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Introduction. The problem of efficient modelling of wave mode conversion arises in vari-

ous areas of fusion plasma theory. Those areas include ICRH and ICCD in a tokamak plasma

with two or more sorts of ions, the problem of interaction of low frequency (or static) resonant

magnetic field perturbations (RMPs) with the tokamak plasma, etc. In this kind of modelling,

besides the large scale waves (“fast modes”) whose wavelength is not extremely small as com-

pared to the size of the device, there exist also wave modes with wavelengths comparable to the

ion Larmor radius or even smaller (“slow modes”). The existence of such short scale solutions

causes essential difficulties in the numerical modelling of the electromagnetic field interaction

with the plasma. Depending on the method, the modelling either requires a very fine grid or a

huge number of Fourier modes. As a result, inversions of large and sometimes ill conditioned

matrices are needed (problem is numerically “stiff”). Moreover, due to finite Larmor radius

(FLR) effects and kinetic effects connected with the parallel motion of resonant particles, the

plasma conductivity is non-local, i.e. the Maxwell equations become integro-differential.

The Resonant Layer Method. The presented method uses the fact that the various wave modes

are well separated in most of the plasma volume, except inside the conversion zone (“resonant

layer”). Therefore, the fast mode oscillations can be effectively modelled by finite difference

methods whereas the various short scale slow modes are well described by WKB theory (ge-

ometrical optics) nearly everywhere. Thus, the treatment of the “full-wave” problem where all

wave modes have to be computed simultaneously is needed only inside the resonant layer where

the above mentioned approximations break down. Below, this method is explained for the case
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of mode conversion during ICRH with two sorts of ions in a slab geometry representing the toka-

mak. Namely, the main magnetic field is given in Cartesian variables as B0 = exB0x +ezB0zx0/x

where B0x, B0z and x0 are constant, the plasma is homogeneous and is surrounded by ideally

conducting walls at x = x1 and x = x2, and an infinitely thin antenna is located at x = xA. Fourier

analysis over y and z variables reduces the problem to 1D.

The general, integro-differential form of Maxwell equations describing the “full-wave” prob-

lem can be presented in the form of an exact Maxwell operator acting on the wave electric

field,

M̂ ·E ≡ ∇× (∇×E)−
ω2

c2
E−

4πiω

c2
σ̂ ·E = 0, (1)

where σ̂ is an integral plasma conductivity operator. The model solutions to (1) which ap-

proximately satisfy Maxwell equations outside the resonant layer are denoted as E(k) where

k = 0,1,2, . . . . It should be noted that the approximate solutions are normally singular at the

mode conversion surface (mode conversion point xc in 1D) either due to the singularity of

the simplified equation (fast modes) or due to the violation of the WKB approximation (slow

modes). In the model solutions, those singularities are removed by adding finite terms which

are strongly localized around the conversion point either to the equation (fast modes) or directly

to the dispersion relation (WKB for slow modes). Various model solutions E(k) differ from each

other only by the amplitude of these additional terms ak. Each of the model solutions E(k) for

such a regularized problem is a full solution satisfying boundary conditions at the wall and

matching conditions at the antenna and, generally, it necessarily contains both, fast and slow

mode fields. None of them, if taken alone, even approximately represents the exact solution for

the boundary problem, however, a linear combination

Emod = E(0) +
N

∑
k=1

Ck∆E(k), ∆E(k) = E(k)−E(0), (2)

does represent the exact solution almost in the whole volume, except a certain relatively small

vicinity x− < x < x+, x± = xc ±∆x of the conversion point (“resonant layer”). The number N

of model solutions (besides E(0)) is determined by the order of a fast wave problem (e.g., for

B0x = 0 fast wave is described by a second order ODE) plus twice the number of travelling slow

modes (evanescent slow modes are ignored). In order to determine the unknown constants Ck

and the correct solution in the boundary layer, the exact problem (1) in the layer is re-formulated

for the correction term δE = E−Emod,

M̂ ·δE = −M̂ ·Emod =
4πiω

c2

(

δ j(0) +
N

∑
k=1

Ck

(

δ j(k)−δ j(0)
)

)

