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Abstract. In this paper, we present a novel method for multi-frame su-
perresolution (SR). Our main goal is to improve the spatial resolution of a
multi-line scan camera for an industrial inspection task. High resolution
output images are reconstructed using our proposed SR algorithm for
multi-channel data, which is based on the trainable reaction-diffusion
model. As this is a supervised learning approach, we simulate ground
truth data for a real imaging scenario. We show that learning a regular-
izer for the SR problem improves the reconstruction results compared to
an iterative reconstruction algorithm using TV or TGV regularization.
We test the learned regularizer, trained on simulated data, on images
acquired with the real camera setup and achieve excellent results.

1 Introduction

In this paper, we investigate the problem of multi-frame superresolution (SR)
on an exemplary industrial inspection task. To speed up image acquisition, we
acquire multiple low resolution (LR) images using the lines of a multi-line scan
camera with planar objects being moved under the sensor. To reduce redundancy
and to improve the sampling pattern, the sensor is tilted. In such a setup, we can
vary the resolution not only in transport direction by controlling the transport
speed of the imaged object, but also in lateral direction by varying the tilting
angle of the camera. This is visualized in Figure 1. The acquisition using different
lines of the camera can be interpreted as a multi-camera setup, therefore we
solve a multi-frame SR problem as a post-processing step. A similar idea has
been used for reducing data transfer for a remote sensing application in satellite
imaging [10] where several sub-pixel translated cameras were used to acquire
images in half the desired resolution.

The multi-line camera setup is reflected in the forward model. Assuming
registered images according to the forward model, our problem reduces to es-
timate a deblurred HR image from blurry but registered measurements. In our
work, we view the SR problem as a variational image reconstruction problem
which is one of the most popular approaches tackling SR according to the recent
review article [15]. We propose a trainable regularizer based on the trainable
reaction-diffusion model [5] and its extension to color images [8] applied to our
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Fig. 1. Left: Black diamonds depict a regular upsampling pattern, the colored dots
depict the sampling pattern with the suggested 4 line setup using a tilted multi-line scan
camera, projected to HR space. With the proposed setup, the resolution is increased in
x and y direction. Right: The corresponding Voronoi tesselation shows better coverage
of the HR space with the suggested setup (yellow) vs. the regular (black) setup.

multi-frame SR problem. During inference, the trained regularizer does neither
require parameter search nor the selection of stopping criteria and has constant
run time for the reconstruction which depends on the amount of parameters and
processed image data. In this sense, our approach could be seen as learning an
optimal SR algorithm tailored for our task. With our approach, we show a suc-
cessful application example where machine learning can improve image quality
in a setup where ground truth is hard to obtain. If the specific camera setup
is known the presented SR method is very effective and can recover fine details
that are lost with common reconstruction techniques.

2 Multi-frame Superresolution

We introduce the forward model for the multi-frame SR setup

fl = BWlugt + ηl (1)

which describes the degradation of a HR image ugt ∈ RMNC through the acqui-
sition process plus some additive Gaussian noise ηl, MN defines the number of
pixels and C the number of image channels. The result is a degraded LR image
fl ∈ RmnC , l = 1 . . . L, with L being the total number of observations (or read-
out lines). The degradation is modeled with the matrices Wl ∈ RmnC×MNC and
B ∈ RmnC×mnC . The matrix Wl encodes the warping from the HR space to the
LR space, including downsampling, with possible shear and translation between
the observed images, and interpolation to the pixel grid of the respective HR and
LR coordinate system. The blur matrix B describes the point spread function
(PSF) of the camera.

