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Abstract

In this thesis an unsupervised learning rule is derived for spiking neurons that extracts
statistically independent components from an ensemble of input spike trains. For that
the approach of a recent result showing that maximizing information transmission for
a single neuron yields a generalized Bienenstock-Cooper-Munro (BCM) rule for spiking
neurons is extended in a way that a second neuron that receives the same input addition-
ally minimizes the mutual information between its output and the output of the other
neuron. The resulting synaptic plasticity rule gives an additional term which depends
on the recent firing history of both neurons and which is sensitive to the momentary
statistical dependence between the outputs. The learning rule is tested in a number of
computer simulation experiments and found to be able to detect different correlation or
rate modulation groups among the input. Finally, it is suggested how the rule can be
made biologically more realistic by using (inhibitory) interneurons to make the informa-
tion about the firing behavior of one neuron available at the site of the other neuron.
This result can be viewed as a first step toward a (nonlinear) independent component
analysis (ICA) method for spiking neurons.

Keywords: computational intelligence, unsupervised learning, neural networks, com-
putational neuroscience, synaptic plasticity, BCM rule, information theory, independent
component analysis
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Kurzfassung

In dieser Diplomarbeit wird eine unüberwachte Lernregel für spikende Neuronen her-
geleitet, die statistisch unabhängige Komponenten aus einer Menge von Input Spike
Trains extrahiert. Dabei wurde der Ansatz eines kürzlichen Ergebnisses, das zeigt, dass
die Maximierung der Informationsübertragung eines einzelnen Neurons eine allgemei-
ne Bienenstock-Cooper-Munro (BCM) Regel für spikende Neuronen liefert, erweitert,
sodass ein zweites Neuron, das denselben Input erhält, zusätzlich die Transinformati-
on zwischen seinem Output und dem des anderen Neurons minimiert. Die resultierende
Lernregel enthält einen zusätzlichen Term, der von der jüngsten Feuergeschichte beider
Neurone abhängt und die momentane statistische Abhängigkeit zwischen den Outputs
misst. Die Lernregel wird in einer Reihe von computersimulierten Experimenten ge-
testet und ist etwa in der Lage, Gruppen verschiedener Korrelationen und verschieden
modulierter Feuerraten innerhalb der Inputs zu erkennen. Abschließend wird noch vorge-
schlagen, wie diese Lernregel biologisch realistischer gemacht werden könnte, indem man
(inhibitorische) Interneuronen verwendet, die die Information über das Feuerverhalten
eines Neurons für das andere verfügbar machen. Dieses Resultat kann als erster Schritt in
die Richtung einer Methode für (nichtlineare) Independent Component Analysis (ICA)
für spikende Neuronen angesehen werden.

Stichwörter: Maschinelle Intelligenz, Unüberwachtes Lernen, Neuronale Netze, Neuro-
informatik, Synaptische Plastizität, BCM-Regel, Informationstheorie, Independent Com-
ponent Analysis
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1. Introduction

Unsupervised learning is a very important concept in the theory of neural networks.
In contrast to supervised learning, where each input pattern is paired with a target
value and where the network’s task is usually to infer a function from the data that
predicts these labels for unseen patterns, the training data does not contain any target
values at all and consists merely of the attribute vectors. This learning paradigm is
commonly applied, for instance, to clustering or to reducing the dimensionality of data,
as well as to learning associations between input patterns; in short, we often want to
discover some underlying structure of the data (Duda et al., 2000; Bishop, 1995). This
ability is also essential for biological neural networks in the brain, which are known to
develop representations based on the statistical structure of the input. Since there is
usually no teacher signal available that would allow supervised learning to take place
in most parts of the brain, unsupervised learning plays an important role in the field
of neuroscience dealing with plasticity and learning. A major area of research concerns
the development of neuronal selectivity and the formation of cortical maps, for example
(Dayan and Abbott, 2001; Gerstner and Kistler, 2002).

Most of the theory of unsupervised learning in neuroscience is based on the work
of Hebb (Hebb, 1949) and his principle that the synaptic weight change is driven by
correlated activity between pre- and postsynaptic neurons. This postulate has given rise
to a large family of Hebbian learning rules, most prominently Oja’s rule (Oja, 1982),
that have been found to perform principle component analysis (PCA). This term refers
to the process of finding the set of orthogonal directions that minimizes the error of
the reconstructed data when projecting the input data onto these principal components.
PCA is therefore often used for dimensionality reduction, e.g., for image compression.

While PCA has the nice property that the principle components of random variables
are uncorrelated, it is often even more desirable to extract statistically independent com-
ponents from some input data. This is a stronger condition because while independent
random variables are also uncorrelated, uncorrelatedness on the other hand does not im-
ply independence. In contrast to PCA, independent component analysis (ICA) does not
seek a set of orthogonal components, but a set of independent components (Hyvärinen
and Oja, 2000; Hyvärinen et al., 2001). It is closely related to blind source separation
where the problem is to find the set of original sources from an observed mixture. By
providing the independent components of the input ICA produces an efficient (sparse)
coding scheme, therefore it is also a hot candidate for the theory of development of
neural coding, where one of the main issues is the reduction of redundancy (Barlow,
1961; Barlow, 1989). In fact, it has been found that many cells in visual cortex develop
receptive fields that can be reproduced by ICA (Hyvärinen et al., 2005).

However, learning rules for unsupervised learning of independent components have yet
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1. Introduction

been proposed mainly for pure rate models; a more general synaptic plasticity mecha-
nism that extracts statistically independent components from a spiking network is still
missing. In this thesis a learning rule is derived that tries to keep the output of two
neurons that receive the same input at their synapses statistically independent by mini-
mizing the mutual information between the output spike trains. This work is based on a
recent approach that maximizes the information transmission of a spiking neuron (Toy-
oizumi et al., 2005a) where the authors find that maximizing the mutual information
between an ensemble of input spike trains and the output spike train of a neuron yields
a synaptic plasticity rule that exhibits the same features as the classical BCM rule. The
Bienenstock-Cooper-Munro (BCM) model, originally developed as a pure rate model in
the context of development of stimulus selectivity in the visual cortex (Bienenstock et al.,
1982), has been one of the most influential concepts emerging from the spirit of Hebb’s
principle. It predicts regimes of both LTP and LTD depending on the postsynaptic
activity, which are separated by a sliding threshold that is necessary for stability. By
constructing a bridge between the BCM model and the concept of optimality in terms
of information transmission by spike trains the classical BCM rule has been generalized
to the case of spiking neurons with refractoriness (Toyoizumi et al., 2005a).

In this work this approach is extended in a way that a second neuron that receives
the same input also maximizes its information transmission between input and output
spike trains, but at the same time tries to minimize the mutual information between
its output and the output of the other neuron. The resulting synaptic update rule is
similar to the generalized BCM rule proposed in (Toyoizumi et al., 2005a); an additional
term is included in the learning equation of neuron 2 that is sensitive to the momen-
tary statistical dependence and that depends on the recent postsynaptic history of both
neurons. However, this would require information about the firing behavior of neuron 1
to be non-locally available at the site of neuron 2, therefore also an attempt is made to
provide this information via different synaptic connections. The proposed learning rule
is tested in several computer simulation experiments.

This thesis is organized as follows. Chapter 2 gives a short overview of synaptic plas-
ticity. First, Hebb’s principle is introduced and some issues and drawbacks concerning
Hebbian learning in general are discussed. Then several synaptic learning rules are pre-
sented that implement Hebb’s idea in different ways, and finally it is explained how the
BCM rule, as a special form of Hebbian plasticity, achieves stability and competition
between synapses. Chapter 3 is then dedicated to information theory. First, it intro-
duces information theoretic quantities such as entropy and mutual information, by which
the information transmission of neurons can be quantified. Then the synaptic plasticity
rule of (Toyoizumi et al., 2005a) is presented as a way how information transmission of
a neuron can be maximized. Finally, it is shown how this learning rule relates to the
BCM model. In chapter 4 the main results of this thesis are presented; a learning rule
is derived that extends the one of the previous chapter in a way that a second neuron
receiving the same input keeps its output statistically independent to the output of the
other neuron. This is then verified in a number of computer simulation experiments, and
it is also indicated how this approach might be extended to the case of more than two
postsynaptic neurons. Chapter 5 deals with the question how this learning rule might

2



be made biologically more realistic by implementing the non-local term concerning the
statistical dependence between the outputs of both neurons via synaptic connections.
More precisely, a mechanism is proposed that modulates the gain of the second neuron
according to the activity of both neurons, while the weights evolve according to the basic
generalized BCM rule. Finally, chapter 6 concludes and gives further remarks.
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2. Synaptic Plasticity

In biological neural networks, each synapse is characterized by a single parameter (often
called the synaptic efficacy, or simply the “weight” of the synapse) that determines the
amplitude of the postsynaptic response to an incoming action potential. However, the
efficacy of synaptic connections between neurons in the brain is not fixed, but it varies
depending on different factors, such as the pre- and postsynaptic firing frequencies or
spike timings. The term synaptic plasticity refers to the variability of the strength of
a synapse, i.e., the ease with which an action potential in one cell excites (or inhibits)
a target cell. Persistent changes in the synaptic strength that last for a time of tens of
minutes or longer up to days, months and years are called long-term potentiation (LTP)
and long-term depression (LTD), depending on whether the weight has been increased or
decreased1. Originally it has been proposed by Ramón y Cajal in 1894 that “memories
might be formed by strengthening the connections between existing neurons to improve
the effectiveness of their communication” (Ramón y Cajal, 1911; Squire and Kandel,
1999). Today it is widely believed that activity-dependent synaptic plasticity is the
basic phenomenon underlying learning and memory, and it is also thought to play a
crucial role in the development of neural circuits.

