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Abstract

In this work, we propose a robust visual odometry system for RGBD sensors. The
core of our method is a combination of edge images and depth maps for joint camera pose
estimation. Edges are more stable under varying lighting conditions than raw intensity
values and depth maps further add stability in poorly textured environments. This leads
to higher accuracy and robustness in scenes, where feature- or photoconsistency-based
approaches often fail. We demonstrate the robustness of our method under challeng-
ing conditions on various real-world scenarios recorded with our own RGBD sensor.
Further, we evaluate on several sequences from standard benchmark datasets covering a
wide variety of scenes and camera motions. The results show that our method performs
best in terms of trajectory accuracy for most of the sequences indicating that the chosen
combination of edge and depth terms in the cost function is suitable for a multitude of
scenes.

1 Introduction
Visual odometry (VO) [11, 12] is the task of estimating the ego-motion of a camera from
a temporally ordered sequence of images. It is a key requirement for many applications in
computer vision and robotics such as autonomous driving, navigation, 3D reconstruction,
augmented and virtual reality. While monocular and stereo camera setups have been exten-
sively used in the past, the recent introduction of cheap RGBD sensors has opened many
new possibilities for VO research. RGBD sensors like the Microsoft Kinect, Asus Xtion and
Orbbec Astra can simultaneously record a scene’s texture as an RGB image and its geome-
try as a depth map. The processing of the sensor input data is the main difference between
current VO systems and divides them roughly into three categories. (i) Feature-based meth-
ods [9, 11] extract and match features, thereby discarding most of the image content. Thus,
they typically do not work very well in scenes with insufficient texture. In contrast, (ii) direct
methods work better in poorly textured environments as they do not rely on feature extrac-
tion and matching but process image information directly. Dense or semi-dense approaches
based on the photoconsistency assumption [4, 7, 14] and edge-based variants [8, 13] are
used. (iii) Iterative closest point (ICP) methods [10, 18] directly align 3D point clouds but
require sufficient 3D structure and a costly correspondence matching step. Since texture-
and structure-less surfaces like walls, floors or ceilings as well as illumination changes even
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Figure 1: We propose a method that combines edge images and depth maps to jointly mini-
mize edge distance and point-to-plane error for camera motion estimation.

occur in common office or indoor scenes, various combinations of these categories have been
proposed to tackle these challenges [7, 17, 18].

In this work, we propose a robust RGBD VO system that addresses the challenges of
typical indoor scenes. We present a method that uses a combination of edge images and
depth maps and jointly minimizes edge distance and point-to-plane error to exploit the bene-
fits of both (see Fig. 1). While the accuracy of edges and their robustness to illumination
variations increase tracking quality compared to photoconsistency-based approaches, the
point-to-plane term adds stability in poorly textured regions and imposes additional geo-
metric constraints on the camera pose estimation. The main contributions of our paper can
be summarized as:

• A combination of edge distance and point-to-plane error for camera pose estimation

• An optimization on spatially close reference frames to increase trajectory accuracy

• An extensive evaluation on challenging real-world and standard benchmark datasets

• A VO framework that runs in real-time on a CPU1

2 Related Work

Classical indirect feature-based methods extract point features, establish correspondences
and estimate the camera motion between images [9, 11]. All point feature-based methods
discard valuable image information during keypoint extraction, limiting them to texture-rich
scenes. The recent ORB-SLAM2 [9] utilizes ORB features for tracking, mapping and loop
closing and shows very promising results. Nevertheless, a known problem of feature-based
approaches is, that the spatial distribution of the extracted sparse features influences the pose
estimation, which is a significant limitation in practice. Indoor scenes for example consist
of areas, where many features are detected, e.g. posters, keyboards, and parts that are nearly
feature free, e.g. ceilings or walls, which creates challenging situations.

