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Summary. Biot’s theory of porous media governs the wave propagation in a porous, elastic solid infil-
trated with fluid. In this theory, a second compressional wave, known as the slow wave, has been identi-
fied. In this paper, Biot’s theory is applied to a one-dimensional continuum. Despite the simplicity of the
geometry, an exact solution of the full model, and a detailed analysis of the phenomenon, so far have not
been achieved. In the present approach, an analytical solution in the Laplace transform domain is
obtained showing clearly two compressional waves. For the special case of an inviscid fluid, a closed form
exact solution in time domain is obtained using an analytical inverse Laplace transform. For the general
case of a viscous fluid, solution in time domain is evaluated using the Convolution Quadrature Method of
Lubich. Of all the inverse methods previously investigated, it seems that only the method of Lubich is effi-
cient and stable enough to handle the highly transient cases such as impact and step loadings. Using prop-
erties of three widely different real materials, the wave propagating behavior, in terms of stress, pore pres-
sure, displacement, and flux, are examined. Of most interest is the identification of second compressional
wave and its sensitivity of material parameters.

1 Introduction

For a wide range of fluid infiltrated materials, such as water saturated soils, oil impregnated
rocks, or air filled foams, the elastic theory is a crude approximation for investigating wave
propagation in such media. Due to their porosity, a different theory is necessary. A theory of
porous materials containing a viscous fluid was presented by Biot [1]. This has been generally
attributed as the starting point of the theory of Poroelasticity. In the following years Biot
extended his theory to anisotropic case [2] and also to poroviscoelasticity [3]. The dynamic
extension was done in two papers, one for low frequency range [4] and the other for high fre-
quency range [5]. Among the significant findings was the identification of three waves for a
three-dimensional continuum, two compressional waves and one shear wave. These extra
compressional wave, known as the slow wave, has been experimentally confirmed [6].

Another approach to describe the dynamic behavior of porous media, known as the
“Theory of Porous Media” [7], is based on the theory of mixtures and derived from the well
known methods of continuum mechanics. It has been demonstrated that under small defor-
mations, and some other restrictions, this and Biot’s theory lead to the same governing equa- ;
tions [8]. Although Biot’s theory is more based on physical intuition, it has the widest accep-’
tance in geophysics and geomechanics.

Independent of which formulation one chooses, the governing equations consist of a sys-
tem of coupled partial differential equations. To find a close form exact solution for the gen-
eral material case, even in a simple one-dimensional geometry, has so far not been successful.
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Some analytical solutions for one-dimensional (1-d) problems have been found. For example,
Grag et al. [9] examined the response of an infinitely long fluid saturated soil column sub-
jected to a Heaviside step function velocity boundary condition at one end. There, Biot’s
theory was used and a closed form solution was obtained only for the limiting cases of zero
and infinite fluid drag. Grag’s solution in Laplace transform with a subsequent numerical
inversion led to solution of the general material case [10], and was compared to a 1-d Finite
Element solution [11]. A solution in frequency domain of a finite 1-d column loaded at the
top by total stress and pore pressure was presented in Cheng et al. [12] for comparison with a
boundary element solution. Based on the Theory of Porous Media an analytical 1-d solution
for an infinitely long column was deduced for incompressible constituents [13]. Finally, for an
even more general material case of a partially saturated dual-porosity medium, a 1-d solution
in Laplace domain is available from Beskos et al. [14].

It is of interest to observe that of all the prior theoretical investigations of one-dimensional
wave propagation, none seems to have examined the problem of impact or step loading and
produced the dynamic wave behavior. For loadings that are sinusoidal, similar wave forms
are expected. For an impact or step loading in a finite length column, we expect a clear pas-
sage of wave form and its subsequent multiple reflections. Of the two impact or step loading
solutions reported in the literature [14], [13], only monotonic decay was observed. This could
be caused by the use of an extremely dissipative material or the inaccuracy in the numerical
inversion algorithm. Since measurements based on pore pressure response conducted in
laboratory using real materials typically exhibit these dynamic wave forms, it is of interest to
demonstrate such behavior in theoretical solution.