During the last decades, a large number of theoretical concepts and mathematical
models have emerged that have helped to understand the functional consequences of
synaptic modifications (Dayan and Abbott, 2001; Gerstner and Kistler, 2002; Cooper
et al., 2004). In the formal theory of neural networks the weight wij of a synapse
connecting neuron j to neuron i is considered as a parameter that can be adjusted
in order to optimize the performance of a network for a given task. The process of
parameter adaptation is called learning and the procedure for adjusting the weights is
usually referred to as a learning rule. Experimentally inspired synaptic plasticity rules
have been applied to a wide variety of tasks including pattern recognition and function
approximation. One simple set of learning rules consider synaptic changes that are driven
by correlated activity between pre- and postsynaptic neurons. This class of learning rules
can be motivated by Hebb’s principle (Hebb, 1949) and is therefore often called Hebbian
learning (Fregnac, 2002; Erdi and Somogyvari, 2002; Brown and Chattarji, 1998). Apart
from the work of Hebb, one of the most influential concepts has been the Bienenstock-
Cooper-Munro (BCM) model originally developed to account for cortical organization
and receptive field properties during development (Bienenstock et al., 1982).

In this chapter Hebb’s original conjecture and the problems usually associated with

1More detailed experimental data suggest that synapses exhibit dynamics on a much shorter timescale
than LTP and LTD, which also might be important for information processing in the brain. This gives
rise to more complex dynamic synapse models (Markram et al., 1998; Maass and Markram, 2002) that
depend on more parameters than just a single weight.

5



2. Synaptic Plasticity

Hebbian learning rules such as competition and stability are introduced. Some synaptic
plasticity rules emerging from Hebb’s principle are then briefly discussed in section 2.2
and how they (or why they do not) overcome these difficulties. Section 2.3 is finally ded-
icated to the BCM rule, which augments standard Hebbian plasticity by the mechanism
of a sliding threshold on the postsynaptic activity, which has some interesting properties
concerning the stability of synaptic weights.

2.1. Hebb’s Postulate

In 1949, Donald Hebb conjectured that a synapse is strengthened if both the pre- and
postsynaptic neuron are simultaneously active. His postulate describes how the connec-
tion from presynaptic neuron A to a postsynaptic neuron B should be modified:

“When an axon of cell A is near enough to excite cell B or repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.” (Hebb, 1949)

Hebb’s original suggestion only concerned increases in synaptic strength, but it has
been generalized to include decreases in strength as well, arising from repeated failure
of neuron A to be involved in the activation of neuron B. That is, if one neuron is
stimulating some other neuron and at the same time that receiving neuron is also firing
the strength of the connection between the two neurons will be increased, and vice versa
– if one neuron is active and the other one is not the connection strength is decreased.
Today this famous statement is often rephrased in the sense that modifications in the
synaptic strength are driven by correlations in the firing activity of pre- and postsynaptic
neurons.

2.1.1. Locality, Stability, and Competition

Two aspects in Hebb’s postulate are particularly important, namely locality and coop-
erativity. Locality means that the change in the synaptic weight can only depend on
variables that are locally available at the synapse. These include pre- and postsynaptic
firing rates and spike timings and also the current value of the synaptic efficacy, but
not for instance the activity of other neurons or the weights of different synapses. The
term cooperativity refers to the fact that both pre- and postsynaptic neuron have to be
simultaneously active for a synaptic weight change to occur.

One problem with Hebb’s rule is that the activity that increases the synaptic strength
is reinforced by Hebbian plasticity, which leads to an even higher activity and further
modification. Without appropriate adjustments or imposing certain constraints, this
positive feedback process would produce an uncontrolled growth of weights. The eas-
iest way to control synaptic strengthening is to impose an upper limit on the value of
the synaptic efficacies, which is supported by experiments. It also makes sense to pre-
vent weights from changing sign since excitatory synapses cannot change into inhibitory
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2.1. Hebb’s Postulate

synapse or vice versa. Thus, each weight wij is allowed to change only between 0 and a
maximum value wmax, which is a constant.

Another problem associated with Hebbian modification is that synapses are mod-
ified independently. Competition between synapses is essential for any form of self-
organization or pattern formation. For example, if all of the synaptic weights of a neuron
are driven to their maximum value wmax the neuron completely loses its selectivity to
different input patterns. Therefore, usually a regulation or competition mechanism is
required so that some synapses are forced to weaken when others become strong. Thus,
the basic Hebb rule often has to be augmented with terms that ensure stability of weights
and competition between synapses (Abbott and Nelson, 2000; Chechik et al., 2002).

2.1.2. Synaptic Normalization

Competition between synapses can be introduced by imposing a global constraint or
some regulation mechanism on the weights of all synapses of a neuron, e.g., by normal-
izing the sum of the squares of all weights (i.e, the norm of the weight vector) to a fixed
value. Usually, it is distinguished between additive (subtractive) normalization, where
the weight change is independent of the current value of the synaptic efficacy, and multi-
plicative normalization, where the amount of modification is proportional to the weight
value. However, this often requires global information about the values of all efficacies
to be available at each synapse and therefore violates the locality of synaptic plasticity,
which is usually assumed. On the other hand, normalization can also be achieved with
purely local learning rules, e.g., the multiplicative Oja rule (Oja, 1982).

2.1.3. Firing Rate vs. Spike Timing

In the original formulation of Hebbian learning the activity of each neuron is described
by a single continuous variable, rather than a specific spike train. This paradigm is also
used in the theory of artificial neural networks, where each unit maps real-valued inputs
to a real-valued output. Normally, this variable represents the firing rate of the neuron;
in this case it is restricted to nonnegative values. In order to allow negative values as
well one could interpret the activity variable, for instance, as the difference between a
firing rate and a fixed background rate. In these rate-based models the precise timings
of individual spikes are considered unimportant.

However, recent experiments have shown that the amplitude and even the direction of
weight changes critically depend on the relative timing of pre- and postsynaptic spikes.
The temporal requirements for two neurons to be active together can then be formu-
lated in a way that the change in the synaptic efficacy depends on the time differences
between the spike times of the pre- and postsynaptic neuron (“spike-time dependent
synaptic plasticity”, or STDP, see section 2.2.3) on the time scale of milliseconds. More
precisely, the synapse is strengthened if the presynaptic spike occurs shortly before the
postsynaptic neuron fires, but it is weakened if the sequence of spikes is reversed. This
observation is indeed in agreement with Hebb’s postulate because presynaptic neurons
that are active slightly before the postsynaptic neuron are those which “take part in

7



2. Synaptic Plasticity

firing it” whereas those that fire later obviously did not contribute to the postsynaptic
action potential (Gerstner and Kistler, 2002).

There has been an ongoing debate whether cortical neurons transmit information
primarily in their average firing rates or the precise timing of their spikes. Recent results
suggest that cortical plasticity jointly depend on the rate and relative timing of pre- and
postsynaptic firing (Sjøstrøm et al., 2001; Nelson et al., 2002).

2.2. Hebbian Plasticity Rules

Rules for synaptic plasticity usually take the form of differential equations describing the
temporal change of synaptic weights as a function of the pre- and postsynaptic activity
and possibly other factors. Local forms of Hebbian rate-based models can therefore be
written as (Gerstner and Kistler, 2002)

dwij

dt
= F (wij , vi, vj), (2.1)

where dwij/dt is the rate of change of the synaptic weight and F is some function of
the pre- and postsynaptic activities vi and vj and of the current weight value wij . The
dependence on the value of the synaptic efficacy is a natural consequence of the fact that
wij is bounded, otherwise it could grow without limit.