1Code available: https://www.tugraz.at/index.php?id=22399
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Recently, direct methods that completely avoid feature extraction and correspondence
matching have become very popular. Direct dense methods [7, 14] always process the com-
plete image information, thereby avoiding a bias due to spatial distribution. Steinbrücker et
al. [14] utilize depth information and optimize a rigid body motion such that the photoconsis-
tency between two images is maximized. Kerl et al. [7] propose a probabilistic formulation to
jointly minimize intensity and depth errors for pose estimation. In contrast to [7, 14], LSD-
SLAM [4] is a semi-dense method that only relies on high-gradient regions to minimize
the photoconsistency error. However, the quality of photoconsistency-based pose estimation
suffers under motion blur and as demonstrated in [8, 13] is limited to small inter-frame mo-
tions. Instead of high-gradient regions, many methods use the more robust edges. Tarrio
and Pedre [16] detect Canny edges [2] and try to match them between images by searching
along the normal direction, which is computationally expensive and error prone. In their
direct edge-alignment (D-EA), Kuse and Shen [8] instead pre-compute the distance to the
closest edge at each pixel position with a distance transform (DT) [5] and optimize with a
subgradient method. Wang et al. [17] jointly minimize edge distance and a photometric er-
ror at high-gradient pixels. In [13], Schenk and Fraundorfer study the influence of different
edge detectors and demonstrate how to efficiently remove outliers to increase accuracy and
robustness. Similar to feature-based methods, the distribution of edges can influence pose
estimation.

Instead of images, various works directly align 3D point clouds with the iterative closest
point (ICP) [1, 3, 10] algorithm. The standard versions of ICP have several issues, such as
missing data and outliers and are usually not real-time capable as they require a computa-
tionally expensive nearest-neighbor search in 3D space in each iteration. KinectFusion [10]
exclusively processes depth maps and reduces the search to 2D space by warping onto the
current depth map and establishing correspondences according to the 2D pixel coordinates.
This strategy and the intensive use of a GPU make KinectFusion one of the first real-time
capable VO systems. Due to the requirement of 3D structure, depth only methods often fail
in room size scenes. Whelan et al. [18] tackle this problem by jointly optimizing a point-to-
plane and a photoconsistency error. However, their method requires a very strong GPU to be
real-time capable.

In this work, we present a VO method for RGBD data, which combines edge distance
with point-to-plane error [3]. We demonstrate that our system performs best on a wide
variety of scenes and compare to feature-based [9], direct [7, 8] and point-to-plane ICP-
based [18] approaches. Our joint camera pose estimation alleviates many of the limitations
of previous works. In contrast to photoconsistency- [14] or feature-based methods [9, 11],
the dense point-to-plane ICP term stabilizes optimization in poorly textured scenes and re-
duces the influence of spatial feature distribution. Environments with little 3D structure are
problematic for ICP approaches [1, 3, 10] but edge features prevent misalignment in such
cases. Additionally, our system runs in real-time on a CPU, while many approaches require
a GPU [10, 18].

3 Relative Camera Motion Estimation
At each time step t, we receive a frame Ft that comprises an RGB image It and a depth
map Zt . We assume It and Zt to be synchronized and aligned such that at a pixel position
p = (px, py), the intensity is given as I(p) and the corresponding depth as Z(p). The 3D
point P = (x,y,z) can be computed in the respective camera coordinate system from p and
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the corresponding depth Z(p) with the inverse projection function π−1:

P = π
−1(p,Z(p)) =

(
px− cx

fx
z,

py− cy

fy
z,z
)
, (1)

where cx, cy are the principal offsets, fx, fy the focal lengths as defined by a standard pinhole
camera model and z = Z(p). Similarly, the projection function π is given as:

p = π(P) =
(

x fx

z
+ cx,

y fy

z
+ cy

)
. (2)

We further define a relative rigid body motion g ∈ SE(3), which is typical represented as
transformation matrix T comprising a 3× 3 orthogonal rotation matrix R ∈ SO(3) and a
3×1 translation vector t ∈ R3:

T4×4 =

[
R3×3 t3×1

0 1

]
. (3)

Since g only has 6 degrees of freedom, T is over-parametrized. We use the more compact
representation as twist coordinates ξ defined by the Lie algebra se(3) associated with the
group SE(3). ξ is then a 6×1 vector given as:

ξ = (v1,v2,v3,ω1,ω2,ω3)
T ∈ R6, (4)

where v1,v2,v3 is the linear velocity and ω1,ω2,ω3 the angular velocity. T can be retrieved
from ξ with the matrix exponential as T = exp(ξ ). The full warping function τ reprojects a
pixel p from frame Fj with depth Z j(p) to p′ in Fi under the transformation Ti j and is defined
as:

p′ = τ(ξi j, p,Z j(p)) = π(Ti jπ
−1(p,Z j(p))). (5)

3.1 Edge- and ICP-based Image Alignment

In our method, we estimate the relative motion ξrc from a current frame Fc to a reference
frame Fr by jointly minimizing an edge distance error Eedge and an ICP-based point-to-plane
error Eicp (see Fig. 1). The optimization is given as:

ξ
∗ = argmin

ξrc
Eedge +λEicp, (6)

where ξ ∗ denotes the optimal relative motion and λ is a balancing factor. We minimize Eq.
(6) in a coarse-to-fine scheme using an iteratively re-weighted Levenberg-Marquardt method
in a left compositional formulation similar to [4]. Further, we initialize the optimization ac-
cording to a constant motion assumption to start close to the minimum. In our optimization
formulation, cost evaluation solely depends on the reference frame, thus we have to recom-
pute all frame-dependent structures only when a new reference frame is added. We follow
the strategy proposed in [13] and insert a new reference frame, when the overlap between
reprojected edges from 3 previous frames and the edges in the current frame is lower than
the number of non-overlapping edges.
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Edge Distance Error Eedge: We detect Canny edges [2] in each frame and on all pyramid
levels and reproject only edge pixels with a valid depth to the reference frame. Finding
the distance to the closest edge by searching through the image in each iteration is usually
very slow. Instead, whenever a new reference frame is added, we compute the Euclidean
distance to the closest edge at each pixel position using the distance transform (DT) [5]. The
edge distance residual re can then be obtained by evaluating the DT at the reprojected pixel
position (see Fig. 1). We define our edge distance error as:

Eedge = ∑
pe∈ΩEc

δH(re)r2
e , re = DTr(τ(ξrc, pe,Zc(pe))), δH(re) =

{
1 re ≤ΘH
ΘH
re

re > ΘH
, (7)

where DTr denotes the DT of the reference frame, ΩEc the set of edge pixels with valid depth
in the current frame, pe the pixel position (px, py) of an edge and δH(re) a Huber weight
function that reduces the influence of large residuals. Edge detections can differ between
frames and to remove potential outliers, we filter residuals re above a threshold Θe at each
pyramid level.

Point-to-Plane Error Eicp: We also perform geometric pose optimization with an ICP-
based point-to-plane error [3]. Instead of the costly nearest-neighbor search in 3D space,
we perform projective association, where we reproject all pixels pi with valid depth from
the current to the reference frame with the full warping function p′ = τ(ξrc, pi,Zc(pi)) and
establish correspondences according to the pixel coordinates [10]. The point-to-plane error
projects the distance vector between two 3D points onto the surface using the corresponding
normal vector, which allows flat regions to slide along each other [3]. This requires the
computation of a surface normal map Nr whenever a new reference frame is added. We
define the point-to-plane error as:

Eicp = ∑
pi∈ΩZc

δI(ri)r2
i ; ri =

〈
(Pr−Trcπ

−1(pi,Zc(pi)));nr
〉
, δI(ri) =

1.5
1.5+ r2

i
(8)

where ΩZc denotes the set of valid depth values in the current frame, ri the residual and p′

the reprojected pixel position. The normal vector is given as nr = Nr(p′) and the 3D point as
Pr = π−1(p′,Zr(p′)). A weight function δI(ri) similar to [7] reduces the influence of large
residuals.

Balancing Factor λ : When jointly optimizing two error terms, a balancing factor λ is typ-
ically introduced. Finding the optimal λ is especially challenging when optimizing errors
with completely different metrics, e.g. edge distance in pixels and point-to-plane error in
meters, or abundance, e.g. rather sparse edges compared to the dense ICP term. Our ex-
periments indicate that the ideal value of λ also depends on the sequence and can also vary
between iterations. However, it is possible to obtain very accurate trajectories even without
the optimal value. Our results show that the edge-based term is more important for accuracy
than the ICP-based term (see Tab. 1), suggesting to give a higher weight to the edge-based
term. We can impose a higher influence of the edge residuals by setting λ = 12. When only
few edges are detected, the influence of the ICP residuals gets higher as intended.

2This is mainly due to different metrics of the residuals
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Figure 2: We improve the spatial distribution of the detected edges by computing a covering
image to find parts that are insufficiently covered (depicted in red). We then transfer edge
detections from a higher to the lower resolution level.