We also notice that none of the prior theoretical analyses using different types of bound-
ary conditions has clearly shown the passage of slow wave. This is not to say that the prior
solutions were not correct. This says that the material properties, the boundary conditions,
and the column geometry chosen, and the quantities monitored, may not be suitable for the
clear detection of slow wave. Since the slow wave differentiates a Biot poroelastic material
from an elastic material, it is of interest to use the analytical tool for such an observation.

In the present work, the solution of a finite 1-d column with different types of boundary
conditions is deduced based on Biot’s theory. This solution is obtained from the frequency
domain solution [12], but converted to the Laplace transform domain to find an analytical
solution with arbitrary loading history, which involves a convolutional integral. Similar to
prior solutions, a numerical technique is needed to find solution in time domain.

This convolution integral is numerically evaluated by the so-called “Convolution Quadra-
ture Method” proposed by Lubich [15]. The weights of this quadrature formula are deter-
mined from the Laplace transformed impulse response function and a linear multistep
method. In this method, no solution in time domain of the original problem is necessary.
Through a series of stringent tests that includes a comparison with the highly acclaimed
Dubner-Abate-Durbin-Crump method [14], [16], [17], [18], [19], our experience indicates that
the Lubich method is one of the most robust in performing the inversion of wave-like func-
tions that involves a significant number of cycles resulting from impact loading. This method
has been, among other applications, successfully applied to a time domain formulation of the
boundary element method [20].

Despite our confidence in the Lubich method, it is necessary to compare the solution
based on numerical inversion with the direct time domain solution. This is achieved via a spe-
cial case involving vanishing fluid resistance. This solution is without dissipation and is the
most dynamic in nature. An analytical Laplace inversion is possible and closed form solution
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in the time domain is presented. The Lubich method is tested against the time domain solu-
tion and has produced favorable comparison.

The Lubich method is then used to obtain solution in the time domain for the general
case. A number of problems that involve a combination of impulse and step loadings with
total stress, pore pressure, and displacement conditions, are examined. Three materials, a
rock, a soil, and a seabottom sediment, representing a wide range of material properties, are
investigated. The column response to dynamic loading can be examined in terms of stress,
pore pressure, solid displacement, and fluid flux. In many of the cases, we clearly observe the
creation and propagation of the second compressional wave. With the present solution cap-
ability, we have offered a powerful tool that can simulate a column response under a wide
range of transient loading conditions.

-2 Governing equations

Following Biot’s approach to model the behavior of porous media, the constitutive equations
can be expressed as [1] '

oij = Geyj + (K ——g G) Exlij — adyp, (1.1)
¢2
(=otw+ 5 p, (1.2)

in which o;; denotes the total stress, p the pore pressure, €ij the strain of the solid frame, ¢ the
variation of fluid volume per unit reference volume, and 6;; the Kronecker delta. In the
above, the sign conventions for stress and strain follow that of elasticity, namely, tensile stress
and strain is denoted positive. The Latin indices takes the values 1,2,30r1,2in 3-d or 2-d
cases, respectively, where summation convention is implied over repeated indices. The bulk
material is defined by the material constants shear modulus G and the drained bulk compres-
sion modulus K. The porosity ¢, Biot’s effective stress coefficient o and R complete the set of
material parameters. The last two mentioned parameters can be calculated taking some micro
mechanical considerations into account by [21]

¢“>¢=1——I‘z,i : 2)

8
and

¢2KfK2
Kf(K K) + ¢K, (K, - Kf)

3)

where K, denotes the compression modulus of the solid grains and K; the compression
modulus of the fluid.
Now, the governing equations are completed by the dynamic equilibrium

&u; %; .
oiji + F = QW'HMVW, (4)

and the continuity equation

%9

o T%i=0, | ()
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where the bulk density ¢ = g,(1 — ¢) + ¢ps with the densities of the solid g, and the fluid of is
used. As well the displacements of the solid are denoted by wu; and the relative fluid to solid
displacements by v;. In Eqgs. (4) and (5) and in the following, vanishing initial conditions for
all variables are assumed. F; are the bulk body forces which are neglected in the following,
and g; = ¢(0y;)/0t denotes the specific flux of the fluid. Finally, the derivative with respect to
the spatial variable x; is abbreviated by (),;. The fluid is modeled with Darcy’s law

0%, 0.+ Po v

where x denotes the permeability and g, the apparent mass density. For simplicity, the appar-
ent mass density g, is assumed to be frequency independent as g, = 0.66 ¢o; [22].

