
Structuring the Scope: Enabling Adaptive and
Multilateral Authorization Management

Bojan Suzic∗, Andreas Reiter† and Alexander Marsalek‡
Institute for Applied Information Processing and Communications

Graz University of Technology, Austria
Email: ∗bojan.suzic@iaik.tugraz.at, †andreas.reiter@iaik.tugraz.at, ‡alexander.marsalek@iaik.tugraz.at

Abstract—In this work, we examine an access scope, a
concept in authorization management broadly applied
for the specification of access constraints in web service
integrations. By analyzing a typical use-case of cross-
organizational cloud service automation, we show the
suboptimal capabilities of static, coarse-grained and
inflexible scopes that negatively impact security and
management of service integrations on a web scale.
Using the graph-based structure that relies on semantic
technologies we introduce dereferenceable and self-
descriptive authorization extents that allow expressive,
granular and dynamic specification of security require-
ments. Through its application in the running scenario,
we show how this construct can be administered to sup-
port confidentiality, integrity and privacy requirements
of service integrations by allowing selective information
sharing based on contextual properties.

I. Introduction
The increasing degree of cross-system dependence and

platform diversity present on the internet are transforming
the security management of cloud service integrations
towards progressively complex and costly endeavor. This
is especially notable when considering emerging types of
cloud services that rely on resource sharing and processing
across multiple organizations to provide their users with
advanced service automations or compositions [1]. Exist-
ing approaches broadly applied to manage the security
of such integrations can satisfy the users’ expectations
and emerging legislative regulations only partially. This
is due to their primary intent to establish the framework
for authorization protocol flows [2, 3], while the aspects
important for capability and expressiveness of security
controls were left to be independently decided in imple-
mentations.
In the current ecosystem, prevailingly based on OAuth

2 framework [2, 4], the users are impeded from effectively
controlling and managing the sharing and use of their re-
sources by third parties. This issue is reflected from several
perspectives. First, the authorization scopes employed in
OAuth 2 are defined unilateraly by service providers and
imposed on users and accessing clients. They are static
during the application lifecycle, coupled to the service data
models and business processes and incompatible among
providers. Their design may reflect a commercial goal of
service providers that often contradict with the security
and privacy of user data. Finally, users lack mechanisms
tomanage the security of their resources hosted at different
providers in an automated manner that is consistent,

context-sensitive, expressive and reusable in heterogeneous
environments. For additional details on these issues we
refer to case studies [5, 6].
Our work focuses on advancing the security of complex

interactions performed in the scope of Web APIs, which
represent a common building block of inter-organizational
collaborations in the cloud [4, 7]. For this purpose, we
address the challenge of service-coupled, implementation-
specific and unilaterally established security management
controls. We detach the security management from par-
ticular interfaces, allowing this process to be performed
using flexible and multilaterally adjustable controls that
are consistent and machine-understandable across the en-
vironments. By relying on graph-based representations,
we introduce structured and self-descriptive authorization
extents that support user-centric specification of security
controls without imposing significant integration require-
ments for service providers.

Paper organization. In Chapter II we provide the
brief overview of authorization management in service-
integrations. Considering OAuth 2.0 web authorization
framework and the typical use case present in many
scenarios, we show the security issues of underlying tech-
niques and derive the requirements for integrated and co-
operative cross-organizational authorization management.
Chapter III introduces DASP framework, which serves as
a basis for our work, and proposes our specification model
based on management flows and authorization descriptor.
This contribution is further elaborated in the subsequent
chapter and examined using a running case scenario.
Chapter V evaluates and discusses our work, followed by
the overview of the related work and the conclusion.

II. Cross-System Authorization Management
A. Web Authorization and Service Integration
The approach of cloud-based integration got broader

attention recently, as the products focused on integration
and management of cloud services started to gain traction.
The emergence of these services, however, does not imply
the establishment of a new discipline. Enterprise integra-
tion, in its various forms, has been present for more than
a decade [8]. In the focus of our work are data exchanges
performed on the web, using HTTP protocol and RESTful
interfaces, which currently represents one of the major
approaches for Web API implementations [4].
Currently, OAuth 2.0 [2] is broadly adopted mechanism

for the protection of Web APIs [4]. Building on it, UMA
[3] represents an emerging protocol that further refines its978-1-5386-0683-4/17/$31.00 c© 2017 IEEE

TABLE I: Overview of requested and necessary permissions across integrated services
Srv. Req. scope Scope description (declared by service) Actually necessary data or activities
(1)gmail.compose Create, read, update and delete drafts. Send messages

and drafts.
None.

(1) gmail.modify All read-write operations except immediate, perma-
nent deletion of threads and messages, bypassing trash.

Retrieve message sender extracted using From:
header field of a recently received message.

(2) - All operations exposed by the Web API. Add entity to a particular list of subscribers.

flows, processes and APIs, focusing on the user-centric pro-
tection of resources in distributed environments. Another
approach that deals with authorization, considering dis-
tributed and enterprise-oriented perspective, is XACML
[9], an XML-based declarative language standardized by
OASIS. XACML provides the means to specify access
control policies based on an extensive set of built-in
data types, functions, combining algorithms and profiles.
However, due to its focus on a single enterprise and the
overall complexity [10], the practical adoption of XACML
in multi-organizational environments is restricted. In addi-
tion, XACML lacks the mechanisms to request permissions
and establish authorizations across systems, which is a
crucial requirement for modern service integrations. In
this segment consent-based OAuth 2.0 [2] with its simple
structure and authorization flows is widely applied [4].