Based on the forward model (1) regularization-based SR reconstruction ap-
proaches aim to reconstruct a HR image from a set of L LR images. SR is an
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ill-posed inverse problem, so we formulate the following minimization problem

argmin
u

∑
c∈C

L∑
l=1

ψ(BcWlIcu− fl,c) + λR(u) :=
∑
c∈C

L∑
l=1

D(u, fl,c) + λR(u) (2)

where we estimate u ∈ RMNC from observations fl,c ∈ Rmn for each color
channel c ∈ C := {r, g, b}. The matrix Ic selects a single color channel from u.
The left part is the data fidelity term D(·), where ψ(·) is typically ‖ · ‖kk with k ∈
{1, 2}. We assume that the blur matrix Bc is constant for all observations, but
different for each color channel c ∈ C. The right part defines the regularization
term R(·) which is added to make the reconstruction problem well-posed by
imposing some prior knowledge about image structures. There have been many
approaches tackling the SR problem based on model (2), also for the related task
of video SR [15]. In the following we will describe two standard choices for the
regularization term R(u).

Image Priors A very popular prior that has been used for regularization in
SR [6] is the total variation (TV) prior. The discrete version of the TV image
prior can be written as R(u) = TV(u) = ‖∇u‖2,1, with ∇ ∈ R2MNC×MNC a
finite differences approximation of the image gradient. This prior assumes that
an image consists of a finite number of piecewise constant regions. This works
very well for certain image types, but for general images this assumption does
not hold and leads to the staircasing effect. However, a bilateral version of this
prior has been exploited for robust multi-frame SR in [6]; Babacan et al. [1] use
the TV prior in a Bayesian framework for multi-frame SR, Liu and Sun [11] for
video SR, to name a few. A second-order extension of the TV prior is the Total
Generalized Variation (TGV) [2]R(u) = TGV2(u) = λ1‖∇u−v‖2,1+λ0‖Dv‖2,1 ,
with D ∈ R4MNC×2MNC and v ∈ R2MNC which is able to get rid of staircasing
effects in affine parts of images.

Learned Regularization In general, the structure of images is more complex
than assumed by the previously described priors. Especially for the SR task, it
would be beneficial to have a regularizer that can describe high frequency con-
tent, because this is especially hard to reconstruct from the LR images. Recently,
Chen et al. proposed the trainable reaction-diffusion model [5] which can be in-
terpreted as a generalization of regularization terms. The SR problem from (2)
with these generalized regularization terms is embedded in a learning framework.
This consists of unrolling a few steps of a simple projected gradient descent op-
timization algorithm and learning the whole reconstruction algorithm based on
training data. A few advantages of this approach are: fast and efficient recon-
struction, no parameter tuning at inference, as well as more expressive image
priors. We will use this idea together with its extension to color images [8] to
build our trained regularizer for the SR task.

The fundamental differences between image priors and the learned regular-
ization is the dependence of the latter on available training data. This might be
a drawback, but we solve this problem by careful design of the imaging setup
and data simulation. In some settings, this will not be possible, at the expense
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of image-per-image optimization using a fixed image prior and manual choice of
regularization parameters.

There exist also a number of multi-frame SR approaches based on learned
correspondences between LR and HR image pairs, disregarding the forward
model (1), mostly based on sparse coding [12–14]. However, these methods are
designed to reconstruct images patch by patch, which can cause artifacts when
combining patches to form the final image. With our approach, we do not rely
on patches, but rather reconstruct the whole image, independent of the input
data size. In that sense, inference with our approach is similar to CNN models,
which have been successfully applied to video superresolution [7, 9].

3 SR Method Description

We define the regularization term for the trained reconstruction algorithm as

R(u; θ) =

Nk∑
i=1

MNC∑
p=1

φi((Kiu)p) (3)

where the matrices Ki denote convolutions of the C channel image u with kernels
ki ∈ Rh×h×C as defined in [8]. Nk defines the number of activation function-
kernel pairs φi and ki. As a data term we use the model defined in (2) with
different choices for ψ(·). The resulting minimization problem becomes

min
u∈U
R(u; θ) + λ

∑
c∈C

L∑
l=1

D(u, fl) (4)

with λ weighting the influence of the data term. To obtain our reconstruction
algorithm, we unroll a few projected gradient steps T of Problem (4)

ut+1 = projU (ut −∇R(ut; θt)− λt
∑
c∈C

L∑
l=1

∇D(ut, fl)) (5)

and obtain the superresolved result uT . Each step of the algorithm is parametrized
by parameters θt. The projection onto the set U ensures that the result image
lies in an admissible range of values, typically U = {u ∈ RMNC : 0 ≤ up ≤
ξ, p = 1, . . . ,MNC}, with ξ being the maximal image intensity. The trainable
activation functions are parametrized using Nw radial basis functions (RBFs) as