As shown in [23], it is sufficient to use the solid displacements and the pore pressure as
basic variables to describe a poroelastic continuum. Therefore, the above equations are
reduced to these four unknowns. To do this, Eqs. (4), (5) and (6) are transformed to Laplace
domain. Taking a linear strain-displacement relation into account ;; = 1/2(u; ; + uj;), i.e.,
small deformation gradients are assumed, the final set of differential equations for the displa-
cements 4i; and the pore pressure p are achieved

R 1.]. R .
G j; + [K + gGJ i — (0 — B)ps — $*(0— Bog) 4 =0 (7)

B . s, .
Ep,ii_fp"(a_ﬁ)sui,i—07 (8)

which the abbreviation

P2 suof
®? + sx(0q + do5)’ . ©)

and Z {f(t)} = f(s) denotes the Laplace transform, with the corhplex Laplace variable s.
With this set of equations the behavior of a poroelastic continuum is completely given.

ﬂ:

3 Analytical solution

A one-dimensional column of length £ as sketched in Fig. 1 is considered. It is assumed that
the side walls and the bottom are rigid, frictionless, and impermeable. Hence, the displace-
ments normal to the surface are blocked and the column is otherwise free to slide parallel to
the wall. At the top, the stress o, and the pressure p are prescribed. Due to these restrictions
only the displacement u, and the pore pressure p remain as degrees of freedom. This one-
dimensional example can be used to study the influence of poroelastic parameters on wave
propagation, or it can be seen as an approximation of a poroelastic half-space by setting the
layer depth £ large. Here, we are particular interested in observing the interplay of the two
compressional waves.

For this, the governing set of differential equations (7) and (8) is reduced to two scalar
coupled ordinary differential equations:

Edyyy — (o= B)by — s° (0 — Be) 4y =0, (10)

2
=T b= (0= st =0, )



Wave propagation in a poroelastic column 5

1 o, = ~Pf () l p=PRof(t)

(i

x

ruy=U0f(t) B

Fig. 1. One-dimensional column under dynamic loading

with the modulus E=K+4/3G. The boundary conditions are

iy(y =0) =V, Gy(y=0)=0 and

(12)
Gly=0=-h, dy=0="~,

where an impulse function for the temporal behavior f(t) = é(t), with 8(t) denoting the Dirac
distribution, is assumed, together with vanishing initial conditions. Each of the nonzero
boundary conditions in (12) represents a different type of loading. Due to the neglected body
forces this is a system of homogeneous ordinary differential equations with inhomogeneous
boundary conditions. Such a system can be solved by the following exponential ansatz:

by =Ue,  ply)=pPv. T (13)

Inserting the ansatz functions (13) in Eqgs. (10) and (11) results in an Eigenvalue problem for A

BN - (o-fep) ~(@-03]
[ ] =0, N (14)
wB_¢||P .
—S(C\! - ﬂ))\ A Q—f b E )
with the characteristic equation
2 20 _ \

EﬁA4—(E¢—+(g—ﬂgf)£+(a—ﬁ)2) A2+M50. : (15)

es \ R of R

4 5 c

The characteristic Eq. (15) has the four complex roots

B+VBT—4AC B- VBT -4AC
M= hg = (Y ZRAC =2 e (16)

24 24
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This leads to the complete solution of the homogeneous problem

4 4
ay(y) =D Ui,  py) =) P, (17)
=1 =1

The eight unknown constants U; and P,,i=1,...,4, can not be determined by the four
boundary conditions (12) alone. Also none of the complex roots can be excluded due to physi-
cal reasons. But the Eigenvector of the system (14) gives the relation

P = EX® — (0 — Bey)
' (=B XN
d',

- 8U;. (18)

Finally, if the solution is inserted into the one-dimensional form of the constitutive Eq. (1.1)

4
&y(8,y) = Eiiyy — ap = E Y _ AisUie™ — aj(s, y) (19)

=1
and the one-dimensional form of Darcy’s law (6)

@y(s,y) = — £; (by + Sorily)

e ﬁ)z'\ Ui ”’s(_(a__ﬂ))“"(s v =0

the remaining four constants U; can be fit to the four boundary conditions. This leads to four
equations for four unknowns whlch can be solved, preferably, with the aid of computer
algebra. :