B. Motivational scenario
To illustrate the problem and the application of our

framework we describe the following running scenario,
which relies on services known as cloud integration plat-
forms [8, 11]. Consider an organization MyOrg Inc. that
uses the service of an external platform, in this case
Zapier1, which acts as an agent that integrates several
data sources and services provided by other companies on
behalf of its customer. Precisely, Zapier accesses Gmail
and MailChimp, to retrieve and process data on behalf
of MyOrg Inc. Zapier periodically connects to Gmail
to get recent emails. After retrieving emails, it extracts
email senders and adds them as subscribers to MailChimp
marketing platform. This step is repeated periodically,
typically in the range of 5-30 minutes, whereas only the
recently received messages are relevant, and only a partic-
ular list of subscribers at MailChimp has to be updated.
To obtain necessary permissions, in its setup process

Zapier creates permission request using OAuth 2.0 autho-
rization flow [2]. These permissions have to be consented
by the user, which allows the service provider to issue
long-lived access token to Zapier. Fig. 1 shows the related
consent interfaces at Gmail (left) and MailChimp (right).
Note that Gmail explicitly asks the user to authorize the
access. As MailChimp does not compartmentalize its API
permissions, the user is not asked for explicit consent.
Instead, by logging in, the user implicitly agrees to provide
the full API access to Zapier on its behalf. This is typically
described as connecting accounts at integration platforms.
Table I provides an overview of requested authorization

scopes with their coverages declared by the services. The
last column describes the permissions that are actually
necessary for the platform to successfully accomplish its
integration task using GMail (1) and MailChimp (2).

1 Note that there are many similar commercial offerings.
For a market overview we refer to [12].

From Table I we can observe the overpermissioning of
the integration platform at both services, which does not
obey the principle of least privilege [13]. The only action
necessary at GMail is to retrieve the value of From: field
from the header of recent messages. Zapier, however, asks
and gets permissions to retrieve and manage all email mes-
sages at user’s (or organizational) GMail account. It can
also manage drafts, send or temporarily delete messages
from the given account, although none of these activities
are actually necessary for the successful task completion.
The extent of both of the provided scopes creates a po-

tential for a range of vulnerabilities. If not acting honestly,
Zapier can retrieve all messages, to profile organization
or the user, or to gather and process private information
of organizational customers. This part opens additional
unmanageable risk for external parties, as the message
senders may not have any idea that a third-party service is
given the permission to read their emails. Being authorized
to send the messages in the name of the account owner,
Zapier can manipulate third-parties, alter or temporarily
delete (hide) important conversations.
While the permissions given at GMail are somehow still

restricted, Zapier is authorized to retrieve any data or
execute any API operation on behalf of MyOrg Inc. at
MailChimp. Such broad permissions may lead to the re-
trieval or altering of personal data of subscribers registered
in user’s account. Other activities, such as spamming or
distributing malware to targeted users can be executed
as well. This is due to the design and implementation of
MailChimp API, which does not implement any further
restrictions for API accesses.
In the above scenario, the integration platform is an

external entity that accesses services using their exposed
Web APIs, which is a broadly adopted technique to share
data and consume services across domains. Web API im-
plementations typically follow RESTful architecture and
control client accesses using API keys [14] or OAuth 2.0 [2].

Fig. 1: Zapier: obtaining consents from users

OAuth 2.0 establishes authorization scopes as a mean to
control the extent of the authorization. As each service is
responsible for specification and enforcement of supported
scopes in its domain, the capabilities of scopes often differ
among services. Generally, due to coarse extents, they tend
to provide broader permissions than required for the use
case, which we show on Table I.
Note that this problem applies generally, beyond the pre-
sented use case, as many organizations use this technique
to control resource sharing with external entities.

C. Inherent Characteristics of Access Scopes
Access scopes allow service providers to establish ab-

stract ranges of coarse-grained permissions as reference-
able concepts that can be reused across organizations to
communicate and provide authorization consents. OAuth
2.0 specification introduces scopes as parameters with the
purpose to (1) allow clients to specify the scope of their
access requests, and to (2) enable providers to inform the
clients about the range of accepted or provided permis-
sions [2]. The permissions implicitly communicated within
the OAuth 2.0 scope are associated with each access token
provided to the clients for single or repetitive accesses [15].
OAuth 2.0 defines the structure of the scope parameter

as a list of space-delimited, case-sensitive strings, whose
inherent permission extent is controlled by the provider.
Multiple of these strings (scopes) can be combined in
scope parameter to express a combined range of access
permissions. Besides recommending that service providers
should document their scopes, OAuth 2.0 specification
does not provide any additional details that would allow
dereferencing of scopes or establishing of cross-system in-
teroperability at a higher level, beyond the opaque strings
and hard-wired logic [16].
Following the illustrative example presented in the

previous section, in Table II we briefly summarize the
important properties of access scopes that restrict their
capability to precisely control security and privacy aspects.
In addition to that, the properties (C1) and (C3-C5)
hinder the scalability of the overall concept beyond the
boundaries of a single system or an organization. This
is due to the overhead imposed to support the creation
and maintenance of point-to-point integrations in the oth-
erwise massively point-to-multipoint interconnected envi-
ronment.
The concept of access scopes, as currently embraced,

allows authorized clients to perform unlimited accesses,

restricted only by abstract, unilaterally defined and non-
inferrable scope coverage. As scopes relate to concepts,
rather than to data or object instances, their application
to control access based on properties of protected resources
is practically not feasible. We can observe this aspect from
the example presented in Section II-B and Table I, where
the scopes allow restricting accesses using only a range of
predefined activities, without the possibility to determine
a span of accessible resources. The similar limitation ap-
plies to the specification of dynamic data transformations,
which are necessary to implement advanced privacy and
legal requirements. Moreover, the overall mechanism does
not accommodate the derivation of contextual confine-
ments, which allow access control based on a range of
contextual parameters. These limitations stem from the
tight expressive capability, lack of scope structure and its
relational detachment from systems and environment.