φ′i(z) =

Nw∑
j=1

wi,j exp

(
− (z − µj)2

2σ2

)
(6)

with equidistant means µj and fixed standard deviation σ for all components.
Parameters of the regularizer from (3) are summarized in the vector θ =

{wi,j,t, ki,t, λt}Nk,Nw,T
i,j,t=1 . These parameters comprise the step dependent weights
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of the activation functions wi,j,t, the convolution kernels ki,t, and data term
weights λt. Because we require that the convolution kernels are zero-mean and
have norm one to ensure that the output of the convolution lies in the domain
of the activation functions, we add constraints to ensure that the parameters θ
lie in an admissible set Y (see supplemental). We train our algorithm based on
a loss function comparing ground truth HR data with the output of (5)

min
θ∈Y
L(θ) :=

1

2Nb

Nb∑
b=1

‖uT,b(θ)− ugt,b‖22 (7)

evaluated on a mini-batch of training data consisting of Nb samples. Training is
performed using standard backpropagation. Optimization of (7) was performed
using a stochastic inertial incremental proximal gradient (IIPG) optimization
algorithm which accounts for the constraint θ ∈ Y (see supplemental).

Parametrization of the data term As mentioned earlier, the function ψ(·) in
the data term can be chosen in various ways. For our experiments, we consider
a trained regularizer with following `2 data term as type A

D(u, fl) =
∑
c∈C

L∑
l=1

‖BcWlIcu− fl,c‖22 (8)

trained for a single color channel, and trained for 3 color channels as type C.
Additionally, we use a data term

D(u, fl) =
∑
c∈C

L∑
l=1

Nd∑
j=1

ρj(K̄jBcWlIcu− fl,c) (9)

with Nd trainable filter-function pairs K̄j and ρj which we refer to as type B.
The parametrization of ρj is analogous to (6).

4 Data Acquisition

We designed our application such that prior knowledge about the geometry of
the acquisition setup enables precise determination of the (affine) registration
transformations between the individual views. As a result, the warping compo-
nent W of the transformations’ forward model (1) is constant for all acquisitions
and can be specified accurately. As registration quality is a crucial part for suc-
cessful multi-frame SR, reliable knowledge about the warping transformations is
an advantage. Furthermore, it makes the comparison of different SR algorithms
independent of adverse influences of registration inaccuracies.

Additionally to real acquisitions, a sufficient amount of data for training of
the SR algorithm was simulated. In that process, we generated not only simulated
acquisitions in the setup’s resolution, but also required ground truth data in the
targeted SR. For real acquisitions and for simulations, we used banknotes as they
comprise fine-textured image structures that allow to point out improvements
w.r.t. reconstruction quality.
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4.1 Acquisition Setup

The acquisition setup comprises a camera with a multi-line scan sensor. Thereby,
a selectable set of individual sensor lines can be read-out separately. While planar
objects are transported orthogonal to those sensor lines, read-outs are done at
according time instances. In the course of that line-scan procedure, each utilized
sensor line yields a separate image of the object, where all those images are
slightly translated versions of each other. As we use only one sensor, accurate
registration is possible in practice.