Finally, the solutions for the displacements and the pore pressure is achieved by inserting
these coefficients in the ansatz functions (17). As we are dealing with a linear problem the
superposition principle is valid. Therefore, the solution can be divided in different load cases.
The results for stress boundary conditions i, (y =0) =0,6(y =€) = —F and p(y=£) =0
are :

R Py dg(e_’\ls("’y) _ e—hs([+y)) di( e~ hes(l—y) _ g—as(t +y))
T Bde — d2h) [ s(1 + e~2hst) - s(1 + e Dast) - ] ; (21)
- Pydid, (e~ MUV e~ hslt)) (g dasllu) 4 g~Nesllty))

P= E(di)g — da ) [ 1+ e 2Mst - 14 e 2hast ] (22)

The corresponding stress and flux is calculated with the constitutive equation (19) and
Darcy’s law (20), respectively. The solutions corresponding to the other boundary conditions
can be found in the Appendix B.

Note, due to the dependence of § to the Laplace parameter s, the roots ); and conse-
quently d; are dependent of s. Therefore, an analytical inverse Laplace transform of the solu-
tions above is in general not possible. However, if the damping due to the relative motion of
the fluid and the solid is neglected, i.e., the permeability tends to infinity

o5
X— 0= —m, 23
p Qo + P05 (23)

an analytical inverse Laplace transform can be found.
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Special case of x — oco: Under this assumption 8 and consequently ); and d; are constant
with respect to s. Then, in Egs. (21) and (22) only the expressions with the exponential func-
tion are dependent on s. In the analysis of the corresponding elastic problem the same expres-
sions appear. Following the procedure in [24], the series expansion

1
1 -n —2[718)\ 24
1+ e—2\st nz—() ( ) ( )
gives
(e—)\ls(!—-y) - e—/\ls(H—y)) -n —/\ls(é’(2n+l)—y) 1 —/\,-s(é(2n+1)+y)
5(1 + e~2Xst) nZ.—O A s ¢ ' (25)

Now, an inverse Laplace transform is possible term by term of the series above. With the rela-
tions

_z_ e—)\;s(l(?n+1)—y) oo H(t Y (é(2n +1)— y)) , _ (26)
e‘—/\is(l(2n+1)_y) P 6(t - Xi(¢@2n+ 1) - y)) , (27)

where H(t) denotes the Heaviside step function and 6(t) the Dirac distribution, the inverse
transform of (21) and (22) is given. Note that the Dirac distribution has to be defined as a
generalized function. The response in time domain can be calculated with the convolution
integral, e.g. for the displacements A

g (t,1) =0iz—l{ﬁy<s, W)} (r,9) £t — 1) dr, (28)

where #~! is the inverse Laplace transform operator. Assuming a Heaviside steja function as
temporal behavior of the load, i.e., f(t) = H(t), the response in time domains is

u =E(dTPOd2)\5 Z( D™{de[(t = A(e@n+1)~9)) (- M (e@2n +1) - v))

—(t=me@n+1)+y)) Bt - X (2 +1) + )]
—di[(t=xa(e@n+1)-y)) H(t = 2 (f2n +1) - y))

- (t —Xo(£2n+1) +y)) H(t = o(t(2n+1)+ y))] } (29)

p_E(dli(;dl—dzg,\l)Z( 1)—n[ (—A1(€(2n+1)—y))+H(t—)\1(€(2n+1)+y))

- (H(t —Xo(f2n+1) - y)) - H(t ~Xa(E(2n+1) + y)))] . (30)

In this solutions clearly two waves with the wave velocities A;~! are identified. With the same
inverse transformations the time domain solutions of other boundary conditions are
achieved.

General case of arbitrary x : For an arbitrary value of x a numerical inverse Laplace transfor-
mation is necessary. A number of methods are available in the literature, and the advantages
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and disadvantages has been studied, e.g. in [19] or [25]. But, in this case here, where one func-
tion in the convolution integral (28) is only available in Laplace and the other function in time
domain, it is preferable to take the “Convolution Quadrature Method” proposed by Lubich
[15]. This method approximates the convolution integral (28) numerically by a quadrature
formula

uy(nAt) = Zn:wn_k(At)f(kAt) , n=0,1,...,N, (31)
k=0

whose weights wy_x(At) are determined with the help of the Laplace transformed impulse
response functions (s, y) and a linear multistep method ~(s)

B (Y RBEE)\ i
wn(At) =% E:uy(j(—zt—z>e v (32)
£=0

Details of the used parameters can be found in the appendix A. In the following, the time
dependent responses are evaluated with this method, choosing a backward differentiation for-
mula of order 2 (BDF 2) as the underlying multistep method.

