated regularization terms exist
in literature (e.g., the beta skeleton term [20]), adding constant costs has shown to be the
simplest and most effective regularization term [28].
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Figure 2: Subdivision schemes of tetrahedra intersected by a plane. Depending on the
amount of edge intersection points and their locations, the cell needs to be divided differ-
ently. The cut by the plane is illustrated with green edges, additional edges which need to be
inserted are illustrated in red. In (a) and (b) there is an edge-plane intersection which results
in a new vertex for each intersection. Four new cells are created in (a) and six new cells are
created in (b). In (c), the cell-plane intersection follows exactly an edge. Therefore, just one
new vertex and two new cells are created. In (d), the cell-plane intersection comprises one
cell vertex. The cell gets divided into three new cells by adding two new vertices.

3.6 Tetrahedra Subdivision
After removing the noise of plane inlier points by moving them onto the plane (Sec. 3.2),
the plane faces are not necessarily part of the tetrahedralization. We therefore compute
intersections of planes and tetrahedra to ensure that all planes are represented as faces in
the tetrahedralization. Note that in contrast to [21] that augment the tetrahedralization with a
densely sampled representation of every plane, our approach minimizes the amount of added
points and tetrahedra. We now briefly describe how we consistently subdivide tetrahedra, for
more details we refer to the supplementary material.

For every edge which intersects a plane segment, we subdivide all incident cells of this
edge by dividing the cell along the plane. However, a cell division into two parts is not suffi-
cient as cells need to be further subdivided into multiple tetrahedra and kept consistent with
their neighbor cells. Therefore, we define subdivision schemes for all possible intersection
cases of a cell by a plane (see Fig. 2). Depending on its neighbors, the correct subdivision
orientation is selected and, if necessary, the subdivision is adopted to be consistent with all
neighbors. Note that the triangulation might not fulfill the Delaunay property after the tetra-
hedra subdivision, but we do not require this property in the forthcoming processing steps.
Cost Re-Computation for Divided Tetrahedra. Using the visibility-based unary and pair-
wise costs described in Sec. 3.5, it is necessary to have visibility information available for
each point (i.e. camera-point correspondences). As there is no known visibility information
for the points created by the tetrahedra subdivision, we compute the visibility-based cost us-
ing the original tetrahedralization and propagate them to the subdivided cells. For the unary
costs we assign the original cost scaled by the volume of the new tetrahedron and for the
pairwise costs the weight is scaled according to the area of the face, if the face of a new
cell is part of a face of the old cell. For all other faces (i.e.,faces inside of the old cell), the
biggest face from the original cell with a sufficiently small enclosing angle with the new face
is selected and scaled according to the area:

Eunary(t) = Eunary(torig)
vt

vtorig

Epairwise( f ) = Epairwise( forig)
a f

a forig

, (2)

where t is the new tetrahedron and vt its corresponding volume, torig and vtorig are the original
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tetrahedron and its corresponding volume, respectively.
Further, f , forig and a f ,a forig are the new and original faces with their corresponding

areas. In order to select a corresponding original face for new faces not lying on an original
one, we retrieve all faces with an enclosing angle smaller than 0.3 rad (approx. 17.2 deg)
and take the biggest one of the retrieved faces. If no face fulfilling this property exists, we
increase the maximum enclosing angle by 0.1 rad until an appropriate face is found.

With this propagation scheme, the unary costs overall stay the same and the pairwise
costs are propagated from faces which are as similar as possible to the new faces and, by
taking the biggest one, carry as much as possible information.

3.7 Plane-Aware Regularization
We introduce new regularization terms which allow a continuous choice between generic
3D reconstructions and reconstructions in which the pre-detected planes and Manhattan-like
structures are increasingly replacing surface noise and details of the surface structure.
Manhattan Regularity Term. Similar to [22] we introduce a regularity term which favors
orthogonal and parallel scene structures. The following term favors label transitions with
Manhattan-like surface structures, that is, neighboring faces with enclosing angles similar to
0 or multiples of 90 degrees. More exactly, this term penalizes faces which cannot be part of
a Manhattan-like surface structure:

EMan(`) = ∑
f∈T

1{`t1 6=`t2}
a f

3 ∑
e∈ f

min
g∈Ne

{∣∣sin
(
2∠( f ,g)