2.2.1. Basic Hebb Rule

The simplest plasticity rule that follows from the spirit of Hebb’s conjecture modifies
the weight wij of a synapse connecting neuron j to neuron i by an amount proportional
to the product of pre- and postsynaptic activities, i.e.,

dwij

dt
= αviuj , (2.2)

where α is a positive constant called the learning rate, which controls the speed of
weight adaption2. It can be shown (Dayan and Abbott, 2001) that this basic Hebb rule
is unstable, no matter if the activity variables are allowed to take on negative values or
not, because the change of the length of the weight vector is always positive. In order
to avoid unbounded growth one must impose an upper saturation constraint, but in a
model where synaptic weights can only be strengthened all efficacies will finally saturate
at their maximum level. The ability to induce LTD is therefore a necessary requirement
for any useful learning rule.

One could, for example, introduce weight decay by adding a corresponding term to
equation (2.2),

dwij

dt
= αviuj − γwij , (2.3)

2Learning rules where the weight change is proportional to the negative product of pre- and postsynaptic
activities, i.e.,

dwij

dt
= −αviuj , are usually called anti-Hebbian.
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2.2. Hebbian Plasticity Rules

with some paramteter γ > 0 such that the synaptic strength wij decays back to 0 in
the absence of any activity. However, even with a weight decay term, the basic Hebb
rule fails to induce competition between different synapses since all synapses are still
modified independently.

2.2.2. Covariance Rules

Experiments suggest that synapses can depress also if presynaptic activity is accompa-
nied by a low level of postsynaptic activity (and vice versa). This gives rise to a family
of covariance or “gating” rules that compare the pre- or postsynaptic activity with a
certain threshold. For example, one can define a learning rule

dwij

dt
= α(vi − θv)uj , (2.4)

where θv is a threshold that determines the level of postsynaptic activity above which
LTD switches to LTP. We say that the weight changes are “gated” by the postsynaptic
neuron. Alternatively, a similar threshold θu can be imposed on the presynaptic activity,
i.e.,

dwij

dt
= αvi(uj − θu). (2.5)

The learning rule in equation (2.4) is also often called postsynaptic gating, that of
equation (2.5) is usually named presynaptic gating. A convenient choice for the thresholds
is the average value of the corresponding activity value. It is also possible to combine
these two approaches by subtracting thresholds from both the pre- and postsynaptic
activity, this then leads to the so-called covariance rule:

dwij

dt
= α(vi − 〈vi〉)(uj − 〈uj〉), (2.6)

where the angular brackets 〈〉 denote the average over the training period. Note that
this rule introduces the interesting (and maybe undesirable) effect that LTP is induced
if both pre- and postsynaptic activities are low.

Although each of these covariance rules allow synaptic weights to decrease by intro-
ducing LTD to the learning equations, they are still unstable because of the same positive
feedback argument given in the case of the basic Hebb rule. For example, even if the
postsynaptic activity is gated by a constant threshold the weights would keep growing
if the activity is above this threshold, thereby increasing the postsynaptic activity even
further, and so on. Also, covariance rules are still non-competitive, unless the thresholds
are allowed to slide as it is the case for the BCM-rule which is explained in detail in
section 2.3.

2.2.3. Spike-Timing Dependent Plasticity

So far only pure rate models have been considered where the temporal change of the
synaptic efficacy depends on scalar activity variables, however, experiments show that
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2. Synaptic Plasticity

the precise timing of spikes is also important. In fact, spike-timing dependent plasticity
(STDP) has emerged in the recent years as the experimentally most studied form of
synaptic plasticity (Abbott and Nelson, 2000; Song et al., 2000; Bi and Poo, 2001;
Froemke and Dan, 2002; Legenstein et al., 2005). It is a formulaton of Hebb’s principle
for spike-based models where the relative timing of spikes has a decisive influence on the
magnitude and direction of the weight change, i.e., a synaptic weight is increased if the
presynaptic spike occurs shortly before the postsynaptic neuron fires, but it is weakened
if a presynaptic action potential is preceded by a postsynaptic event3.

The weight change is given by the equation

dwij(t)
dt

=
∫ ∞

0
W (s)Sj(t)Si(t− s)ds, (2.7)

where Sj(t) =
∑

f δ(t − t
(f)
j ) and Si(t) =

∑
f δ(t − t

(f)
i ) are the pre- and postsynaptic

spike trains4, respectively, and W (s) is the so-called learning window that specifies the
amount of change in synaptic strength in dependence of the time-difference s between
pre- and postsynaptic action potentials. A learning window is usually given by

W (s) =

W+ exp
(

s
τ+

)
if s < 0,

−W− exp
(
− s

τ−

)
if s > 0,

(2.8)

with postive parameters W+, W− and time constants τ+, τ− specifying the amount of
LTP and LTD. A typical learning window is shown in figure 2.1, which illustrates that
the direction of weight changes depends on the temporal order of pre- and postsynaptic
spikes.

With this version of STDP the weights will still saturate at the minimum or maximum
efficacy allowed, however, temporal competition between synapses is introduced (Song
et al., 2000). This is because different synapses control the timing of postsynaptic spikes.
Synapses that are able to evoke postsynaptic action potentials get strengthened, whereas
those synapses that are less effective in controlling postsynaptic spiking are weakened.

2.3. The Bienenstock-Cooper-Munro Rule

The covariance based rules in section 2.2.2 have the ability to produce LTD, but are still
non-competitive and unstable. An alternative plasticity rule was suggested by Bienen-
stock, Cooper, and Munro originally in the context of development of stimulus selectivity
in the visual cortex (Bienenstock et al., 1982), where the change in the synaptic efficacy
not only depends on the instantaneous pre- and postsynaptic instantaneous activities,
but also on a slowly varying time-averaged value of the postsynaptic activity. In other
words, in contrast to the postsynaptic gating rule in equation (2.4) where LTD and LTP
3In the case of anti-Hebbian plasticity, the temporal order of spikes is reversed, i.e., the synaptic weight
is strengthened if the presynaptic spike occurs shortly after the postsynaptic action potential.

4Here, spike trains are represented as sums of Dirac-δ functions located at the pre- or postsynaptic spike
times t

(f)
j or t

(f)
i , where the sum runs over all pre- or postsynaptic spikes f .
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2.3. The Bienenstock-Cooper-Munro Rule

Figure 2.1.: Typical two-phase learning window of STDP (2.8) as a function of the time
difference s = t

(f)
j − t

(f)
i between pre- and postsynaptic spike. Here, W+ =

W− = 1, τ+ = 10ms and τ− = 20ms (Gerstner and Kistler, 2002).

are separated by a fixed threshold on the postsynaptic activity, the threshold is allowed
to vary in a way that depends nonlinearly on a running average of the postsynaptic
rate. This rule has been called the BCM rule (see also e.g., (Intrator and Cooper, 1998;
Cooper et al., 2004)) according to the initial letters of its inventors. It takes the form

dwij(t)
dt

= αφ(vi, v̄i)uj − γwij , (2.9)

where v̄i is a running average of the activity of the postsynaptic neuron, vi, and γwij is
an (optional) weight decay term. φ is a nonlinear function of vi and v̄i that is negative
if the postsynaptic rate is below a certain threshold (thereby introducing LTD) and
positive above this threshold (accounting for LTP), i.e.,

φ(v, v̄)

{
> 0 if v > θ(v̄),
< 0 if v < θ(v̄).

(2.10)

The threshold θ itself, where the function φ changes sign, is a non-linear function of the
average postsynaptic activity v̄, usually the following is chosen:

θ(v̄) =
(

v̄

c0

)p

v̄, (2.11)

with some positive constants c0 and p.
An example for the function φ(vi, v̄i) is shown in figure 2.2 that illustrates the regimes

of LTD and LTP separated by a threshold. Sometimes a second threshold is introduced
below which no synaptic modification occurs at all. Figure 2.3 shows the curve for two
different values of the threshold, where the bottom plot corresponds to lower postsynaptic
activity. It can be seen that in this case the amount of LTP is higher, which is likely

11



2. Synaptic Plasticity

Figure 2.2.: Weight change of the BCM rule as a function of the postsynaptic rate.
Synaptic plasticity is characterized by a sliding threshold vθ that depends
on the running average of the postsynaptic activity separating regimes of
LTD and LTP: below vθ synapses are depressed, above vθ potentiation is
observed. Sometimes a second threshold v0 is introduced below which no
synaptic modification occurs (Gerstner and Kistler, 2002).

to result in an increasing postsynaptic firing rate. On the other hand, in the case of
higher recent postsynaptic activity (top plot in figure 2.3) the amount of LTD dominates,
thereby decreasing the output rate of the postsynaptic neuron. In this way the learning
rule is stabilized. To see this, consider some synapses whose efficacies are growing.
This results in an increase of postsynaptic activity, which itself results in an increase
of the running average of the postsynaptic rate. Due to the properties of the function
φ(vi, v̄i) LTD is then introduced at a higher level of postsynaptic activity, so the synaptic
strengths stop growing and are stabilized or decrease again. Thus, with the BCM rule
the synaptic weights cannot grow without limit as it is the case for the other standard
Hebbian learning rules presented in this chapter.