4 One-dimensional wave propagation

Wave propagation in the 1-d column sketched in Fig. 1 is studied in the following using the
developed solutions. Three very different materials, a rock (Berea sandstone) [12], a soil
(coarse sand) [26], and a sediment (mud) [27] are chosen to represent a wide range of porous
materials. The material data are given in Table 1. In all calculations below it is assumed that
the time history of the loading is a Heaviside step function.

First, to show the reliability of the proposed numerical algorithm (31), a comparison is
made with Dubner and Abate’s method [16]. For a finite column of length ¢ = 10 m subject to
a stress only loading of o,(t,y =£) = -1 N/m? and p(t,y = £) = 0 at the top, the displace-
ments u,(t,y = £) at the top and the pressure p(t,y = 0) at the bottom are plotted versus time
in Fig. 2. For the convolution quadrature method, following suggestions concerning the
choice of the parameters L and %, as reported in Appendix A, At is the only parameter to be
adjusted. To test the convergence, several At values are chosen in the evaluation, with result
plotted in dot and dash lines in Fig. 2.

Dubner and Abate’s method, on the other hand, requires the empirical selection of two
parameters, the real part of the Laplace variable s denoted as «, and the time period T'. After
a number of trial, the optimal values are chosen as o = 10 for the displacement and o = 30
for the pressure solution and 7' = 0.8 * tmax, where ¢,y is the total observation time, for the
soil case. The result is plotted in solid line in Fig. 2. For the two other cases, rock and sedi-
ment, multiple tries have failed to produce acceptable results. Hence only the soil case is com-
pared.

Table 1. Material data of Berea sandstone, a soil, and a sediment

K[N/m? G[N/m?] olkgm’] ¢ K, [N/m?] oy [kg/m’] K;[N/m”] x [m"/Ns]

rock 8-10° 6-10° 2458 0.19 3.6-10 1000 33-10° 1.9.1071°
soil 2.1-108 9.8-107 1884 0.48 1.1-10° 1000 3.3-10° 3.55-1079
sediment 3.7-107 22-107 1396 0.76 3.6-10° 1000 23-10° 1.10°%
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Fig. 2. Displacements u, (¢, y = £) and the pressure p (¢, = 0) versus time for different time step sizes At
compared with Dubner and Abate’s inversion formula

In Fig. 2 it is observed that the accuracy of Lubich method is dependent on the time step
size chosen in (31). If the time step At is small enough, the result overlaps with the Dubner
and Abate result for most part of the curve. The Lubich method solution, however, shows a
slight overshooting at the wave front of the pressure, whereas the Dubner and Abate method
had a slight difficulty in keeping constant values between two wave fronts. This first test has
shown the reliability and robustness of the proposed method.

Before moving to the next problem, it is of interest to provide a physical interpretation of
the results observed in Fig. 2. For the purpose of comparison, we first realize that for an
elastic solution, the displacement at the top of column is given by triangular waves of constant
amplitude that fluctuate around a constant mean value. In the poroelastic solution, we
observe that the triangular wave form is largely preserved. The amplitude, however,
diminishes with time due to fluid viscous dissipation, and will eventually go to zero. The mean
value also drops with time. The mean fluctuation level is first around the static deformation
value based on “undrained” material parameters, ugaic = 1.86 - 10™° m. As sufficient fluid
has gained time to escape at the top of column, a “consolidation” is observed. The mean fluc-
tuation level gradually settles into the “drained” static deformation value ugaic = 2.94 - 1078
m. As the soil column is being drained, the time for the wave to transverse the column will
gradually increase.

We next examine the pressure response in Fig. 2. We observe the time of arrival of the first
compressional wave at the bottom of the column. The amplitude is twice of that created by
static Skempton effect due to the perfect reflection condition at the bottom. From the well
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Fig. 3. Pressure p (t,y = 995m) versus time for different values of x compafed with the analytical solu-
tion (30): infinite colurtin

known one-dimensional wave propagation in a fixed-free end column, square waves are

expected. If enough number of cycles are observed, the waves will eventually drop to zero due
to dissipation.