To achieve the SR requirement of multiple, possibly equally distributed sam-
ples around each object point, the entire sensor is rotated slightly w.r.t. the
transport direction. Thus the sensor lines are not exactly perpendicular to the
transport direction anymore, while the sensor plane remains parallel to the ob-
ject plane. Depending on the number and mutual distances between the utilized
sensor lines, a rotation angle can be derived so that each object line is sampled
by the total of pixels of all those sensor lines in an equally distributed man-
ner at a higher sampling rate than a single sensor line could (see Fig. 2) - only
distributed over different time instances. As a result of sensor rotation, the re-
sulting images comprise an induced vertical shear, together with a slight scale
compression along the sensor line directions, while they mutually are translated
versions of each other.

Mere rotation of the sensor enables oversampling perpendicularly to the
transport direction. To sample the objects also at a higher rate in transport
direction, the transport speed has to be decelerated slightly, depending on the
rotation angle, the number of utilized lines, and the mutual distances between
the lines. This results in an equally distributed oversampling in transport direc-
tion by means of the set of sensor images. The speed reduction induces a further
dilation in the individual sensor images which will be considered in the warping
model, while they mutually still only differ by constant translations.

4.2 Real Acquisitions

Real acquisitions were conducted utilizing 4 sensor lines, resulting in a targeted
SR upsampling factor of 2, although other configurations are possible. One sensor
line has 2320 pixel, and the acquisition resolution was set to 100µm per pixel.
We used two different sensor angles α ∼ 1.75◦ and α ∼ 1.15◦, respectively,
with accordingly reduced transportation speeds to achieve higher sampling rates
in and perpendicular to the transport direction. From those acquisitions, the
precise mutual image translations and rotation angles were measured and the
corresponding warping transformations for the forward model (1) derived. The
PSF of the camera system was measured for an acquisition of a calibration sheet
to get an estimate for the blurring component B of the forward model (1) which
is of size 21× 21 in our experiments. By means of the slanted edge approach [3],
the line spread functions in horizontal and vertical directions were used to derive
a Gaussian PSF kernel with corresponding variances in both directions.
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Fig. 2. The multi-line scan sensor is represented as grid of 12 pixels rotated by α w.r.t.
the transport direction. Sensor lines with black pixel dots are actually utilized for line-
scan acquisition. Those lines are read-out at time instances t = 0, ...n, thus each sensor
line yields an image of n+1 image lines. Dashed vertical lines indicate that sensor line 2
samples the object space perpendicular to the transport direction at slightly translated
positions w.r.t. sensor line 1, only at different time instances.

4.3 Simulated Acquisitions for Learning

Simulations were generated by mimicking the real acquisition process on 1200 dpi
scans of three banknotes and one calibration sheet. Estimates of the forward
warping model W , the corresponding PSF estimate B, and a downsampling fac-
tor of 5 were derived from real acquisitions and were applied at 1000 random
image positions of each source scan. For training the SR algorithms, 4000 image
quadruplets at 100µm per pixel resolution were generated together with a cor-
responding ground truth image (single-line scan, unrotated) per quadruplet in
double resolution, i.e. the SR target resolution.

5 Experiments and Results

We conducted experiments for two setups with angles α = 1.15◦ and α = 1.75◦

as described in Section 4. For each setup, three different SR algorithms were
trained comprising of trained regularizers along with different data terms. The
steps T were chosen to balance computation time and reconstruction accuracy.
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(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 3. Left: α = 1.15◦, Right: α = 1.75◦. (a) The average solution, (b) the TV
reconstruction, (c) the TGV reconstruction, (d) the reconstruction with the trained
regularizer type A, (e) trained regularizer type B, (f) ground truth.

The acquired data was split into distinct training and test sets. For all trained
algorithms we used 400 images for training, and tested on 800 images. The
resulting run time of the algorithm is 0.5s per MP on average using a current
GPU. Further training details can be found in the supplemental.

Trained Type A This reconstruction algorithm is trained for a single channel
(gray) and is optimized for T = 10 projected gradient steps. The convolution
kernel size in the regularizer is 7× 7, the data term is according to (8).

Trained Type B The setup of the regularizer is the same as type A, the data
term is according to (9). The data term functions are initialized to `2 functions,
and the data term convolution kernels are of size 5× 5.