. (3)
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Here, the correction plasma currents δ j(k) are fully determined by the model solutions E(k) and

are strongly localized around xc so that near the boundaries of the resonant layer, where the

model solutions satisfy Maxwell equations well enough, δ j(k) are negligible small. Thus, δ j(k)

can be well approximated by a function which, together with all derivatives, is enforced to be

zero at the resonant layer boundaries. If Fourier analysis is applied to such a function,

j(k) =
∞

∑
m=−∞

j
(k)
m exp

(

πm(x− xc)

∆x

)

, (4)

the spectrum of this function j
(k)
m converges exponentially with |m| → ∞. Applying Fourier

analysis also for the correction field δE, Maxwell equations (3) are reduced to an infinite set

of algebraic equations for the Fourier amplitudes of the correction field, δEm, which, due to a

fast decay of j
(k)
m , can be truncated keeping a rather limited number of Fourier harmonics. The

correction field δE obtained in this way is formally a periodic function of x but it need not to be

a localized function as long as the model solution Emod is not close to the exact solution outside

and nearby the resonant layer boundaries, x±−δx < x < x± +δx, where δx � ∆x. In order to

localize δE we look for the minimum of the functional

S =

x++δx
∫

x+−δx

dx |δE(x)|2 (5)

with respect to constants the Ck and obtain a linear equation set for Ck. Thus, both, the proper

model solution Emod and the localized correction term ∆E are simultaneously fully defined after

the calculation of Ck. Note that the Fourier spectrum of the correction field saturates rapidly

only for a proper choice of Ck since otherwise the periodic solution for ∆E must represent an

aperiodic function whose spectrum decays as slowly as 1/|m|.

Resonant Layer Method Example. For testing the method, a simplified local plasma conduc-

tivity σ̂ = (4πi)−1ω (ε̂ −1) is used in (1). Namely, the hot tensor for a homogeneous plasma

and magnetic field [1] is simplified by ignoring the FLR effects and enforcing the condition

k‖ = kz even in cases with finite B0x representing the poloidal tokamak field. The resulting

“full wave” problem (1) described by the ODE of the 4-th order can be solved then directly by

Runge-Kutta integration providing a test solution for benchmarking the method.

The parameters correspond to a deuterium plasma with Te = Ti = 3 keV, ne = 5 ·1013 cm−3.

The fundamental cyclotron resonance point for hydrogen minority ions (with 20% concentra-

tion) is located at x = 200 cm where B0 = 20 kG and B0x/B0z = 0.1. The solution has a harmonic

dependence on y and z variables with ky = kz = 0.02 cm−1.

In Fig. 1 the real part of the Ex component is shown for two model solutions E(k).
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Figure 1: Real part of Ex component. Blue - fast

wave model solution, red - WKB model solu-

tion.

One of them (MOD) corresponds to the fast

mode (fast magnetosonic wave) computed

numerically and another one (WKB) cor-

responds to the slow mode - slow Alfven

wave (“ion cyclotron wave”) computed by the

WKB method. Also shown are the real (RKX)

and imaginary (IKX) parts of the wave vector

kx being the solution of local dispersion equa-

tion corresponding to the slow mode. Only

the mode travelling from the conversion re-

gion (xc = 175 cm) towards the minority cy-

clotron resonance point need to be taken into

account here. The result of the comparison of this method with the exact solution is shown

in Fig. 2 where real part of Ex component is shown for the new method (SOL), test solution

(TEST), as well as for the model solution Emod (MOD) and the correction field δE (CORR).

As one can see, the resonant layer method is in good agreement with the exact test solution.

Figure 2: Real part of Ex component. Dotted

vertical lines - boundaries of the resonant layer.

Note that new method is not limited to dif-

ferential equations only but is applicable to

general problems of integro-differential type.

Thus, any kind of nonlocal plasma conductiv-

ity can be treated without any further approx-

imations to the conductivity operator. The

new method has a straightforward generaliza-

tion to higher dimensional problems where

it should give a significant speed-up of the

computations because the maximum number

of Fourier harmonics needed is rather small

(usually less or of the order of a hundred).

References

[1] A.I.Akhiezer, et al, Plasma Electrodynamics, Pergamon Press, London (1975)

36th EPS 2009; M.F.Heyn et al. : Modelling of wave mode conversion in fusion plasmas by the resonant layer method 4 of 4