In the above observed time range we did not detect the second compressional wave,
known as the slow wave. This is attributed to the large ratio in wave speed such that the fast
wave has the opportunity to transverse the column a number of times before the arrival of the
slow wave at the bottom. ’

To unamblguously capture the slow wave, we examme in the next case an “infinite”
column to avoid wave reflections. This is achieved by using a column length of £ = 1000 m
and a short observation time. In Fig. 3 we record the pressure, p(¢,y = 995 m), five meters



Wave propagation in a poroelastic column 11

behind the excitation point (y = £ = 1000 m). Since this is the first time that we expect to
observe such wave, it is compared with the exact time domain solution (30), shown as solid
lines in Fig. 3 for the three materials, to gain confidence. To make the comparison, an arbi-
trarily large value, % = 1-1072, is chosen in the Convolution Quadrature solution, with
results plotted in dashed lines in Fig. 3. It is observed that, except for some fluctuations at
wave fronts, which are generally unavoidable for all numerical inversion methods, the two
solutions compare very well.

The phenomenon exhibited in Fig. 3 can be rationalized as follows. We first observe the
arrival of the first wave at 5 m that causes the step jump. The second wave, arriving at a later
time, is of negative amplitude and cancels exactly the first wave as indicated by the exact solu-
tion (30). The arrival time of the two waves is independent of x as its limit has been taken.

To obtain and understand the solution of the realistic cases, we start to decrease » values.
Figure 3 shows a sequence of reduction that lead to the real values listed in Table 1. As %
decreases, we observe that both the amplitude and the arrival time of the waves are affected.
The effect is strongest for the second wave. For some intermediate values of », we observe
that when the second wave arrives, its amplitude is diminished. Hence the pressure does not
drop to zero at the passage of the wave front. We also observe that the second wave is disper-
sive as it does not arrive as a sharp front with constant value in some cases. Rather, the pres-
sure continues to decline as seen in some curves.

As x continues to derease, we find two effects. First, the wave speed of the second wave
tends to zero as x — 0. Second, the wave is rapidly dissipated such that it has no effect when
it arrives at the 5 m point. In that case, we observe the clear arrival of the first wave only, and
not the second wave. These observations are in accordance with the behavior of )\; with
increasing and decreasing x.

Also, the comparison shows the different behavior of the three different materials on chan-
ging the permeability. For rock, the wave amplitude of the first wave is nearly independent
from the permeability, contrary to the soil and the sediment. ‘

If the same experiment is examined with a finite soil column, now £ = 10 m, the reflections
at both ends are visible (Fig. 4), and there are multiple arrivals. It is of interest to check the
successive arrival time with theoretical result. However, the wave speed is not a constant
when there exists dissipation. We can only use an estimate based on the special case of

% — oo. In Table 2 wave speed for the special case is presented as \;~!. The successive arrival
" times in the middle of the column (5 m) are shown as Ist, 2nd, etc. With these values, results
for the undamped case can be interpreted. Referring to the lower diagram of Fig. 4, the pres-
sure for the undamped case at 5 m is shown in solid line. At ¢ = 0.002 8 s, we observe the arri-
val of the fast wave. At ¢t = 0.0084 s, the bottom reflected fast wave arrives. Next comes the
top reflected fast wave at t = 0.0140 s. At ¢t = 0.0157 s, the arrival of the slow wave negates
the pressure. We can continue this to identify every arrival front.

The more interesting case is the real case with dissipation. Two x values are used. For the
intermediate value case, » = 1- 107, we observe the significant modification of wave ampli-
tude, especially after multiple reflections. The arrival time is roughly the same as the

Table 2. Arrival times of the two waves at y = 5 m in the finite column: material data of soil

A1 Ist 2nd 3rd 4th 5th 6th

faster wave 1788 m/s 0.0028s 0.0084s 0.0140s 0.0200s 0.0252s  0.0308s
slow wave 318m/s 0.0157s 0.0471s 0.0786s 0.1100s 0.1415s  0.1730s
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Fig. 4. Displacements u, (¢,y = 5m) and the pressure p (t,y = 5m) versus time for different values of »
compared with the analytical selution (30): finite soil column

undamped case. For the smallest permeability (actual value) case, the effect of slow wave is
not visible. The wave profile is similar to the elastic case. However, if we closely track the arri-
val time and compare with the undamped case, we observe that the wave slows down after
each reflection. This behavior is in accordance with the theory where ); are functions of s,
hence are time dependent, leading to time dependent wave velocities. In Fig. 4, we also
observe that the sharp wave fronts are smoothed after each reflection, and that the wave
. amplitude diminishes with time.