D. Requirements
Based on a typical use case and the identified issues, we

derive requirements for integrated and cooperative cross-
organizational authorization management as follows:

(R1) Authorization establishment: the actors residing in
different domains should be enabled to establish cross-
organizational authorizations for data exchange or re-
source consumption among domains.
(R2) Granular specification of accesses: users should be
able to specify and update a customized view consisting
of a range of resources or operations that satisfy their
resource sharing requirements using fine-grained controls.
(R3) Claiming acceptable constraints: clients should be
able to discover and claim acceptable constraints on re-
sources, such as partial representation or transformation.
(R4) Context-dependent enforcement: resource owners
should be able to specify dynamic authorizations that rely
on the properties of a resource or environment.
(R5) Transformational interactions: resource owners
should be able to specify online transformation of re-
sources with the purpose of reducing exposure of sensitive
and process-irrelevant data.
(R6) Scalable management: the administration of requests
and authorizations should be detached from platforms
and specific implementations, allowing the actors to apply
reusable approaches under different systems.
(R7) Supporting autonomous agents: the framework
should enable automated integration of agent-based ac-
tors, allowing autonomous discovery, establishment, and

TABLE II: Characteristics of scopes
N. Property Description
(C1) Unilateral

definition
Scopes are determined by the service provider, without considering the requirements of resource owners
or clients. Only predefined set of scopes can be referenced by adjunct parties.

(C2) Invariable Determined statically, scopes represent immutable sets of coarse-grained permissions whose extents are
not intended to be changed over time in production environment.

(C3) Unstructured Scopes are defined as opaque strings without decomposable data structure that could support discovery
of their extents or enable the dynamic definition of new scopes and their properties.

(C4) Out-of-the-band The scope extent is communicated non-transparently to applications, preventing them from deriving,
understanding or impacting of underlying properties.

(C5) Coupled Scopes cannot be decomposed or synthetized based on the permissions and concepts encompassed in
them. Only predefined scopes with built-in properties are supported.

(C6) Context insensitive The contextual properties, such as environmental attributes or resource features cannot be expressed.

management of authorizations across the interaction
chain.

III. Adaptive and Cooperative Authorization
In this chapter we define the flows that support co-

operative and adaptive authorization management. We
then introduce authorization descriptor, a graph-based
structure that allows granular, instructive and flexible
expression of authorization requirements and grants.

A. DASP framework
Our work is complementary to DAta Sharing and

Processing (DASP) framework, whose goal is to establish
building blocks for achieving externalized and decentral-
ized authorization that spans across heterogeneous ser-
vices and addresses the challenges related to the unified
and dynamic management of security controls in con-
nected environments. The framework itself consists of (1)
the architectural and interaction model, (2) supporting
semantic vocabularies and (3) tools that demonstrate its
application and allow a broader integration.Additional
details are available in [5, 17].
In its interactions DASP considers the following entities:

1) Service provider (SP) hosts resources, provides ser-
vices or performs data processing;

2) Resource owner (RO) or user owns resources hosted
at SP or subscribes to its exposed services;

3) Client (C) accesses resources or consumes services
at SP on behalf of RO or according to its policies;

The overall architecture considers provider-centric and
user-centric deployment models for authorization man-
agement, as shown in Fig. 2(a,b). Both models assume
the externalization of authorization functionality to a
separate component, responsible for operations such as the
definition, evaluation, and enforcement of security goals.
Shown on Fig. 2 as DG (data security gateway), this
component allows resource owners (RO) to specify a set of
policies that are imposed on client accesses to the resources
exposed by different service providers (SP). This approach
aims to achieve consolidated and unified authorization
management by relying on the common abstract set of
concepts for the description of exposed resources (Web
APIs) and security policies applied to protect them.
Using the common flows (M on Fig. 2), the users are

able to employ a coherent and consistent set of tools
and services to manage the security of their resources
distributed at multiple providers [5, 17].

M

...

...

SP1 Domain
RO1

ROm

I1

SPn Domain

In

M

M

M

DG1

DGn

M

......

SP1 DomainRO1

ROm

I1

SPn Domain
InM

I1

InDG1

DGm

(a) (b)

Fig. 2: Consolidated authorization management models

Vocabularies

DASP-Service

LEAR

DASP-Interaction

OAuth-2

Service Layer
Information model
Behavioral model
Other platforms (IoT..)

Interaction Layer
Contextual model
Requests and responses
Parameters, restrictions

Authorization layer
LEAR access control
OAuth web authorization
Other frameworks

Fig. 3: DASP Framework: vocabularies and layers

B. Vocabularies

DASP framework envisages the modular definition and
integration of a range of vocabularies using a bottom-up
approach [18], enabling users to select the constituents
that best fit their needs. Fig. 3 depicts an overview of
descriptive layers and vocabularies provided in the frame-
work. We model the domain using three layers. Service
layer provides the view of information and behavioral
model of a web service. In the second layer, we provide
DASP-Interaction to support the descriptions of requests,
responses, contextual properties and resource restrictions.
The third layer is dedicated to vocabularies that allow
the integration of different access control models and
frameworks.
Prior work established DASP-Service and LEAR2 vo-

cabularies for the description of RESTful services and
their integration with LEAR, an access control model for
Web APIs [5]. In this work we refine this contribution
with the second, intermediate layer. We also establish
DASP-Interaction and OAuth 2 vocabularies to support
the modeling of authorizations using various frameworks.
For further details we refer to our previous work [17] and
publicly available3 tools, vocabularies and reports [19].