Summarizing, the BCM rule exhibits two basic properties:

• regimes of both LTP and LTD, depending on the activity of the postsynaptic
neuron, and

• a sliding threshold that separates these regimes and that depends on a running
average of the postsynaptic activity.

It is necessary for stability that the threshold separating LTD and LTP is an adaptive
variable; with a fixed threshold the rule would still be unstable (like the covariance or
gating rules in section 2.2.2). With a sliding threshold the BCM rule implements compe-
tition between synapses because strengthening some synapses increases the postsynaptic
firing rate, which raises the threshold and makes it more difficult for other synapses to
increase or even maintain their current efficacies.

Figure 2.4 compares the BCM rule with some other Hebbian learning rules presented in
this chapter by schematically depicting how synaptic weights are modified as a function
of postsynaptic activity. The basic Hebb rule (2.2) can only increase weights and lacks
an ability for synaptic depression. The covariance rule (2.6) introduces LTD by using a

12



2.3. The Bienenstock-Cooper-Munro Rule

Figure 2.3.: The BCM synaptic modification function φ plotted as a function of the
output activity of the postsynaptic cell (denoted here as c) for two different
values of the threshold θ. The bottom plot corresponds to lower postsynaptic
activity (Intrator and Cooper, 1998; Cooper et al., 2004).

fixed threshold for the pre- and/or postsynaptic activity, but still remains unstable and
non-competitive. Competition and stability is only introduced with the BCM rule where
the regimes of LTP and LTD are separated by a sliding threshold.
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2. Synaptic Plasticity

Figure 2.4.: Schematic drawing of the change in synaptic strength as a function of post-
synaptic activity for different Hebbian learning rules: basic Hebb rule, co-
variance rule and BCM rule. Both the covariance rule and the BCM rule
postulate a threshold above which there is LTP and below which there is
LTD. Taken from (Brown and Chattarji, 1998).
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3. Information Theory

In neural coding (Rieke et al., 1997; Dayan and Abbott, 2001) we usually want to
know how sensory stimuli are encoded in the response of neurons, i.e., we are interested
in the question “What does the response tell us about the stimulus?” In trying to
quantify the information that sensory neurons convey about the outside world we instead
ask “How much does the response tell us about the stimulus?” The techniques for
answering this question are provided by Shannon’s information theory (Shannon and
Weaver, 1949; Cover and Thomas, 1991). Furthermore, it allows us to introduce the
concept of optimality in terms of maximal information transmission between the input
and output of a neuron.

Information theory was invented by Claude E. Shannon (Shannon and Weaver, 1949)
as a general framework for quantifying the ability of a coding scheme or a communications
channel to transmit information. In a communications system as proposed by Shannon
the transmitter chooses a particular message X out of a set of possible messages. The
message is then encoded into a signal and sent over a communications channel before
the signal is converted back into a message Y by the receiver. We are interested in
cases where we observe some “output” Y and are trying to gain information about the
“input” X. Since the channel is usually assumed to be stochastic or noisy it has limited
capabilities to convey information, thus the amount of “information” that Y tells us
about X is also limited. These quantities are described by the measures of entropy and
mutual information, which depend on the probabilities with which each of these messages
and combinations of them occur.

This chapter first gives a short overview of the information theoretic measures of en-
tropy and mutual information and how they can be used to quantify the information
transmission capability of a neuron. Section 3.2 summarizes a recent approach to max-
imize the mutual information between the input and output of a spiking neuron model
(Toyoizumi et al., 2005a) and explains how the resulting synaptic learning rule relates
to the BCM model presented in chapter 2 and how it extends the BCM rule to the case
of spiking neurons with refractoriness.

3.1. Quantifying Information Transmission

In neuroscience applications we are interested in the capability of neurons to transmit
information, that is, we ask how much the output of a neuron tells us about the input.
The neuron itself is considered as a noisy channel and the messages transmitted and
received are neural stimuli and responses, i.e., continuous functions of time or spike
trains.
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3. Information Theory

In this section, the information theoretic quantities are introduced in a more abstract
way using discrete random variables1. Bold letters are used to distinguish random vari-
ables (X) from their specific realizations (X). Both the probability that the random
variable X takes value X and the probability distribution of X are denoted as P (X).

3.1.1. Entropy

The entropy H(X) of a random variable X is a quantity that describes how much in-
formation is available in the distribution P (X). For example, if X can take on only one
single value then no information (in the colloquial sense) can be transmitted because the
message is always the same. Thus, it is necessary to quantify the variability allowed by
the distribution P (X). Furthermore, the entropy of the joint distribution of independent
random variables should be equal to the sum of entropies of the individual distributions,
i.e.

H(X1,X2) = H(X1) + H(X2), if P (X1, X2) = P (X1)P (X2) for all X1, X2, (3.1)

according to our intuition that the available information coming from independent distri-
butions is simply added. Shannon argues (Shannon and Weaver, 1949) that the negative
logarithm is the only function satisfying these two conditions. By averaging over the
distribution P (X) he defines the entropy of X as

H(X) = −
∑
X

P (X) log2 P (X), (3.2)

where the sum runs over all possible values X of the random variable X. The term
entropy comes from physics where an analogous quantity is defined in thermodynamics
and statistical mechanics. The base 2 logarithm used in (3.2) indicates that the entropy
is measured in “bits”.

Intuitively, the entropy measures the surprise or unpredictability associated with a
random variable. For example, if the random variable takes on a certain value with
probability 1, then the entropy is 0. On the other hand, the entropy is maximal if all
possible values occur with equal probability, in this case the distribution contains more
randomness and is therefore less predictable. If X takes on K possible values each with
probability 1/K, then the entropy is equal to H(X) = log2 K.

3.1.2. Mutual Information

In order to characterize the amount of information that an output Y carries about the
input X, we have to compare the total output distribution P (Y ) with the conditional

1The entropy is also defined for continuous variables using the probability density function, however,
its definition requires some care. Since we could transmit an infinite amount of information using the
endless sequence of decimal digits of a single continuous variable, it is necessary to include some limit
on the measurement accuracy. Otherwise, each continuous variable would have infinite entropy. On the
other hand, entropy differences (such as the mutual information) are well defined (Rieke et al., 1997;
Dayan and Abbott, 2001). In this thesis the focus is on discrete variables only.
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3.1. Quantifying Information Transmission

distribution given the input P (Y |X), averaged over all X. That is, we subtract the
average conditional response entropy H(Y|X) from the total response entropy H(Y);
this difference is then called the mutual information between the input X and the output
Y:

I(X,Y) = H(Y)−H(Y|X)

= −
∑
Y

P (Y ) log2 P (Y ) +
∑
X,Y

P (X)P (Y |X) log2 P (Y |X)

=
∑
X,Y

P (X, Y ) log2

P (Y |X)
P (Y )

,

(3.3)

where P (X, Y ) is the joint probability that input X and output Y occurs.
The entropy of the probability distribution P (Y |X) is lower (or equal) than the en-

tropy of the distribution P (Y ) because the knowledge of the input X cannot increase
the unpredictability of the output Y . Usually, the same input always produces similar
responses, therefore the distribution P (Y |X) is often sharply peaked and thus has lower
entropy than P (Y ). If in the ideal case, each input X has a distinct output Y , i.e.,
if the output is a deterministic function of the input, the conditional entropy is 0 and
the mutual information equals the entropy of the output (or input) distribution. Thus,
the entropies of the input and output distributions pose upper limits on the mutual
information that can be transmitted. On the other hand, if the output is completely
unaffected by the input, i.e., if P (Y |X) = P (Y ) for all X and Y , it follows immediately
from (3.3) that I(X,Y) = 0. This means that the mutual information between two
independent random variables is zero, which can be seen more easily if the last line of
(3.3) is rewritten as

I(X,Y) =
∑
X,Y

P (X, Y ) log2

P (X, Y )
P (X)P (Y )

, (3.4)

which compares the joint distribution P (X, Y ) with the independent distribution P (X) ·
P (Y ). Thus another way of thinking about the mutual information is how much the
entropy of the whole system H(X,Y) is less than the sum of the entropies H(X) and
H(Y) (which would be the entropy of the system if X and Y were independent), i.e.