The above description refers to pore pressure. The top diagram in Fig. 4 gives the displace-
ment at y = 5 m. The solid line is the undamped case given by the exact solution. The dotted
lines correspond to the two damped cases shown in the lower diagram.

Finally, the wave propagation with respect to both temporal and spatial variables is con-
sidered. In Fig. 5, the displacements u,(t,y) caused by a stress Heaviside step loading are
depicted versus time and at the locations y = 2.5m,5m, 7.5m,10m. In this figure the Berea
sandstone data are used with two different permeabilities to show the extreme case of vanish-
ing damping compared to the realistic damping. The realistic case is dominated by the first
compressional wave, as expected from the previous study. In the undamped case the faster
wave is a kind of overtone to the slower wave.

In the next case, the boundary condition is changed to a pressure Heaviside step loading
of 1 N/m?, while the total stress is zero. Although this case is physically unattainable, it is
mathematically valid, and the result can be used in a superposition. If the top of column is
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Fig. 5. Displacements [u,(t,y)| (absolute value) véi'sus time at different locations y: finite rock column

exposed to a fluid and a step pressure rise is applied, the boundary condition consists of a
stress part, and a pressure part, of which the current solution represents. We present this case
to bring the relation of a pressure loading and the second wave into sharp focus.

In Fig. 6, the pressure p(t,y) versus time at the locations y=0m,2.5m,5m,7.5m is pre-
sented for Berea sandstone and the same permeabilities as before. The influence of » is much
stronger for pressure loading than for stress loading. In part (a), the small permeability case,
the maximum amplitude is much smaller than that in part (b), and the wave propagates much
faster. If part (b) is plotted in logarithmic scale, we can observe waves of very small ampli-
tudes leading the large wave front shown in the figure. Hence the wave front observed in (b) is
the slow wave with wave speed A\;~! = 1037 m/s. The first wave is not seen because it is too
small. We recognize that the pressure boundary condition generates a second wave that
travels undamped due to the high permeability condition. While the top of the column is total
stress free, there is no compression generated at that point. A first wave is not generated at
the boundary. As the second wave travels through the column, it emits the first wave of small
amplitude, which outruns the second wave.

For the top figure (a), the small permeability case, we recognize the first wave by checking
the approximate wave speed \,~! = 3137 m/s. The first wave is observed only by plotting in
the scale shown. We can use such small scale because unlike case (b), the second wave is all
but vanished in amplitude when it reaches the observation points. Although the second wave
survived only a short distance, the first wave that it generated is observed in this figure. The
first wave does not have a sharp front because it is continuously emitted by the second wave.
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Fig. 6. Pressure p (t,y) versus time at different locations y: finite rock column

Summarizing, the presented results clearly show two waves and their interplay under dif-
ferent loading and boundary conditions. But, for realistic values of permeability of the three
- used materials, the influence of the second compressional wave is small. Changing the perme-
ability by using a different fluid, such as air, with low viscosity, especially in the case of pres-
sure boundary conditions, a stronger influence of the second wave may be observed.

5 Conclusions

Based on Biot’s theory, in the present paper an analytical solution in Laplace transform
domain for a poroelastic 1-d column is deduced. The closed form exact solution in time
domain is achieved for the special case of a permeability tending to infinity by an analytical
inverse transformation. For the general case of an arbitrary permeability, i.e., damping due to
the interaction of fluid and solid is taken into account, the inverse transformation can not be
found analytically. Therefore, a numerical inverse Laplace transform is performed. Here,
because only the convolution integral between the impulse response function and the bound-
ary condition, but not the impulse response function itself, is needed, the so-called “Convolu-
tion Quadrature Method” proposed by Lubich is applied. This method approximates the con-
volution integral numerically using the Laplace transformed impulse response function and a