C. Management flows
(S1) the service descriptor: based on available resources
and their organization, the provider exposes service de-
scription that includes resource structure and applicable
operations and constraints on exposed entities.
(S2) Determining the request scope: based on the resource
model provided by the service, the client decides the extent
of requested authorization. This is performed by finding
an intersection between security and functional goals of
the client, considering the exposed resources, applicable
constraints and operations on the server side.
(S3) Requesting authorization: the client coins an au-
thorization request, which can be delivered using two
interaction types. Interactive request assumes the presence
of resource owner in the authorization flow. Asynchronous
request is performed as an independent flow, without the
direct involvement of a resource owner.
(S4) Refining authorization extent: in this step the re-
source owner may inspect and refine the request. Depend-
ing on request flow, this can be done using the owner’s
client involved in the interactive flow, or at the side of the
SP, after the asynchronous flow has been performed.
(S5) Transforming into security policy: once inspected and
consented by the resource owner, the authorization request

2 Lightweight and Expressive Access Control for RESTful services

can be server-side transformed into security policy using
a format that is specific to the target system.
(S6) Inspecting authorization descriptor: after the security
policy is derived and integrated into the target environ-
ment, the provider optionally delivers the authorization
descriptor back to the requesting party. The purpose of
this step is to support cooperative authorization. It also
allows the clients to infer the status and extent of actions
and operations finally allowed in the process.

D. Authorization descriptor
Consider the vocabulary Θ as a 4-tuple Θ={C, R, E, I},

where C, R, E, I are sets that respectively denote classes,
relations, instances of classes and relations, and axioms.
Note that classes are seen as unary predicates, while rela-
tionships denote binary and n-ary predicates. Axioms that
are common in vocabularies are subclass and subproperty,
which apply to the classes and relationships, respectively.
Other axioms include domain and range, allowing to re-
strict the classes that can be used with relations.
In vocabulary Θ we consider the elements from sets C

and R as terminological knowledge, referenced as TBox,
and instances with their attributes as assertions, denoted
as ABox [20]. Hence, a TBox model serves as a shared
conceptualization [21] that enables interacting parties to
derive the structure and information about APIs, autho-
rizations and processes described with E∈Θ. The vocabu-
laries present in DASP layers (Section III-B) serve to pro-
vide such terminological knowledge, establishing domain-
or application-specific means to map the meaning of the
concepts between different systems and organizations.
The underlying design decision has been motivated by

the issues C3-C5 (Table II), which impose a significant
overhead to establish and maintain interoperability and
transparency of controls between systems. As an exam-
ple, consider the scope gmail.compose from Table I. Its
meaning is communicated between the provider and the
client using human-readable documentation. Both entities
have to integrate this inherent meaning by means of hard-
wiring. For each service provider using such mechanism,
the client has to implement service-specific scopes and
maintain them across API versions. Our approach aims
to achieve decomposability and machine-interpretability of
such scopes by relating them to abstract concepts whose
meaning is shared across many parties. In other words,
it advances the interoperability from syntactic to seman-
tic level [16]. This lowers integration obstacles for both
providers and clients as they can reuse existing building
blocks to derive knowledge and establish many-to-many
mappings automatically. Use of semantic technologies is
further motivated in [22].
The service semantics (S1 in Section III-C) is estab-

lished by instantiating the concepts from DASP-Service
as ABox-knowledge, and representing them using a lan-
guage such as OWL [23]. By relying on the same basis,
authorization descriptors apply a similar approach.
Having AuthorizationRequest, AuthorizationResponse

and ErrorResponse defined under OAuth−2 vocabulary as
subclasses of Request and Response in DASP−Interaction
vocabulary, we define authorization descriptor as a
structure that instantiates classes and relationships from

DASP−Interaction t OAuth−2 t DASP−Service so that
it contains at least one instance of AuthorizationRequest,
AuthorizationResponse or ErrorResponse. These instances
then have to apply domain and range restrictions,
as defined in vocabularies3, and conform to service
capabilities, as exposed in the model of a target service.
They may reference only the instances that are exposed
in the service model, including actions, resources, their
elements and applicable restrictions.
Note that authorization descriptor may take differ-

ent roles, such as the request to provide authoriza-
tion or response that describes given permissions. In
the case of the authorization request, the instance of
AuthorizationRequest has to provide further details on re-
quested authorizations, by referencing the actions (intents)
or resources exposed by the service and claiming a range of
acceptable restrictions and operations, as provided in the
service description. The underlying TBox model is used
to derive the capabilities and meanings of exposed entities
using class and property descriptions and relationships.
To illustrate the practical application of this structure

using the running case we refer to Fig. 4. Sec. IV provides
additional details on the application of this structure with
the regards to management flows defined in Sec. III-C.

IV. Design and Operation
In this chapter, we examine the application of our

proposal considering a case scenario motivated in Section
II-B. To support comparable functionality and the appli-
cation in other scenarios and protocols, we then elaborate
particular functional aspects of our proposal.

A. Application in the running case scenario
Our contribution reduces the over-permissioning shown

in motivational scenario (Section II-B) both in static and
dynamic dimensions. To illustrate this, we refer to Fig.
4, which depicts authorization descriptors as graph-based
structures. Each node on the figure refers to a class
instance from the respective vocabulary, whose type is
shown as the acronym4. The colors of nodes indicate their
definition vocabulary. Edges represent object properties
(with the range of class instances) and data properties
(with the range of data values). While their actual names
are not relevant for the functionality, we have labeled class
instances using free-text for the purpose of readability.
To retrieve the messages and their content, integration

platform needs access to two actions:
1) List emails, which allows retrieving a list of emails

consisting of message ids and thread ids.
2) Retrieve email, which uses message id and HTTP