I(X,Y) = H(X) + H(Y)−H(X,Y). (3.5)

3.1.3. Information Rate

When quantifying the entropy of or the mutual information between signals (e.g., spike
trains) we find that these values are usually proportional to the length of the signal, i.e.,
the time over which it is observed. Obviously, longer spike trains have a higher entropy,
and one can encode an arbitrary amount of information with a sufficiently long spike
train. To measure information transmission independent of the signal duration it is thus
natural to define the entropy rate,

H ′(XT ) =
H(XT )

T
, (3.6)

17



3. Information Theory

as the entropy divided by the time T . Here, XT indicates that this random variable
describes some signal of length T , e.g., XT might characterize all spike trains of duration
T . Analogously, the information rate can be defined as

I ′(XT ,YT ) =
I(XT ,YT )

T
. (3.7)

For T → 0 (3.7) defines the momentary information rate at a given point in time, for
T → ∞ it refers to the “true” information rate provided by the signals described by X
and Y.

3.1.4. Kullback-Leibler Divergence

Another measure commonly used in statistics which is also related to information the-
ory is the Kullback-Leibler (KL) divergence. It is a similarity measure for probability
distributions and defines a “distance” between two distributions P (X) and Q(X):

D(P (X)||Q(X)) =
∑
X

P (X) log2

P (X)
Q(X)

. (3.8)

Equation (3.8) has the property of a distance measure that D(P (X)||Q(X)) ≥ 0 with
equality if and only if P (X) = Q(X) for all X. However, unlike a distance measure it is
not symmetric, i.e. in general D(P (X)||Q(X)) 6= D(Q(X)||P (X))2.

Comparing (3.8) with (3.4) it can be seen that the mutual information between X
and Y is actually a Kullback-Leibler divergence between the distributions P (X, Y ) and
Q(X, Y ) = P (X)P (Y ). In this way, the mutual information (3.4) measures the “dis-
tance” between the joint distribution and the independent distributions, or how far the
variables X and Y are away from being independent.

3.2. Maximizing Mutual Information

Entropy and mutual information are useful quantities for characterizing the efficiency of
neural coding and selectivity. It is then natural to ask under what conditions a neuron
transmits as much information as possible, i.e., we introduce the concept of optimality
in terms of information transmission. However, each optimization has to be performed
under some constraints. For instance, it would be possible to encode an infinite amount
of information in the output of a single neuron if the postsynaptic firing rate could take
on arbitrarily high values, which is not realistic from a biological point of view. Thus,
it is essential to include some constraint that limits the firing rate to a realistic range,
e.g., by holding the average firing rate fixed.

Information theoretic concepts have so far been used in the context of neuroscience
mainly because they allow to compare the performance of neural systems with theoretical
limits, but synaptic update rules for optimal information transmission have yet been
2Note that the mutual information is symmetric in its arguments (i.e., I(X,Y) = I(Y,X)), but the KL
divergence is not.
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3.2. Maximizing Mutual Information

analyzed mainly for pure rate models (Linsker, 1989; Nadal and Parga, 1997; Bell and
Sejnowski, 1995). Recent work has also been done on interpreting spike-timing dependent
plasticity (Bell and Parra, 2005; Bohte and Mozer, 2005; Chechik, 2003; Pfister et al.,
2005; Toyoizumi et al., 2005c) and intrinsic plasticity (Triesch, 2005) in this context.

In this section, the results of a different approach (Toyoizumi et al., 2005a) are pre-
sented. In this paper the authors derive a synaptic update rule for a spiking-neuron
model with refractoriness that maximizes the mutual information between an ensemble
of presynaptic spike trains and the output of the postsynaptic neuron. Instead of look-
ing at a specific implementation of synaptic plasticity and analyzing it in the context of
information transmission they ask what the optimal synaptic update rule would be that
guarantees to transmit as much information as possible. Mutual information is maxi-
mized under the constraint that the postsynaptic firing rate stays as close as possible
to a constant target firing rate. This idea is consistent with the widespread findings
of homeostatic processes that try to push the neuron back into its preferred target fir-
ing state (Turrigiano and Nelson, 2004). The resulting learning rule exhibits the basic
properties of the BCM rule (section 2.3), i.e., regimes of LTP and LTD separated by a
sliding threshold, and is thus a natural extension of the classical BCM rule to the case
of spiking neurons.

3.2.1. Stochastically Spiking Neuron Model

The learning rule presented in (Toyoizumi et al., 2005a) extends the BCM model, which
was originally designed for a pure rate model of neuronal activity, to the case of spiking
neurons with refractoriness. Several spiking neuron models like the Integrate-and-fire
neurons account for a broad range of neuronal firing behavior (Gerstner and Kistler,
2002). Most of these models are deterministic, e.g., an action potential is fired whenever
the membrane potential reaches a certain threshold from below. However, it turns out
that a stochastically spiking neuron model is better suited for an information theoretic
analysis, where it is necessary to define a probabilistic relationship between input and
output spike trains. In the model presented in (Toyoizumi et al., 2005a) a spike is gen-
erated at each time with a probability that depends on the current membrane potential
and the time since the last output spike. The use of such a stochastic model allows an
easier formulation of the probabilistic relationship between spike trains as it is needed
for quantifying the mutual information and makes this value differentiable with respect
to the neuron’s weights, thereby allowing us to formulate a gradient learning rule.

It is convenient to formulate the model in discrete time with step size ∆t, where tk

denotes the k-th time step, i.e., tk = k∆t. The postsynaptic neuron receives input
through N synapses. A presynaptic spike train at synapse j (j = 1, . . . , N) is described
as a sequence xk

j (k = 1, . . . ,K) of zeros (no spike) and ones (spike). The upper index k

denotes time bin k. Thus, xk
j = 1 indicates that a presynaptic spike arrived at synapse j

at a time tj with tk−1 ≤ tj ≤ tk. Each presynaptic spike evokes a PSP with exponential
time course ε(t− t

(f)
j ) with time constant τm = 10ms. The membrane potential at time
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3. Information Theory

step tk is calculated as the total PSP

u(tk) = ur +
N∑

j=1

k∑
n=1

wjε(tk − tn)xn
j , (3.9)

where ur = −70mV is the resting potential and wj is the weight of synapse j.
The probability ρk of firing in time step k is a function of the membrane potential u

and the refractory state R of the neuron,

ρk = 1− exp[−g(u(tk))R(tk)∆t] ≈ g(u(tk))R(tk)∆t. (3.10)

g is a smooth increasing function of the membrane potential; thus, the larger the mem-
brane potential, the higher the probability of emitting a spike. For ∆t → 0, we may
think of g(u)R(t) as the instantaneous firing rate. In (Toyoizumi et al., 2005a), they
choose

g(u) = r0 log
{

1 + exp
[
u− u0

∆u

]}
, (3.11)

which implements a stochastic threshold around u0. Below u0 the firing probability goes
to 0, above u0 it increases linearly with the membrane potential (with slope r0/∆u; see
figure 3.1(a)). R(t) is the refractory state of the neuron (R(t) ∈ [0, 1]) which depends
only on the time of the last postsynaptic spike t̂,

R(t) =
(t− t̂− τabs)2

τ2
refr + (t− t̂− τabs)2

Θ(t− t̂− τabs), (3.12)

where τabs is the absolute refractory time, i.e., no spike can occur before τabs after the last
postsynaptic event. τrefr models the relative refractory time, during which it is hard,
but not impossible, to emit a spike; this parameter specifies how fast R(t) in (3.12) goes
back to 1 (see figure 3.1(b)). The Heaviside function Θ(x) takes a value of 1 for positive
arguments and 0 otherwise. With a function R(t) as in (3.12) the neuron model has the
properties of a renewal process, where the state of the system (and hence the probability
of generating the next event) depends only on the “age” of the system, i.e., the time
t− t̂ since the last event (Gerstner and Kistler, 2002). However, the model can easily be
generalized to include the dependence on earlier spikes as well.