)∣∣} , (3)

where f denotes a face in the tetrahedralization T , 1{·} is the indicator function, `t1 and `t2
are the labels of the adjacent tetrahedra of face f , a f the area of f , e are the edges of f
and Ne are all incident faces of edge e. As a major advantage, the term favors Manhattan-
like structures, but does not strictly enforce them and is therefore applicable to any kind of
surface type. Moreover, the term acts completely locally and the surface does not need to be
aligned with any world coordinate axis.
Level of Detail Term. In order to control the amount of detail which is removed by the
Manhattan term and due to the favoring of pre-detected planes, we introduce another term
controlling the amount of removed structure according to its size. For instance, we want
to remove the noise on a building roof but keep the chimney. To achieve this, we intro-
duce a new term penalizing the volume deviation of the plane-based reconstruction with
respect to the original non-regularized reconstruction. Using the visibility-based energy de-
fined in [18], the original generic 3D reconstruction without favoring planes is defined as
`Labatut = argmin` [EVis(`)]. A natural error measure to control structure removal upon plane
replacement is the volume difference between the two models. We hence define the level of
detail term as follows:

ELoD(`) = ∑
t∈T

vt 1{`t 6=`Labatut
t } , (4)

where t defines a tetrahedron in the tetrahedralization T , 1{·} is the indicator function, `t is
the labeling of t, and vt denotes the volume of tretrahdron t. This term acts as the counterpart
of the Manhattan regularity term: While the Manhattan regularity term removes details not
supported by any plane, this term allows to control the amount of details to be removed.
Plane Intersection Artifacts Removal. The terms work well in most cases, but artifacts may
arise near plane intersections, typically along sharp edges in the scene like building outlines.
Cells which contain a unary term voting for being inside while actually being outside of the
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object may exist enclosed by two planes due to noise within the 3D reconstruction. However,
as some of the cells’ faces are lying on the planes and, hence, are not penalized by the
Manhattan term, the smoothness term is not strong enough to enforce sharp edges.

To avoid such artifacts, we reduce the influence of the unary and pairwise terms in scene
parts around plane intersections. For every tetrahedron for which its center point has a normal
distance d to the plane intersection smaller than 3dinlier (with dinlier being the plane inlier dis-
tance defined in Sec. 3.1), we update the unary costs by: E(t) = Eorig(t)

(
1− exp

(
−d2

3d2
inlier

))
,

with t being the tetrahedron to update and Eorig(t) being the initial unary cost before the
update. In the same way, the pairwise costs at faces are updated.

4 Experiments
In our experiments, we evaluated our method on multiple urban outdoor and indoor datasets
and compared it to other state-of-the-art methods. We show that our method yields com-
parable results while being more flexible than others and that the level of detail of the re-
construction can be adjusted easily with the parameter αLoD. For all the datasets except the
Entry-P10 dataset, we computed the camera poses using the input images within our own
Structure-from-Motion pipeline. To compute a (semi-)dense 3D reconstruction, we used
PMVS2 [12] and Sure [39]. Further, we used the CGAL library [1] for computing the 3D
Delaunay triangulation. For all the experiments, we selected αMan = 250K, as with this set-
ting the whole reconstruction just consists of planar surfaces in combination with a low value
for αLoD (see Fig. 3).

The outdoor dataset Block Building, consists of a block shaped building with some addi-
tional details on the roof. Therefore, it is well suited to show different reconstruction results
when adjusting αLoD. As input, we use a semi-dense reconstruction created by PMVS2 [12]
with approx. 5.2M points. Fig. 1 shows a textured result and a result of Labatut et al. [20].
Our method produces well regularized results and generates models with sharp edges and
planar surfaces while still containing details which were not supported by any plane.

In Fig. 3, we compare results with varying αLoD to the result of [15]. For high αLoD (mid-
dle left) more details are kept in the reconstruction, while for low αLoD (middle right) mostly
only plane supported faces are kept. Compared to Holzmann et al. [15], the simplification of
planar surfaces is similar, but structures on the roof are represented with more details by our
approach. It is worth mentioning that [15] cannot deal with slanted roof sections and will
also simplify non-building geometry like vegetation or irregular ground structure.

Input image proposed, αLoD = 375K proposed, αLoD = 25 Holzmann et al. [15]
Figure 3: Results with varying level of detail on the Block Building dataset. For high values
αLoD, many details of the reconstruction from Labatut et al. [20] which are not supported by
a plane are still included in the reconstruction. Contrarily, when setting αLoD low, mostly
only plane-supported surfaces are kept. Compared to the proposed method, Holzmann et
al. [15] (on the same input) approximates planar surfaces well but misses details on the roof.
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Input image Labatut et al. [20] proposed, αLoD=250K proposed, αLoD=500K
Figure 4: Our method with different level of detail settings in comparison to Labatut et
al. [20] on the House dataset. For a low level of detail (middle right), the chimneys are not
reconstructed while for high level of detail (right) they are are included in the reconstruction.