Improving Spatial Distribution of Edges: A common challenge for edge-based methods
is the spatial distribution of the edges, which can bias camera pose estimation due to cluttered
or edge-less areas in the image. While typically an abundance of edges is detected at the
highest level of the image pyramid, fine-grained parts are smoothed over in lower levels and
do not produce edge responses anymore. This is especially problematic in areas with little
intensity difference (e.g. walls), where edge detectors rely on fine texture. We find areas that
are insufficiently covered by computing the spatial distribution of the detected edges in the
lower pyramid levels. We count the number of edge pixels in each N×N patch and if the
number is below ΘE , we mark the patch as insufficiently covered. In this way, we compute
a covering image showing sufficiently (green) and insufficiently (red) covered patches (see
Fig. 2). If a patch is insufficiently covered, we enhance the edge image by transferring
detections from a higher resolution image into the lower resolution image.

3.2 Optimization on Spatially Close Reference Frames:
To reduce drift and close small loops, we additionally optimize the current reference frame’s
pose with respect to up to M previous reference frames. Instead of a standard sliding window
approach that takes the temporally last M frames into account and therefore is only able
to reduce drift in a limited temporal window, our method is not temporally constrained.
From a relative transformation Ti j between camera centers comprising a rotation Ri j and a
translation ti j, we compute the distance between camera centers as d = ||ti j||2 and the view
angle as α = arccos( 1

2 (trace(Ri j)−1)). We define a frame as spatially close if the d < Θd
and α < Θα , i.e. both views see similar parts of the scene.

We only optimize the pose of the current reference frame ξcw with respect to the world
and keep the other poses fixed. Our world coordinate system has its center at (0,0,0) and
coincides with the center of the first camera. By extending Eq. (6) to multiple frames, we
get:

ξ
∗ = argmin

ξcw
∑

f∈ΩM

Eedge(ξc f )+λEicp(ξc f ), ξc f = ξcwξw f , (9)
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where ΩM is the set of spatially close reference frames, ξc f is the transformation between a
previous and the current frame, ξw f is the transformation between a previous frame and the
world and we again set the balancing factor λ = 1.

4 Results and Discussion
We implemented our system in C++ using OpenCV for edge detection, distance transform
computation and image in- and output. The complete VO system runs in real-time on an Intel
i7-4790 desktop computer with 32 GB of RAM. The Levenberg-Marquardt optimization
scheme uses a 3 level coarse-to-fine scheme with maximum resolution of 640×480 px. For
edge distance optimization, we apply a Huber weight function δH with a value of ΘH = 0.3
and remove edges with a distance greater than Θe = 10, 20 and 30 px at each respective
pyramid level. We optimize on a maximum number of M = 4 spatially close reference
frames and set the search parameters Θd = 0.1 m and Θα = 30◦. We compute the spatial
distribution for patches with N = 5, 10 and 20 px for each pyramid level and mark a patch
as insufficiently covered if ΘE < 0.05N2. To compensate for differences between sensors,
we adapt the parameters for Canny [2] but keep the values constant for all sequences in a
dataset. In our experiments, we found that depth measurements at borders with strong depth
jumps are often noisy and can give near or far values. If only edges at strong depth jumps are
detected this might be problematic. However, in practice this is not an issue because most
of the edges are detected on planar surfaces (walls, tables,..) or at very small depth jumps,
where the measurements are typically correct. Further, the influence of edges with wrong
depth is down-weighted during the optimization.

We demonstrate the robustness of our system by example of many challenging real-
world recorded with our own sensor that gives RGBD sequences at 30 fps and a maximum
resolution of 640×480. To show the quantitative performance of our method, we extensively
evaluate on a large variety of camera motions and scenes. We choose the two standard RGBD
benchmarks datasets TUM RGBD [15] and ICL-NUIM [6]. TUM RGBD comprises a large
number of sequences recorded with a Microsoft Kinect at 30 Hz with highly accurate ground
truth poses from a motion capture system. We select 7 different sequences including also
scenes with little texture such as fr3/str-ntex-far and fr3/large-cabinet. ICL-NUIM offers
synthetically generated RGBD data that is completely noise-free along with a perfect ground
truth. From the ICL-NUIM we choose three typical indoor sequences that also contain poorly
textured walls. The ICL-NUIM dataset is evaluated in the same way as the TUM RGBD
dataset and we apply the same metrics for both.