The output of the postsynaptic neuron at time step k is denoted as a variable yk
i = 1

if a postsynaptic spike occurred and 0 otherwise. A specific spike train up to time step k
is denoted with an uppercase letter, Y k = (y1

i , y
2
i , . . . , y

k
i ). Since spikes are generated by

a random process, it is important to distinguish the random variable Yk from a specific
realization Y k. The same holds for the input, Xk is the random variable characterizing
the inputs at all synapses 1 ≤ j ≤ N up to time step k, Xk is a specific realization of all
input spike trains up to time step k and Xk

j = (x1
j , x

2
j , . . . , x

k
j ) is a specific spike train at

synapse j.
For given input spike trains Xk and postsynaptic spike history Y k−1 we can write the

probability of emitting a postsynaptic spike at time step k using the firing probability
ρk (3.10) as

P (yk|Y k−1, Xk) = (ρk)yk
(1− ρk)(1−yk), (3.13)
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(a) (b)

Figure 3.1.: (a) Gain function g (3.11) as a function of the membrane potential u. u0 =
−65mV, ∆u = 2mV, r0 = 11Hz. (b) Refractory state R (3.12) as a function
of the time since the last postsynaptic spike t − t̂ (t̂ = 0). τabs = 3ms,
τrefr = 10ms.

which is a binary distribution because it evaluates to either ρk or 1− ρk, depending on
yk ∈ {0, 1}. The marginal probability, given only the postsynaptic history, is found as

P (yk|Y k−1) = (ρ̄k)yk
(1− ρ̄k)(1−yk), (3.14)

where ρ̄k =
〈
ρk
〉
Xk|Y k−1 =

∑
Xk ρkP (Xk|Y k−1) is the average firing probability in time

step k.
Since the spiking probabilities for each time step are independent given the postsy-

naptic history, we obtain the probability of an entire output spike train Y K given the
input XK by taking the product over all binwise probabilities,

P (Y K |XK) =
K∏

k=1

P (yk|Y k−1, Xk) =
K∏

k=1

(ρk)yk
(1− ρk)(1−yk), (3.15)

and analogously, for the probability of an output spike train,

P (Y K) =
K∏

k=1

P (yk|Y k−1) =
K∏

k=1

(ρ̄k)yk
(1− ρ̄k)(1−yk). (3.16)

With equations (3.13) to (3.16) a probabilistic relationship between an output spike
train and an ensemble of input spike trains has been established, which is needed for
quantifying the information transmission of the neuron.
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3.2.2. Maximizing Information Transmission

The information transmitted between an ensemble of input spike trains XK and an
output spike train YK of total duration K∆t can be quantified by the mutual information
(3.3)

I(YK ,XK) =
∑

Y K ,XK

P (Y K , XK) log
P (Y K |XK)

P (Y K)
. (3.17)

It is easier to transmit a large amout of information if the neuron keeps firing at a high
rate, in this way more information about the input spike trains can be encoded in the
output spike train. However, this is costly from the point of view of energy consumption
and also difficult to implement by the biophysical machinery. Therefore, information
transmission is optimized under the condition that the firing statistics P (Y K) stays as
close as possible to a target distribution P̃ (Y K), which is chosen to be that of a constant
instantaneous rate g̃ (30Hz) modulated by the refractory variable R(t). This “distance”
can be expressed by the Kullback-Leibler divergence (3.8), and the quantity to maximize
is thus

L = I(YK ,XK)− γD(P (Y K)||P̃ (Y K)), (3.18)

with some positive constant γ that controls the influence of how far away the current
firing behavior is from the target firing rate.

Assuming that the weights wj can change between some bounds 0 ≤ wj ≤ wmax a
gradient ascent rule is derived on L (3.18). Using equations (3.13) to (3.16), equation
(3.18) can be rewritten as L =

∑K
k=1 ∆Lk, with

∆Lk =
〈

log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
− γ log

P (yk|Y k−1)
P̃ (yk|Y k−1)

〉
Xk,Yk

, (3.19)

where 〈·〉Xk,Yk denotes the average over the joint distribution P (Xk, Y k), i.e., the L
term in (3.18) is decomposed into separate contributions for each time bin. Applying
gradient ascent to the weight wj , it is changed in each step by

∆wk
j = α

∂∆Lk

∂wj
, (3.20)

with some learning rate α3. Evaluation of the gradient (see (Toyoizumi et al., 2005a;
Toyoizumi et al., 2005b) for details) yields

∆wk
j = α

〈
Ck

j (F k − γGk)
〉

Xk,Yk
, (3.21)

3Note that in equations (3.17) and (3.19) the base 2 of the logarithm, which is usually used in information
theory, has for simplicity been omitted. All logarithms are equal up to a constant factor which can be
accounted for in the learning rate α.
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with terms

Ck
j =

k∑
l=k−ka

l∑
n=1

ε(tl − tn)xn
j

∂ρl

∂u

[
yl

ρl
− 1− yl

1− ρl

]
, (3.22)

F k = log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
= yk log

ρk

ρ̄k
+ (1− yk) log

1− ρk

1− ρ̄k
, (3.23)

Gk = log
P (yk|Y k−1)
P̃ (yk|Y k−1)

= yk log
ρ̄k

ρ̃k
+ (1− yk) log

1− ρ̄k

1− ρ̃k
, (3.24)

where Ck
j is a coincidence measure between postsynaptic spikes and PSPs generated by

presynaptic spikes at synapse j. The time span ka of the coincidence window is given by
the width of the autocorrelation of the postsynaptic spike train (Toyoizumi et al., 2005b).
The term F k compares the instantaneous firing probability ρk at time step k with the
average probability ρ̄k, and analogously, Gk compares the average firing probability ρ̄k

with the target value ρ̃k = g̃R(tk)∆t.
Under the assumption of a small learning rate α the expectations in (3.21) can be

approximated by averaging over a single long trial, and taking the limit ∆t → 0 one can
define an online rule

dwj(t)
dt

= αCj(t)Bpost(t− δ), (3.25)

with a postsynaptic factor

Bpost(t) = δ(t− t̂− δ) log
[
g(u(t))

ḡ(t)

(
g̃

ḡ(t)

)γ]
−R(t)[g(u(t))− (1 + γ)ḡ(t) + γg̃],

(3.26)

where t̂ is the firing time of the last postsynaptic spike and δ inside the Dirac-δ function
and in (3.25) is a small delay. The rate ḡ(t) = 〈g(u(t))〉X|Y denotes an expectation over
the input distribution given the postsynaptic firing history and can be estimated by a
running average of g(t) with a large exponential time window (with a time constant
of 10s). The term Bpost(t) can be decomposed into two terms: the first one compares
the instantaneous firing intensity g(u) with its running average ḡ(t), thereby measuring
the momentary significance of the postsynaptic state; the second term compares the
running average with the target rate g̃, which accounts for homeostatic processes. During
postsynaptic action potentials the postsynaptic term Bpost has marked peaks (see figure
3.2). Their amplitude and sign depend on the membrane potential at the moment of
action potential firing.

The term Cj(t) in (3.25) is sensitive to correlations between the postsynaptic neuron
and its presynaptic input at synapse j and is given by the differential equation

dCj(t)
dt

= −Cj(t− δ)
τC

+
∑

f

ε(t− t
(f)
j )S(t)[δ(t− t̂− δ)− g(u(t))R(t)], (3.27)

with a time constant τC = 1s. Here g(u(t))R(t) is the instantaneous firing rate of the
neuron modulated by the refractory function R(t), and S(t) = g′(u(t))/g(u(t)) is the
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3. Information Theory

sensitivity (the prime denoting the derivate with respect to u) of the neuron to a change
of its membrane potential. The term with the Dirac-δ function induces a positive jump of
Cj immediately (with short delay δ) after each postsynaptic spike. Between postsynaptic
spikes, Cj evolves continuously. Significant changes of Cj are conditioned on the presence
of a PSP ε(t− t

(f)
j ) caused by spike arrival at synapse j. In the absence of presynaptic

input, the correlation estimate decays with time constant τC back to 0.

Figure 3.2.: Visualization of the terms Cj and Bpost during 500ms. From top to bottom:
the measure Cj that is sensitive to correlations between the state of the
postsynaptic neuron and presynaptic spike arrival at synapse j, the PSPs
caused by spike arrivals at the same synapse j, the membrane potential
u, and the postsynaptic factor Bpost as a function of time. Taken from
(Toyoizumi et al., 2005a).

Both the correlation term Cj and the postsynaptic factor Bpost can be estimated on-
line (see figure 3.2) and use only information that could be available at the site of the
synapse, thus (3.25) is a local learning rule. The direction of change in the value of
a synaptic efficacy is determined by a subtle interplay between these terms, which can
both be negative or positive. This learning rule derived from the principle of informa-
tion maximization for a spiking neuron has some interesting properties, e.g., it drives
neurons to spontaneously detect and specialize for groups of coherent inputs, and it is
also sensitive to weak spike-spike correlations in the input (Toyoizumi et al., 2005a).
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3.2. Maximizing Mutual Information

3.2.3. Relation to the BCM Rule

Maximizing the mutual information between an ensemble of input spike trains and the
postsynaptic output spike train of a neuron yields a synaptic update rule (3.25) that
depends on correlations between pre- and postsynatpic activity measured by the term Cj

and a variable Bpost that characterizes the postsynaptic state. Remember from chapter 2
that in the standard formulation of Hebbian learning the changes of synaptic efficacies are
driven by correlations between the activities of pre- and postsynaptic neurons, similar to
the function Cj(t). However, in the learning rule (3.25) these correlations are augmented
by a postsynaptic factor Bpost that can change the direction of synaptic weight change
depending on the firing behavior of the postsynaptic neuron compared to its recent
history and to the desired target activity.