linear multistep method.
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Finally, the method is tested with three different material data, a rock, a soil, and a sediment.
The proposed numerical method shows a robust behavior compared to the numerical inverse
transformation method of Dubner and Abate. Two compressional waves are clearly identified
in the limiting case of an infinite permeability. For some intermediate permeability cases the
second wave is also present. However, for the actual permeabilities of the tested materials the
effect of the second wave vanishes after a short distance. This paper does not test all practical
materials, natural and man-made. There exist some materials, particularly those with small
fluid viscosity and large medium permeability, in which the second wave effect can be signifi-
cant.

Appendix A

Convolution Quadrature Method

The “Convolution Quadrature Method” developed by Lubich numerically approximates a
convolution integral

t

W)= [ St =)o dr —  ylndt) = kz::() wok(8) g(kAL), n=0,1,...,N, (33)

by a quadrature rule whose weights are determined by the Laplace transformed function f
and a linear multistep method. This method was originally published in [15] and [28]. Applica-
tion to the boundary element method may be found in [29]. Here, a brief overview of the
method is given.

In formula (33) the time ¢ is d1v1ded in N equal steps At. The weights w, (At) are the coef-

ficients of the power series ~

( (z)> Zw,,(At)z , (34)

with the complex variable z. The coefficients of a power series are usually calculated with
Cauchy’s integral formula. After a polar coordinate transformation, this integral is approxi-
- mated by a trapezoidal rule with L equal steps 27/ L. This leads to

n L— 2 . '
wn(At)=2—l7r—i / f(l(;)) gy Z ( 2R )) e, (35)

o= =

where % is the radius of a circle in the domain of analyticity of f (2).

The function ~(z) is the quotient of the characteristic polynomials of the underlying multi-
step method, e.g., for a BDF 2, y(2) = 3/2 — 22+ 1/22%. The used linear multistep method
must be A(a)-stable and stable at infinity [28]. Experience shows that the BDF 2 is the best
choice [30]. Therefore, it is used in all calculations in this paper.

If one assumes that the values of f (z) in (35) are computed with an error bounded by ¢,
then the choice L = N and &" = /¢ yields an error in w, of size @(,/€) [15]. Several tests
conducted by the authors lead to the conclusion that the parameter € = 10710 is the best
choice for the kind of functions dealt with in this paper [20]. The assumption L = N results in
N? coefficients wy, (At) to be calculated. Due to the exponential function at the end of formula
(35) this can be done very fast using the technique of the Fast Fourier Transformation (FFT).
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Appendix B
Analytical solutions in Laplace domain

M. Schanz and A. H.-D. Cheng

The two solutions of Egs. (10) and (11) in Laplace domain that are not presented in Sect. 3,

corresponding to different boundary conditions, are presented below:

pressure boundary conditions:
4y(y=0)=0,5(y=¢)=0andply=~0)=F

5 P 0 (EAQ - Otdfz) (C—Al‘(t-v) _ e—Als(t+y))
“ = Es(dih — doh) [ 1+ e 2nel

(EA] —_— O‘dl) .(e_x?"(l_ll) —_ e—Ags(l-f-y))
- 1 + e—?}qd ] ;

. B dy(Edg — adp) (e M12¢-9) 4 g~eltHa))
p= E(d1 )2 —_.d;»)\l) . 1+ e—2Mst

dy(EX — ady) (e72290¢9) 4 g=ao(t+1)
- . 1 + 6-2/\28! °

displacement boundary conditions:
iy = 0) = U, 6,(y=£) = 0 and p(y =€) = 0

i, = Uo (EXg? +tc0s — 0) (67 M133) + e~hiv)
uy‘- E(A22 - A].2) ) 1 + e—2A1d

.

)

(BM? + agp — o) (e7°%7¥) + e7%)
- 1+ el

Ups di(EM? + agj — o) (e7117@-v) — =)

p =E()\22 _ Alz) 1+ e—2hst

dz(E,\12 + agf — Q) (e~Aza(2t—y) _ e_,\uy)
- 1+ e‘-2f\2d .

(36)

(37)

(38)

(39)

The corresponding stresses and fluxes are easily calculated with the constitutive equation (19)

and Darcy’s law (20), respectively.
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