GET to retrieve the message content as JSON.
For this purpose, the accessing client creates two re-

quests, shown in Fig. 4 as (b) and (a). In our assumption,
the client is partially cooperative, requesting non-optimally
restricted authorization scope, whose structure is differen-
tiated as client request on the figure.
3 Due to space constraints we point to http://daspsec.org for an
overview of vocabularies and http://demo.a-sit.at/am for tools

4 AR:AuthorizationRequest, EL:Element, A:Action,
SE:SanitizeElement, ER:ElementRestriction, TD:Today

AR
Scope #1

A

targetsAction

ER

hasRestriction

EL
Internal date

targetsElement
valueGreaterThan

SE
hasOperation

Retrieve
email

ER

Message label
EL

targetsElement

Label_12

valueContains

TD

hasRestriction

S#1

Current day

R#1

SE
hasOperation

Message
body

ELtargetsElement

EL

targetsElement

Message
header

EL

excludesElement

From
field

R#2
S#2

Client request

AR
Scope #2

A

targetsAction

List emails

Client request

AR
Scope #3

A

targetsAction

Add
member

ER

EL

targetsElement

10

valueEquals

hasRestriction

R#3

Client request

List id

(a) (b) (c)

Class instance

Object property

Data property

DASP-Interac tion

DASP-Servic e

DASP-OAuth

Data va lue

Fig. 4: Zapier: defining authorization scopes for GMail and MailChimp

In the next step, the client forwards the authorization
request containing the requested scope to the service
for further processing. This enables the resource owner
to perform the scope redaction (S3-S4 in Section III-C),
allowing it to adjust the scope to conform to its specific
security and privacy goal. In our use case, prior to giving
the authorization consent, the user augments the request
with further restrictions and transformative operations, as
shown in Fig. 4(a). This is done by examining exposed
service model and altering the provided structure accord-
ing to exposed resources and operations. Hence, knowing
that the integration platform does not need all requested
operations and parts of the resource, the user augments
the scope as follows:

1) R#1 : expose only messages whose internal date is
restricted to the current day (transaction time)

2) R#2 : expose only messages whose label is flagged
with value Label_12

3) S#2 : perform operation Sanitize Element on mes-
sage header, so that all its consisting parts except
From field get sanitized prior to the delivery

With this structure, the user practically reduces the
range of available resources not only based on the type
of operation or activity but also using the contextual
properties of the resource (R#2) and dynamic feature
such as the relative temporal position of the transaction
(R#1). Based on these requirements, prior to the delivery,
the message gets dynamically processed with the goal
to prevent client seeing unnecessary data (S#2). In this
sense, the integration platform is allowed to retrieve only
the messages received on the day of the interaction, and
from them, it sees unmasked only the data content of
From: header. The structure of the message is preserved
according to the data model of API.
Similarly, the authorization scope at MailChimp is de-

fined by the platform and augmented by the user, as shown
in Fig. 4(c). In this case, the user restricts the authoriza-
tion to the action of adding subscribers using only the
subscriber list whose id equals to 10. The platform is not
allowed to access any other functions of the API, nor to
amend the subscriber lists other than this one.

B. Structuring service descriptors
To expose a service descriptor, the service provider first

has to structure and provide its service model using a

common framework. For this purpose we rely on DASP-
Service vocabulary (Fig. 3 and Section III-B), which can
be reused by service providers to describe information and
behavior aspects of their services. Providing the abstract
concepts, these vocabularies allow providers to flexibly de-
termine and apply different levels of granularity and detail,
as it suits their scenarios. The resulting descriptor may be
simplified, presenting only resources on a high-level, or it
can be enhanced to reflect the more complex structural,
behavioral and authorization aspects. We illustrate the
overall approach as follows.
Given the service vocabulary Θ(s)={C, R, ε, I},

a service provider instantiates its service model
M={CM , RM , EM , IM} so that CM⊆C, RM⊆R and
IM⊆I holds and ∀e∈EM , e∈CM∨e∈RM . Elements from
set EM denote instances of classes and relations defined
in vocabulary Θ(s). Note that, depending on complexity
and description goals of the service provider, several
vocabularies provided in the common framework can be
used to establish the service model.
Several formats can be used to present these graphs,

including RDF, JSON-LD or Turtle. To illustrate the
overall process, we provide simplified and reduced version
of Gmail descriptor using Turtle syntax in Fig. 5. The
first part of the descriptor denoted as 1 establishes
the prefixes and the base used in the document for the
referencing of concepts from various vocabularies.
In 2 the instance of service class is initialized, which

serves as a root node for described service. Following
that node, we can identify the actions (intents) that
are exposed by the service as well as the available and
affected resources by each action. The action itself is
determined by the sequence of (dynamic or static) URL
path elements and the HTTP methods for API calls,
as partially shown in the figure. EmailResource on the
figure refers MessageHeader as one of the elements it
provides. This element is further elaborated under 3 ,
where its (sub)elements are described. The purpose of 4
is to express the extraction rules necessary to retrieve and
evaluate the values of resources or their elements. This
activity is often referenced as semantic lifting [24].
This example shows two cases, where the action or

the nested element serve as data structure containers,
respectively. Using such rules the systems can implement
restrictions, such as R#1 and R#2, or perform transfor-

@prefix : <http://www.daspsec.org/o/gmail-api#> .

@base <http://www.daspsec.org/o/gmail-api> .
<http://www.daspsec.org/o/gmail-api> rdf:type owl:Ontology ;
 owl:imports <http://www.daspsec.org/o/dasp-service/0.3>, .
:GmailService rdf:type dasp-service:Service ;
 dasp-service:hasAction :RetrieveEmail .
:EmailResource rdf:type dasp-service:Resource ;
 dasp-service:hasElement :MessageHeader , .
:RetrieveEmail dasp-service:Action ;
 dasp-service:affectsResource :EmailResource ;
 dasp-service:hasURLPath:1 :U_URLDesignator .