To explore the balance between potentiation and depression of synapses, a simplified
neuron model without refractoriness is considered (Toyoizumi et al., 2005a). In this
special case it reduces to a pure rate model with Poisson firing statistics and the synaptic
update rule (3.25) can be written as

dwj(t)
dt

= αvjφ(vpost, θ), (3.28)

where vj is the presynaptic firing rate of synapse j. φ(vpost, θ) is a function that depends
on the instantaneous postsynaptic firing rate vpost and a parameter θ that denotes the
transition from the regime of potentiation to that of depression. It depends on the recent
firing history of the neuron and is given by

θ(t) = v̄post(t)
(

v̄post(t)
g̃

)γ

, (3.29)

where g̃ denotes a target value for the postsynaptic firing rate implemented by homeo-
static processes and v̄post(t) is a running average of the postsynaptic rate.

Note the similarity of equations (3.28) and (3.29) to equations (2.9) and (2.11) on
page 11, respectively. The function φ(vpost, θ) shown in figure 3.3 is characteristic for
the BCM learning rule presented in section 2.3: it has regimes of both potentiation and
depression, separated by a sliding threshold that depends in a highly nonlinear way on a
running average of the postsynaptic activity. Thus, information maximization under the
constraint of a fixed target firing rate automatically yields a learning rule with properties
similar to that postulated in (Bienenstock et al., 1982), and thereby extends the classical
BCM rule to the case of spiking neurons with refractoriness.

25



3. Information Theory

Figure 3.3.: Relation of the update rule (3.25) to the classical BCM rule in the case
of Poisson firing statistics. (A) The function φ(vpost, θ) has regimes of both
LTD and LTP separated by a sliding threshold θ that depends on the average
postsynaptic firing rate v̄post. It is shown as a function of vpost for 3 different
values of v̄post (from top to bottom: 10Hz, 20Hz, 30Hz; g̃ = 20Hz). (B) The
threshold θ as a function of v̄post for different choices of γ, i.e., γ = 0.5
(dashed), γ = 1 (solid), γ = 2 (dashdot). Taken from (Toyoizumi et al.,
2005a).
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4. Extracting Independent Components

In this chapter the main results of this thesis are presented. Based on the generalized
Bienenstock-Cooper-Munro learning rule for spiking neurons given in section 3.2, which
maximizes the mutual information between the input spike trains and the output spike
train of a neuron, this rule is extended in a way that a second neuron which receives the
same input also maximizes the mutual information between the input and its output,
but at the same time tries to keep the mutual information between its output and the
output of the other neuron as low as possible. In this way we try to extract statistically
independent components from the inputs.

First, in section 4.1 the methods and models defined in the previous section are re-
peated briefly since they are reused here again. In section 4.2 we try to find an expression
for the mutual information between the output spike trains of two neurons that receive
the same input at their synapses. This is then needed in section 4.3 to derive a learning
rule that minimizes this quantity. Finally, the results of some simulation experiments of
this synaptic update rule are presented in section 4.4.

4.1. Methods and Models

The same neuron model and spike train representations are used as in section 3.2.1,
which are repeated here in brevity for convenience.

We use discrete time with step size ∆t, where tk denotes the k-th time step, i.e.,
tk = k∆t. Two postsynaptic neurons receive the same input at N synapses each. A
presynaptic spike train at synapse j (j = 1, . . . , N) is described as a sequence xk

j (k =
1, . . . ,K) of zeros (no spike) and ones (spike). Each presynaptic spike evokes a PSP
with exponential time course ε(t− t

(f)
j ) with time constant τm = 10ms. The membrane

potential of neuron i (i = 1, 2) at time step tk is calculated as

ui(tk) = ur +
N∑

j=1

k∑
n=1

wijε(tk − tn)xn
j , (4.1)

where ur = −70mV is the resting potential and wij is the weight of synapse j of neuron
i.

The probability ρk
i of neuron i to fire in time step k is a function of the membrane

potential and the refractory state of the neuron,

ρk
i = 1− exp[−g(ui(tk))Ri(tk)∆t] ≈ g(ui(tk))Ri(tk)∆t, (4.2)

where g and R are the same functions as in equations (3.11) and (3.12) on page 20.
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4. Extracting Independent Components

The output of postsynaptic neuron i at time step k is denoted as a variable yk
i = 1

if a postsynaptic spike occurred and 0 otherwise. A specific spike train up to time step
k is denoted with an uppercase letter, Y k

i = (y1
i , y

2
i , . . . , y

k
i ). The random variable Yk

i

describes the ensemble of possible output spike trains of neuron i; a specific realization
is denoted as Y k

i . Xk is the random variable characterizing the inputs at all synapses
1 ≤ j ≤ N up to time step k, Xk is a specific realization of all input spike trains up to
time step k and Xk

j is a specific spike train at synapse j.
For given input spike trains Xk and postsynaptic spike history Y k−1

i we can write the
probability of neuron i to emit a spike at time step k as

P (yk
i |Y k−1

i , Xk) = (ρk
i )

yk
i (1− ρk

i )
(1−yk

i ), (4.3)

and the marginal probability, given only the postsynaptic history, as

P (yk
i |Y k−1

i ) = (ρ̄k
i )

yk
i (1− ρ̄k

i )
(1−yk

i ), (4.4)

with ρ̄k
i =

〈
ρk

i

〉
Xk|Y k−1

i
=
∑

Xk ρk
i P (Xk|Y k−1

i ). The probability of an entire output

spike train Y K
i given the input XK is obtained by taking the product over all binwise

probabilities,

P (Y K
i |XK) =

K∏
k=1

P (yk
i |Y k−1

i , Xk) =
K∏

k=1

(ρk
i )

yk
i (1− ρk

i )
(1−yk

i ), (4.5)

and analogously, for the probability of an output spike train,

P (Y K
i ) =

K∏
k=1

P (yk
i |Y k−1

i ) =
K∏

k=1

(ρ̄k
i )

yk
i (1− ρ̄k

i )
(1−yk

i ), (4.6)

cf. equations (3.13) to (3.16).

4.2. Mutual Information Between Output Spike Trains

The mutual information (see section 3.1.2) between the output spike trains of both
postsynaptic neurons is given as

I(YK
1 ,YK

2 ) =
∑

Y K
1 ,Y K

2

P (Y K
1 , Y K

2 ) log
P (Y K

1 |Y K
2 )

P (Y K
1 )

=
∑

Y K
1 ,Y K

2

P (Y K
1 , Y K

2 ) log
P (Y K

1 , Y K
2 )

P (Y K
1 )P (Y K

2 )
.

(4.7)

This measure tells how much information about Y K
1 is conveyed by observing a specific

spike train Y K
2 (or vice versa). Note that the mutual information is maximal if there is a

one-to-one mapping between both spike trains, e.g., if both spike trains are always equal.
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4.2. Mutual Information Between Output Spike Trains

In this case the mutual information equals the entropy of the output distribution. The
mutual information is minimal (i.e., zero) if no information is gained about one spike
train by knowing the other output, that is, if both random processes are independent, i.e.,
P (Y K

1 , Y K
2 ) = P (Y K

1 )P (Y K
2 ) for all Y K

1 , Y K
2 . Note that although both neurons process

the input independently, the mutual information is not zero because they receive the
same input. Each output implicitly conveys information about the input, thus about
the other output. However, if specific input spike trains are held fixed, the output
distributions given these inputs are independent.