Evaluation metrics: Sturm et al. [15] proposed the relative pose error (RPE) to measure
drift over a fixed time interval ∆t between a set of poses Q from the ground truth trajectory
and a set of poses P from the estimated trajectory. The RPE at time step i is defined as:

RPEi = (Q−1
i Qi+∆t)

−1(P−1
i Pi+∆t), (10)

Another common measure to evaluate the performance of a system is the absolute trajectory
error (ATE) [15], which can be computed at time step i as:

AT Ei = Q−1
i SPi, (11)

where S is a rigid body transformation that aligns Q and P. We evaluate the root mean
squared error (RMSE) of the translational component of the RPE in [m

s ] and the ATE in [m].
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4.1 Results on Real-World Datasets
To demonstrate the robustness of our method in practice, we recorded many different RGBD
sequences with our Orbbec Astra Pro sensor. Figure 3 shows an excerpt from three of these
sequences including the estimated trajectory and a dense reconstruction directly generated
by our viewer.

The first sequence is a recording of a small room enclosed by non-textured walls, where
our method never looses track and shows a consistent trajectory and reconstruction. The
second sequence comprises movements in front of a white wall, where our method accurately
reconstructs the wall. Sequence 3 is a typical university room containing a soccer table and
many computers. The challenging part is the turn, where the camera is facing the poorly
textured wall. In all of these sequences, the addition of the ICP term is essential due to
nearly texture-less surfaces. We also tried ORB-SLAM2 [9] in VO mode on our sequences
and it repeatedly failed in the poorly textured parts of the first two sequences even after trying
many different threshold settings. Surprisingly, the third sequence worked quite well after
some minor threshold adjustments.

4.2 Results on Standard Benchmark Datasets
We compare our system to four approaches that can handle RGBD data: (i) the feature-
based ORB-SLAM2 [9] as comparison to a different category of VO, two direct methods,
(ii) the dense DVO [7] and the (iii) edge-based D-EA [8] and finally, (iv) ICPCUPA [18]
that minimizes the point-to-plane error similarly to ours. Note that, ICPCUDA processes
only depth and is the ICP part of the combined optimization presented in [18]. For ORB-
SLAM2 [9], we set mbOnlyTracking = true such that it only performs VO instead of the full
SLAM pipeline. We run DVO [7] in the standard weighted configuration with 4 pyramid
levels. For D-EA [8] we utilize the code available online without any modifications except
some threshold adaptations for difficult sequences. We use the ICPCUDA [18] version that
is provided online3.

Table 1 shows the quantitative evaluation on the TUM RGBD [15] and the ICL-NUIM [6]
sequences. We present four different version of our method to demonstrate the influence of
each part: (i) edges only, (ii) depth only, (iii) edges and depth (E+D) and (iv) edges + depth
+ optimization on spatially close frames (E+D+Opt).

The results on TUM RGBD suggest that all the methods can work quite well on specific
scenes but do not generalize to large variety of scenes. Our method however, demonstrates
very accurate results regarding the absolute trajectory error on all the sequences, which in-
dicates that our combination is well-suited for a multitude of scenes. While our edges-only
approach performs very well, the results clearly show that adding the point-to-plane error
improves accuracy. We attribute this mostly to the added stability in poorly textured areas
and the geometric constraints imposed on camera pose estimation. Additionally, the op-
timization on spatially close reference frames reduces drift and closes small loops, which
drastically lowers the ATE of short sequences such as fr1/rpy, fr1/desk and fr1/desk2. In
fr2/desk and fr3/large_cabinet an object is in the middle and the camera is moving around it
with start and end point being close together. Both sequences are very long and the accumu-
lated drift cannot be overcome by our optimization.

When looking at the RPE, please note that the results are in [m
s ] and often the differences

between the systems are in the [mm] range, where the results can be considered equal due

3https://github.com/mp3guy/ICPCUDA
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Figure 3: Our method manages to track and reconstruct three challenging indoor sequences
recorded with our RGBD sensor. Seq. 1 is a small room enclosed by non-textured walls,
Seq. 2 comprises movements in front of a white wall and Seq. 3 is a typical university room.

to ground truth accuracy. We perform comparable or better than the state-of-the-art methods
on nearly all the datasets. It is interesting that the optimization on spatially close reference
frames does not reduce the RPE. On fr3/large-cabinet, DVO performs best due to the fa-
vorable setup of the scene, where the black cabinet is clearly distinguishable from a white
floor in the intensity image and depth map. Our system also shows the most accurate results
on the difficult textureless fr3/str-ntex-far sequence, where we had to adapt the threshold
for ORB-SLAM2. The results clearly demonstrate that our method generalizes to a larger
variety of scenes than the other methods [7, 8, 9, 18].

