Trajectory Planning and Formation Control for Automated Driving

Astrid Rupp
Institute of Automation and Control

Car-2-Car Communication

- **No C2C**
 - Adaptive Cruise Control (ACC) (large inter-vehicle spacings)
 - Prediction of other vehicles
 - Lane reduction = traffic jam?
 - Advantage: no wrong information
 - Disadvantage: limited efficiency

- **With C2C**
 - Cooperative ACC (small inter-vehicle spacings)
 - Exchange of intentions
 - Cooperative merging
 - Advantage: efficient maneuvers
 - Disadvantage: time-delays/attacks...

First Order Sliding Mode Controller with small initial spacing errors using feed-forward: acceleration of the preceding vehicle is communicated

Networked Control Systems

- Perfect communication:
- Delayed communication ($\tau = 0.25$ s):

Application to Model Trucks

- **Data**:
 - Trucks (1:14) with Beagle Bone Board
 - Position tracking via webcams (GPS)
 - Implementation of assistance systems
 - Real-time capability

- **Scenarios**:
 - Longitudinal and lateral trajectory tracking
 - Lane change
 - Collision avoidance
 - Cooperative merging (no C2C)

Acknowledgments:

K2-Project X3T3 and X3T3erw ("with Partners")

TU Graz