Trained Type C This reconstruction algorithm is trained for three color chan-
nels and is optimized for T = 10 projected gradient steps. The convolution kernel
size in the regularizer is 5× 5× 3, the data term is according to (8).

Results for both algorithms type A and B are shown in Fig. 3, and we observe
that fine structures are nicely reconstructed by the trained regularizer where the
TV and TGV regularized solutions fail. We also observe some hallucinated image
structure in texture-less regions which can be seen both as a strength and limita-
tion of our approach, because this effect is in general very helpful for reconstruct-
ing fine details. It is challenging to find an optimal trade-off between smoothing
and enhancing fine image structures, which can be controlled by choosing the
”right” training data. As the training data contains many oscillating patterns,
there is a subtle bias towards those in the reconstructions. Comparing Fig. 3(d)
and (e) we observe that the trainable data term function and kernel pairs help
to reconstruct the fine stripe pattern marked in the images.

Qualitative results for the algorithm type C with the regularizer trained on
color images are shown in Fig. 4 and 5. Again, fine details and text are nicely
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(a) (b) (c)

Fig. 4. α = 1.15◦ (a) Average reconstruction, (b) the reconstruction with trained
regularizer type C, (c) ground truth.

Table 1. Results for 800 images from the test set (simulated data)

Angle α ≈ 1.15◦ α ≈ 1.75◦

Reconstruction PSNR SSIM PSNR SSIM

Average 22.43 0.4915 22.35 0.4924
TV 25.00 0.5886 25.12 0.5906
TGV 25.63 0.6117 25.78 0.6146
Trained Type A 29.51 0.7900 29.36 0.7856
Trained Type B 29.30 0.8165 29.06 0.8184
Trained Type C 29.61 0.9121 29.56 0.9102

recovered. In the color setting hallucinating of structures in homogeneous areas is
hardly visible compared to the single-channel case, which is apparent in Fig. 5(b).
However, we observe some ringing artifacts which are due to over-enhancing little
edges in the image.

The SR results are evaluated in terms of Peak Signal to Noise Ratio (PSNR)
and Structured Similarity Index (SSIM). The error measures are only evaluated
in the image area where all observations overlap, because the reconstruction is
not valid outside this area. As a baseline, we compare our algorithms with the
solutions of TV and TGV regularized Problem (2) which were solved with a
first-order primal-dual algorithm [4].

In Table 1 we summarize the performance of the different algorithms. It is
remarkable that by using color data type C the SSIM index is much better
compared to the results using only single-channel images, which is due to hallu-
cinated structure in texture-less regions. PSNR values are similar in both cases.
The regularizer type A yields better PSNR than type B, but the SSIM results are
reversed. We believe this is due to the ”invented” checker board patterns which
are a little more pronounced for type B, as the results in general appear sharper.

We also tested our trained color image regularizer type C on acquired real
data, see Fig. 6. Compared to the average solution, the proposed method leads
to significant improvement in reconstructing high frequency content visible in



10 Klatzer et al.

(a) (b) (c)

Fig. 5. α = 1.75◦ (a) Average reconstruction, (b) the reconstruction with trained
regularizer type C, (c) ground truth.

(a) (b)

Fig. 6. Real acquisition data, α = 1.15◦ (a) Average reconstruction, (b) the recon-
struction with trained regularizer type C.

the zoomed views. However, we also observe some overly enhanced edges and a
few small artifacts, which stem from imperfections in the imaging setup.

6 Conclusion

In this paper, we proposed a fully learned variational model to improve the res-
olution of data acquired using a multi-line scan camera. We showed that the
learned regularizers can successfully recover high frequency content which is es-
pecially apparent when inspecting fine textures. We showed that the capabilities
of the reconstruction algorithm trained on simulated data also transfer to real
data. The imaging setup together with the novel SR reconstruction algorithm
enables faster, memory-efficient data acquisition together with increased image
quality and near real-time reconstruction time.
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