On the ICL-NUIM dataset we see strong performances of all methods due to the perfect
synchronization of RGB and depth images and the noise-free synthetic data. ORB-SLAM2
and DVO work well on all the sequences and their results are quite close together. Interest-
ingly, our depth only approach shows the best results on two sequences, which we attribute to
the perfect depth data. This also benefits our combined approach, which again demonstrates
strong performance compared to the other methods.
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Comparison of the Absolute Trajectory Error (ATE) [m]

DVO [7] ORB2(VO) [9] ICP [18] D-EA [8] Our Method
Seq. Dense Features ICP Canny Edges (E) Depth (D) E+D E+D+Opt

fr1/xyz 0.057601 0.008820 0.042059 0.130058 0.058097 0.032545 0.048628 0.015516
fr1/rpy 0.163409 0.080904 0.103716 0.148215 0.052101 0.167213 0.055522 0.022569
fr1/desk 0.182512 0.090906 0.146944 0.163761 0.060936 0.071993 0.056677 0.029604
fr1/desk2 0.188611 0.100898 0.256770 0.448858 0.075279 0.169700 0.076796 0.059941
fr2/desk 0.467958 0.386566 1.580273 0.945456 0.089041 0.167662 0.092791 0.095057
fr3/large-cab 0.241312 0.960640 1.467609 1.334846 0.533166 0.958356 0.355983 0.501608
fr3/cabinet 0.420579 0.311646 0.757028 0.666367 0.275698 0.914652 0.241852 0.274828
fr3/str-ntex-far 0.145770 0.1014521 0.149810 0.632289 0.072096 0.243308 0.055475 0.021768
icl/lr-kt0 0.093531 0.090746 0.697352 0.6767832 0.236911 0.040558 0.085232 0.054882
icl/lr-kt1 0.199851 0.080261 0.045416 0.5144252 0.023476 0.000762 0.020264 0.009658
icl/off-kt1 0.114674 0.066268 0.274923 0.4503222 0.091087 0.122479 0.023387 0.015384

Comparison of the Relative Pose Error (RPE) in [m/s]

fr1/xyz 0.026610 0.014700 0.031164 0.049424 0.028947 0.028644 0.024943 0.022453
fr1/rpy 0.048653 0.032208 0.118073 0.161495 0.034887 0.090816 0.035596 0.033032
fr1/desk 0.044288 0.061779 0.102383 0.106539 0.033794 0.055813 0.034608 0.034445
fr1/desk2 0.057216 0.065347 0.155419 0.201169 0.063362 0.076883 0.060392 0.062999
fr2/desk 0.032475 0.030671 0.108824 0.099676 0.014821 0.030511 0.014971 0.018258
fr3/large-cab 0.076656 0.331174 0.339208 0.444758 0.219498 0.145515 0.161095 0.152246
fr3/cabinet 0.075096 0.071634 0.171038 0.127961 0.068889 0.113897 0.057714 0.070595
fr3/str-ntex-far 0.036536 0.0436331 0.104202 0.245941 0.037805 0.073876 0.022864 0.021468
icl/lr-kt0 0.024899 0.030423 0.157722 0.2033722 0.076550 0.012057 0.029750 0.024166
icl/lr-kt1 0.037056 0.021823 0.017719 0.2690952 0.011977 0.000468 0.008820 0.008558
icl/off-kt1 0.034173 0.031098 0.160583 0.3928952 0.045222 0.062383 0.011250 0.009888

Table 1: Comparison of the ATE in [m] and the RPE in [m
s ] of DVO [7], ORB-SLAM2 [9],

ICPCUDA [18], D-EA [8] and our method on the RGBD TUM [15] and ICL-NUIM [6]
datasets. 1 Threshold adapted. 2 Sequence could not be completed.

5 Conclusion
In this work, we introduced a robust real-time RGBD VO system that addresses the main
challenges of indoor scenes. Our method jointly optimizes edge distance and point-to-plane
error to achieve robustness in texture-less areas and under varying lighting conditions. While
many other methods only perform well on specific scenes, the results show that the combi-
nation of edge images and depth maps is well-suited for a wide variety of scenes. We then
extended our camera pose estimation to optimize a reference frame’s pose with the respect
to spatially close reference frames, which reduces the overall drift and closes small loops.
We also demonstrated that transferring edges from higher resolution levels to the lower ones
improves the spatial distribution of edge images and increases robustness.

The next step is to extend the VO system to not just optimize on spatially close frames
but on all available ones, thereby implicitly closing loops. Afterwards, we want to build a
full SLAM system that can be used for robust 3D indoor reconstruction.
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