Labatut et al. [20] Li et al. [23] Monszpart et al. [27] proposed
Figure 5: Qualitative comparison to other methods on the House dataset (Top row), and an
Indoor dataset (Bottom row). While Labatut et al. [20] does not simplify any geometry, Li
et al. [23] over-simplifies the scene with only very few boxes. The results of Monszpart et
al. [27] were not useful on our datasets as detected planes (only shown in bottom row) did
not well align with the geometry. Our approach provides a hybrid reconstruction between
primitive-fitted planar parts and generic reconstruction for the free-form parts.

The next outdoor dataset, in the following referred as House, is a family house containing
a sloped roof with chimneys. This scene is a dense reconstruction created with Sure [39] and
down-sampled to 1M points. In Fig. 4, one can observe the varying level of detail, which
is especially well observable at the chimneys. Additionally, an example input image and a
result from Labatut et al. [20] can be seen in Fig. 4. In Fig. 5, further views of this dataset are
depicted and shown in comparison to state-of-the-art mesh simplification methods [23, 27].

We also evaluated on an Indoor dataset, which is a reconstruction of a hall with pla-
nar walls, some tables and chairs. Again, this is a semi-dense reconstruction created with
PMVS2 [12] and consists of approx. 4.6M points. Results and a comparison with other
methods can be found in Fig. 5. While Li et al. [23] over-simplifies the geometry by only
fitting boxes, Monszpart et al. [27] did not produce any meaningful results on our datasets.

Finally, we compared our method with the method proposed in [22] using the Entry-
P10 dataset [44]. This dataset consists of 10 images captured at ground level. We used the
provided camera poses and computed a semi-dense point cloud using PMVS2 [12] consisting
of approx. 0.4M points. As can be seen in the results in Fig. 6, our proposed method
smoothes the planar surfaces very well while still keeping most of the important details of
Labatut et al. [20]. Compared to Lafarge et al. [22], our method delivers a comparable
regularization of the planar surfaces.
Runtimes. We executed our algorithm on a computer with an Intel Xeon E5-2680 running at
2.8GHz with 40 cores and 264 GB of RAM. Not all computing steps were parallelized, only
the visibility casting used to compute the visibility costs made use of multiple CPUs and
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Input image Labatut et al. [20] proposed, αLoD = 1500K Lafarge et al. [22]

Figure 6: Results of the Entry-P10 dataset [44]. While the result without shape priors (La-
batut et al. [20]) contains a very noisy facade, the proposed approach reconstructs a com-
pletely planar surface and simultaneously keeps most of the significant details. The proposed
approach also produces a comparable planar regularization of the facade to [22]. The image
for Lafarge et al. is taken from [22].

Plane Comp.
2.6ks

Triang./Graph Creation.
0.8ks

Visibility Casting
15.7ks

Cell Cutting
9.1ks

Manhattan Term Comp.
0.9ks

Plane Int. Downw.
4.8ks

Graph Cut
0.04ks

Total: 34.4 ks

Figure 7: Runtime breakdown for an execution on the Block Building dataset, which has a
total runtime of approx. 9.5 h (34.4 ks). Most of the processing time is needed for visibility
casting and cell cutting. Important processing parts are depicted in red and blue, remaining
small processing parts (e.g., data loading, LoD weight computation) are depicted in white.

multiple instances were executed at the same time, which also diminished the parallelization
effect. The runtime heavily depends on the amount of input points and cameras and varies
from approx. 5 min for the Entry-P10 dataset (0.4M points, 10 cameras) to approx. 9.5 h for
the Block Building dataset (5.2M points, 232 cameras). Though, as most of the processing
time is needed for preprocessing steps, the final optimization can be rerun with different
parameters within less than one minute. A breakdown of the runtime can be found in Fig. 7.
The runtimes for Li et al. [23] were in the range of 10 sec, for Holzmann et al. [15] around
50 min, and for Monszpart et al. [27] more than 16 h.

5 Conclusion
We presented a hybrid method for 3D reconstruction of natural scenes containing arbitrary
surface structure as well as man-made structures which often exhibit planar shapes in orthog-
onal and planar alignment. Given the output of an image-based reconstruction approach, we
compute a tetrahedral tessellation of the scene and build a corresponding graph to reason
about free and occupied space within a graph-cut framework. We provided a consistent and
minimal approach to include previously detected planes into the graph structure by splitting
intersected tetrahedra into smaller ones and by updating the graph structure and costs ac-
cordingly. We introduced a novel combination of Manhattan-like regularization as well as
level of detail adjustment to define the level of surface simplification. Our method efficiently
computes compact as well as detailed models with state-of-the-art reconstruction quality.
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