:U_URLDesignator dasp-service:StaticPathElement ;
 dasp-service:hasElementValue "gmail"^^xsd:string .
:U_MessageIdAPIElement rdf:type dasp-service:DynamicPathElement .
:MessageHeader rdf:type dasp-service:Element ;
 dasp-service:hasElement :FromField , .
:FromField rdf:type dasp-service:Element .
:MessageHeaderExtractor rdf:type dasp-service:ElementExtractor> ;
 dasp-service:hasElement :MessageHeader ;
 dasp-service:isProducedByAction :RetrieveEmail ;
 dasp-service:hasJSONPathContentExtractionRule "$.payload.headers"^^xsd:string .
:FromFieldExtractor rdf:type dasp-service:ElementExtractor ;
 dasp-service:hasElement :FromField ;
 dasp-service:hasElementContainer :MessageHeader ;
 dasp-service:hasJSONPathContentExtractionRule> "$..[?(@.name==\"From\")]"^^xsd:string .

2

3

4

1

Fig. 5: Excerpt for Gmail service descriptor
mative operations such as S#2, as shown in Fig. 4.

C. Consuming service descriptors
The consumption of service descriptors is conceived as

traversing the provided graph structures and integrating
the results in the local environment, according to the
role of classes, their hierarchical dependencies and applied
object and data properties. The process of establishing
authorization request from such structure can be described
as follows. We apply the notation x z−−→y to denote that the
instance x connects to y using property z. Considered as
a graph, x and y would be represented as nodes connected
by directed edge z.
First the agent has to retrieve service descriptor D from

the adjunct system. The exposed services are then derived
as S←sd∈D | sd.instanceOf(DASP -Service:Service).
After selecting the relevant service s∈S, the agent retrieves
its exposed resources R←res∈D | s hasResource−−−−−−−−−→res and
actions A←act∈D | res hasAction−−−−−−−−→act. The agent might
want to interact with particular resource, or to execute
some exposed action, with the latter being more specific.
Using the later, the agent initializes a new scope sc
with sc targetsAction−−−−−−−−−−→act | act∈A and proceeds on with
deciding which range of exposed operations are deemed
acceptable for its use case. This is done first by finding
a range of affected resources and their elements using
act affectsResource−−−−−−−−−−−→res and res hasElement−−−−−−−−−→el, and then
inspecting a range of supported operations op∈OP | (el ∨
res) isSupportedBy−−−−−−−−−−→op. The acceptable operations can be
amended to the action with act hasOperation−−−−−−−−−−→op, option-
ally with parameters supported by the operation, as shown
on Fig. 4(a). Depending on the client preferences, the
resulting scope may include arbitrary levels of detail. In
any case, the user may redact the scope prior to confirming
the authorization.

D. Redacting and updating the authorization descriptor
The process of scope redaction (S4 in Section III-C)

is performed similarly as structuring and consuming of

service descriptors, as it relies on the same underlying
entities. First, the application (local or remote) has to
receive the authorization descriptor. Based on the vo-
cabularies used in this descriptor (e.g. prefixes on Fig.
5), the application retrieves the respective vocabularies
(TBox knowledge) and referenced service descriptions
(ABox knowledge), learns their structures and checks the
conformance of instances in authorization descriptor with
them. Then, the application derives supported resources,
actions or operations and renders the user interface to
allow the user to customize the authorization descriptor
with supported entities.
Note that the redaction can be performed repetitively,

enabling the users to adjust their authorizations at the
arbitrary point in time. We have implemented the server-
side application that provides this functionality3.

E. Integration with other frameworks
We aim to provide a protocol, language and system-

agnostic contribution that is applicable beyond a single
use-scenario or a platform. From this point, we describe
its integration with OAuth 2.0 web authorization frame-
work [2], which is practically the most broadly adopted
approach to manage cross-domain authorizations [4].
Fig. 6 shows the typical protocol flow in OAuth 2.0

authorization code grant. The steps (0) and (2b) represent
the additions to a standard flow that need to be imple-
mented to support the proposed integration. These steps
correspond to management flows (S1) and (S4) (Section
III-C), respectively. The approach to execution of activi-
ties encompassed in (0) has been described in Section IV-B
and Section IV-C. We envisage the implementation of the
second step (2b) using client-based or server-based scope
inspection. While the former type assumes the interception
and redaction of the requested scope in the realm of the
client-software5, the latter assumes these activities to be
performed using server-side interface.

Client

(2a) Authenticate the user

(3a) Provide authorization code

(4) Request access token

(5) Provide access token

ServiceUser

(1) Initiate authorization flow

(2b) Inspect and adjust the requeste d scope

(2c) Provide the authorization c onsent

(3b) Provide authorization code

(0) Discove r service model

(6) Inspect token

Fig. 6: Integration with OAuth 2.0 protocol flow
We have implemented the second option and deployed it

using user-centric deployment model at the data security
gateway (Section III-A). We have integrated authorization
descriptor in the OAuth 2.0 scope parameter as a Base64
encoded string, which is conformant with the specification
and allows the referencing of multiple scopes.
The last step, token inspection (6), is not included in the

core OAuth specification [2], however, it is augmented by
the accompanying RFC 7662 [25]. As the proposed scope
5 Such as browser plugin deployed on the client side

structure is fully compatible with existing specifications,
we consider this requirement to be satisfied.

V. Application and Discussion
A. Requirements assesment
In Table III we present the comparison of different

frameworks with regards to the requirements in Section
II-D. For this purpose we examine the proposed autho-
rization descriptor (AD), considering it as an extension of
DASP framework, as it relies on its components. We use
T to denote the partial fulfillment of a requirement.
Being oriented at a single enterprise and its processes,

XACML [9] does not specify the interactions with clients
to request the authorization from the user (R1) and to
claim constraints (R3). Instead, its policy enforcement
point (PEP) dynamically intercepts accesses and generates
authorization requests for policy decision point (PDP)
to calculate authorization decisions for events using a
predefined set of security policies. The clients hence do
not have structured means to express their authorization
requirements or acceptable constraints, nor to obtain them
in the online flow. Being inspired by XACML architec-
ture, UMA [3] similarly requires the existence of a priori
policies to authorize requests. It, however, specifies a
claims-gathering flow, which allows the elevation of client
privileges. The reliance on security policies allows the
frameworks to fulfill (R2). Due to the focus on a single
organization, the granular specification of accesses does
not scale well beyond organizational boundaries.
AD smoothly integrates authorization scope with service

model to support (R4) in a way that allows agents to
automatically derive structure and extraction rules for
previously unknown services. Although they support this
requirement, XACML and UMA impose additional imple-
mentation overhead. This is due to the need to separately
implement resource models for each service, which does
not scale well for web-scale integrations.
The online transformation of resources (R5) may be

supported in XACML using obligations. They, however,
depend on particular implementation, do not scale well
and cannot be reused across environments. SUNFISH [26]
provides a set of predefined transformational functions
relevant for the security that can be referenced and reused
by different participating organizations. For the same rea-
son, the federation framework allows establishing scalable
management (R6), but only for the federation members
that fulfill technical and formal requirements established
in an out-of-the-band process.
Finally, (R7) assumes the semantic interoperability [16]

to support scalable integration across environments. Pur-
suing the interoperability on syntactic level only, as en-
visaged in other frameworks, introduces the obstacles
for integration beyond organizational boundaries (Section
III-D).

B. Cooperative authorization establishment
Presented real-world example (Section IV-A) demon-

strates the capability of the proposed structure to sup-
port the expression and refinement of the authorization
requirements through the multilateral interaction chain.
We assume that the client may be willing to provide

fine-grained, correct view of its access requirements that

TABLE III: Specification and management of authorizations

Req. XACML
[9]

SUNFISH
[26, 27]

OAuth 2
[2]

UMA
[3] AD

(R1) 7 7 3 T 3
(R2) 3 3 7 3 3
(R3) 7 7 7 7 3

(R4) 3 3 7 7 3
(R5) T 3 7 7 3
(R6) 7 T 7 7 3

(R7) 7 7 7 7 3

optimally conforms to security and privacy expectations
of the resource owner. However, the expected degree of
cooperative authorization establishment may vary along
the lines of completeness and user’s security goals for dif-
ferent reasons. In some cases, clients can demonstrate low
willingness to cooperate, they could act from the overhead-
reducing perspective, or simply they could behave with
the malicious intent. In other cases, due to the strict
access control, clients could be prevented from retrieving
the complete information on the organization of resources
or their values, which may be necessary to structure the
optimal authorization scope.
In any case, the user should still be given the opportu-

nity to manage the extent of given authorizations. We call
this balancing between security and utility, as our proposal
aims to enrich existing simplified security controls with
adaptive and expressive structures that allow a high level
of granularity along with the contextual and dynamic
provision of access permissions.

C. Enforcement and the integration with systems
While the definition of given authorizations is one part of

the security management process, the other part includes
their actual enforcement. Typically, these activities are
coupled to a single organization as they depend on its
internal models, interfaces and the infrastructure. As a
result, many cross-organizational interactions depend on
hard-coded configurations and interfaces that need to be
adjusted to operate with each organization individually.
Our proposal approaches this problem primarily from

the perspective of the specification of the requirements,
contributing with the interoperability layer that allows
interconnecting the models from different environments.
Nevertheless, the organizations have and prefer to im-
plement enforcement infrastructure according to their in-
ternal processes and information models. However, by
considering an additional interoperability layer, they can
benefit by allowing their clients a higher degree of usability
and control, which increases the value and the reach
of their services. Due to the flexible approach and the
possibility to express interfaces, resources, and operations
at arbitrary levels of detail, service providers are free to
choose the degree of implementation that provides the
optimal intersection of user value and the integration
overhead.
The integration overhead to create and derive the pro-

posed structure is low, considering its reliance on existing
formats. There are different libraries available to support
RDF, JSON-LD or Turtle syntaxes. In addition to that,
in our other work, we introduce data security gateway
[17], which provides the policy-based tool to manage and
enforce security controls of Web APIs (Section III-A).
Augmented with the flows and the structure presented in

the current work, this gateway provides an out-of-the-box
solution that can be applied over existing APIs to reduce
the implementation and integration overhead.

VI. Related work
Several initiatives have been focused on the development

and application of open vocabularies on the web with
different goals, including Hydra vocabulary [28] for the
creation of generic API clients, integration of IoT devices
[29] or overall consolidation of linked vocabularies [30].
Our work is complementary to these approaches as it aims
to fill the gap for specifications in the security domain.
Hüffmeyer and Schreier proposed RestACL language for

the protection of RESTful services [31]. Alam et al. present
xDAuth framework [32] that supports authorization and
delegation in the RESTful service architecture, which
relies on XACML as policy language [9]. Both of these
approaches consider the perspective of a single enter-
prise, providing the access specification capabilities on a
granularity level of a resource. SUNFISH [27] is a recent
EU-supported initiative to develop a framework for the
establishment of secure cloud-based service federations.
SUNFISH externalizes authorization beyond a single orga-
nization by providing consolidated policy model and out-
of-the-box support for dynamic resource transformation
in the federation. It, however, focuses on traditional web
services and imposes high adoption barriers for entities
beyond public administrations.

VII. Conclusion
In this work, we introduced management flows and au-

thorization descriptor that support cooperative and adap-
tive authorization in heterogeneous environments. The
proposed structure provides a high-degree of expressivity,
enabling the specification of rich, granular and contex-
tual security requirements and restrictions that support
the dynamic transformation of resources in Web API
integrations. Our contribution aims to advance the man-
ageability of security controls in the cloud by providing
self-dereferenceable and transparent structures that allow
resource- and operation-aware specification of authoriza-
tions. By introducing the semantic interoperability layer,
we establish the link between service models and security
controls, which allows their tighter integration and facili-
tates reuse and transparency of controls both in a closed
system or across different environments.

Acknowledgment
This work has been partially supported by A-SIT Secure

Information Technology Center Austria and EU H2020 Pro-
gramme under the SUNFISH project, grant No. 644666.

References
[1] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino,

“RESTful service composition at a glance: A survey,” Journal
of Network and Computer Applications, vol. 60, 2016.

[2] D. Hardt, “The OAuth 2.0 authorization framework,” 2012.
[3] T. Hardjono et al., “User-managed access (UMA) profile of

OAuth 2.0,” Internet Engineering Task Force (IETF), 2015.
[4] F. Bülthoff and M. Maleshkova, “RESTful or RESTless–

Current state of today’s top Web APIs,” in European Semantic
Web Conference. Springer, 2014, pp. 64–74.

[5] B. Suzic, “Security Aspects of Web-APIs,” Tech. Rep., 2017.

[6] ——, “Securing integration of cloud services in cross-domain
distributed environments,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing. ACM, 2016.

[7] M. Vukovic et al., “Riding and thriving on the API hype cycle,”
Communications of the ACM, vol. 59, no. 3, pp. 35–37, 2016.

[8] M. Pezzini and B. Lheureux, “Integration platform as a service:
moving integration to the cloud,” Gartner Inc., 2011.

[9] O. X. T. Committee et al., “eXtensible Access Control Markup
Language (XACML) Version 3.0,” OASIS, 2013.

[10] A. Mourad and H. Jebbaoui, “SBA-XACML: set-based ap-
proach providing efficient policy decision process for accessing
web services,” Expert Systems with Applications, vol. 42, 2015.

[11] M. Marian, “iPaaS: Different ways of thinking,” Procedia Eco-
nomics and Finance, vol. 3, pp. 1093–1098, 2012.

[12] K. Guttridge et al., “Magic quadrant for enterprise integration
platform as a service,” Gartner Inc., 2017.

[13] F. B. Schneider, “Least privilege and more [computer secu-
rity],” IEEE Security & Privacy, vol. 99, no. 5, pp. 55–59, 2003.

[14] S. Farrell, “API Keys to the Kingdom,” IEEE Internet Com-
puting, vol. 13, no. 5, 2009.

[15] M. Jones and D. Hardt, “The OAuth 2.0 authorization frame-
work: Bearer token usage,” Tech. Rep., 2012.

[16] H. van der Veer and A. Wiles, “Achieving technical interoper-
ability,” ETSI, 2008.

[17] B. Suzic, “User-centered security management of API-based
data integration workflows,” in Network Operations and Man-
agement Symposium (NOMS), 2016 IEEE/IFIP. IEEE, 2016.

[18] R. Verborgh et al., “Bottom-up web apis with self-descriptive
responses,” in Proceedings of the First Karlsruhe Service Sum-
mit Workshop-Advances in Service Research, 2015, p. 143.

[19] B. Suzic, “LOD and LOV for Authorization Concepts,” Tech.
Rep., 2017.

[20] R. J. Brachman et al., “Krypton: A functional approach to
knowledge representation,” Computer, vol. 10, 1983.

[21] R. Studer et al., “Knowledge engineering: principles and meth-
ods,” Data & knowledge engineering, vol. 25, no. 1-2, 1998.

[22] K. Janowicz, F. Van Harmelen, J. A. Hendler, and P. Hitzler,
“Why the data train needs semantic rails,” AI Magazine, 2014.

[23] W. O. W. Group, “OWL 2 Web Ontology Language Document
Overview (Second Edition),” W3C, 2012.

[24] D. Roman et al., “Wsmo-lite and hrests: Lightweight semantic
annotations for web services and restful apis,” Web Semantics:
Science, Services and Agents on the WWW, vol. 31, 2015.

[25] J. Richer, “OAuth 2.0 Token Introspection,” 2015.
[26] F. P. Schiavo, V. Sassone, L. Nicoletti, and A. Margheri, “FaaS:

Federation-as-a-Service,” arXiv:1612.03937, 2016.
[27] B. Suzic et al., “Balancing utility and security: Securing cloud

federations of public entities,” in OTM Confederated Interna-
tional Conferences. Springer, 2016, pp. 943–961.

[28] M. Lanthaler and C. Gütl, “Hydra: A vocabulary for
hypermedia-driven web apis.” LDOW, vol. 996, 2013.

[29] A. Gyrard et al., “Reusing and Unifying Background Knowl-
edge for IoT with LOV4IoT,” in Future Internet of Things and
Cloud, IEEE 4th International Conference on. IEEE, 2016.

[30] P.-Y. Vandenbussche et al., “Linked Open Vocabularies (LOV):
a gateway to reusable semantic vocabularies on the Web,”
Semantic Web, vol. 8, no. 3, pp. 437–452, 2017.

[31] M. Hüffmeyer and U. Schreier, “RestACL: An Access Control
Language for RESTful Services,” in Proceedings of the 2016
ACM International Workshop on ABAC. ACM, 2016.

[32] M. Alam et al., “xDAuth: a scalable and lightweight framework
for cross domain access control and delegation,” in Proceedings
of the 16th ACM SACMAT Symposium. ACM, 2011.