To evaluate the mutual information between output spike trains Y K
1 and Y K

2 , it is
necessary to have an expression for the joint probability P (Y K

1 , Y K
2 ) or the conditional

probability P (Y K
1 |Y K

2 ) (or P (Y K
2 |Y K

1 ), respectively). According to the Total Probability
Theorem we can write

P (Y K
1 |Y K

2 ) =
∑
XK

P (Y K
1 |XK , Y K

2 )P (XK |Y K
2 ). (4.8)

With Bayes’ Theorem we have

P (XK |Y K
2 ) =

P (XK)P (Y K
2 |XK)

P (Y K
2 )

, (4.9)

and, since for given input XK , Y K
1 is independent of Y K

2 ,

P (Y K
1 |XK , Y K

2 ) = P (Y K
1 |XK). (4.10)

Inserting (4.9) and (4.10) back into (4.8), we get

P (Y K
1 |Y K

2 ) =
1

P (Y K
2 )

∑
XK

P (XK)P (Y K
1 |XK)P (Y K

2 |XK), (4.11)

and since P (Y K
1 , Y K

2 ) = P (Y K
1 |Y K

2 )P (Y K
2 ),

P (Y K
1 , Y K

2 ) =
∑
XK

P (XK)P (Y K
1 |XK)P (Y K

2 |XK). (4.12)

Together with equation (4.5), we can finally write for the joint probability

P (Y K
1 , Y K

2 ) =

〈
K∏

k=1

(ρk
1)

yk
1 (1− ρk

1)
(1−yk

1 )(ρk
2)

yk
2 (1− ρk

2)
(1−yk

2 )

〉
XK

. (4.13)

The expression in (4.13), however, is difficult to evaluate because the expectation is
over the product of the binwise probabilities. It would be preferable if we could formulate
the joint probability as a product of binwise probabilities, thereby making the derivative
of the mutual information easier. Therefore we turn to a binwise analysis of the output
joint probability.
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4. Extracting Independent Components

The binwise joint probability of output spikes at time step k, given the postsynaptic
histories and the input, can be written as

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 , Xk) = P (yk
1 |Y k−1

1 , Xk)P (yk
2 |Y k−1

2 , Xk), (4.14)

since for a given input spike train Xk, the output spike trains Y k
1 and Y k

2 are independent.
The marginal joint probability given only the postsynaptic histories is then found as
(using (4.14) and (4.3))

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 ) =
∑
Xk

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 , Xk)P (Xk|Y k−1
1 , Y k−2

2 )

=
〈
(ρk

1)
yk
1 (1− ρk

1)
(1−yk

1 )(ρk
2)

yk
2 (1− ρk

2)
(1−yk

2 )
〉

Xk|Y k−1
1 ,Y k−2

2

.

(4.15)

Analogously to (4.5) and (4.6) the output joint probability is calculated as a product of
the joint probabilities of each time bin,

P (Y K
1 , Y K

2 ) =
K∏

k=1

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 ). (4.16)

The expression inside the angular brackets in the last line of (4.15) can be reformulated
in the following way:

(ρk
1ρ

k
2)

yk
1yk

2 (ρk
1(1− ρk

2))
yk
1 (1−yk

2 )((1− ρk
1)ρ

k
2)

(1−yk
1 )yk

2 ((1− ρk
1)(1− ρk

2))
(1−yk

1 )(1−yk
2 ); (4.17)

in this way, depending on the values of yk
1 and yk

2 , this expression is equal to exactly one
of the four terms in equation (4.17) since the exponent of that term is 1, the other ones
are 0. In this case we can pull the expectation to the inner terms and write

P (Y K
1 , Y K

2 ) =
K∏

k=1

(¯̄ρk
12)

yk
1yk

2 (¯̄ρk
1 − ¯̄ρk

12)
yk
1 (1−yk

2 )·

· (¯̄ρk
2 − ¯̄ρk

12)
(1−yk

1 )yk
2 (1− ¯̄ρk

1 − ¯̄ρk
2 + ¯̄ρk

12)
(1−yk

1 )(1−yk
2 ), (4.18)

with ρk
12 = ρk

1ρ
k
2 and ¯̄· = 〈·〉XK |Y k−1

1 ,Y k−1
2

.
The mutual information between output spike trains is zero if and only if this joint

probability of (4.18) is equal to the independent distribution of the output spike trains,
which is repeated here for convenience:

P (Y K
1 )P (Y K

2 ) =
K∏

k=1

(ρ̄k
1)

yk
1 (1− ρ̄k

1)
(1−yk

1 )(ρ̄k
2)

yk
2 (1− ρ̄k

2)
(1−yk

2 )

=
K∏

k=1

(ρ̄k
1 ρ̄

k
2)

yk
1yk

2 (ρ̄k
1 − ρ̄k

1 ρ̄
k
2)

yk
1 (1−yk

2 )·

· (ρ̄k
2 − ρ̄k

1 ρ̄
k
2)

(1−yk
1 )yk

2 (1− ρ̄k
1 − ρ̄k

2 + ρ̄k
1 ρ̄

k
2)

(1−yk
1 )(1−yk

2 ),

(4.19)

with ρ̄k
i =

〈
ρk

i

〉
XK |Y k−1

i
.
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4.3. Learning Rule

4.3. Learning Rule

We try to minimize the mutual information between the output of two neurons by
deriving a learning rule for neuron 2 while letting the weights of neuron 1 evolve according
to the generalized BCM rule that maximizes information transmission (cf. section 3.2).
A trivial way to minimize the mutual information between output spike trains is to
let the neuron emit the same spike train for all inputs, e.g., emit no spikes at all by
setting all weights to 0. In this case the output conveys no information about the input,
thus about the other spike train, and the mutual information is 0. Hence, to get a more
reasonable result we also maximize the information transmission of neuron 2 and perform
the optimization under the additional constraint that the output distribution, P (Y K

2 ),
stays close to a desired target distribution P̃ (Y K

2 ), and we choose that of a neuron with
constant instantaneous rate g̃ (e.g., 30Hz), as in section 3.2 and in (Toyoizumi et al.,
2005a).

Instead of using the mutual information between the ouput spike trains in the deriva-
tion of the learning rule, it turns out that it is more convenient from a mathematical
point of view to minimize the information rate (which is the mutual information per
time) between the outputs (cf. section 3.1.3). The quantity to maximize is therefore

L = I(XK ,YK
2 )− γ1I

′(YK
1 ,YK

2 )− γ2D(P (Y K
2 )||P̃ (Y K

2 )), (4.20)

where I(XK ,YK
2 ) is the mutual information between the input spike trains and the

output spike train of neuron 2, I ′(YK
1 ,YK

2 ) = I(YK
1 ,YK

2 )/(K · ∆t) is the information
rate between the output of both neurons, and

D(P (Y K
2 )||P̃ (Y K

2 )) =
∑
Y K
2

P (Y K
2 ) log

P (Y K
2 )

P̃ (Y K
2 )

(4.21)

is the Kullback-Leibler divergence (see section 3.1.4) between the output distribution
and the desired output distribution. γ1 and γ2 are constants specifying how hard we
want to enforce these additional constraints. Note that since the information rate has
dimension bit/s γ1 has dimension seconds and γ2 is dimensionless.

We can write equation (4.20) as L =
∑K

k=1 ∆Lk with

∆Lk =

〈
log

P (yk
2 |Y

k−1
2 , Xk)

P (yk
2 |Y

k−1
2 )

− γ1

∆t
log

P (yk
1 , yk

2 |Y
k−1
1 , Y k−1

2 )
P (yk

1 |Y
k−1
1 )P (yk

2 |Y
k−1
2 )

−γ2 log
P (yk

2 |Y
k−1
2 )

P̃ (yk
2 |Y

k−1
2 )

〉
Xk,Yk

1 ,Yk
2

. (4.22)

Assuming slow changes of synaptic weights, a gradient descent algorithm is applied to
maximize the objective function L (4.20) and the weight w2j of neuron 2 is changed at
each time step by

∆wk
2j = α

∂∆Lk

∂w2j
, (4.23)
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with an appropriate learning rate α.
After evaluation of the gradient (see appendix A for a detailed derivation) we arrive

at a learning rule

∆wk
2j = α

〈
Ck

2j(F
k
2 −

γ1

∆t
F k

12 − γ2G
k
2)
〉

Xk,Yk
1 ,Yk

2

, (4.24)

where

Ck
2j =

k∑
l=1

[
yl
2

ρl
2

− 1− yl
2

1− ρl
2

]
∂ρl

2

∂u2

l∑
n=1

ε(tl − tn)xn
2 (4.25)

F k
2 = yk

2 log
ρk
2

ρ̄k
2

+ (1− yk
2 ) log

1− ρk
2

1− ρ̄k
2

(4.26)

F k
12 = yk

1yk
2 log

¯̄ρk
12

ρ̄k
1 ρ̄

k
2

+ yk
1 (1− yk

2 ) log
¯̄ρk
1 − ¯̄ρk

12

ρ̄k
1 − ρ̄k

1 ρ̄
k
2

+

+ (1− yk
1 )yk

2 log
¯̄ρk
2 − ¯̄ρk

12

ρ̄k
2 − ρ̄k

1 ρ̄
k
2

+

+ (1− yk
1 )(1− yk

2 ) log
1− ¯̄ρk

1 − ¯̄ρk
2 + ¯̄ρk

12

1− ρ̄k
1 − ρ̄k

1 + ρ̄k
1 ρ̄

k
2

(4.27)

Gk
2 = yk

2 log
ρ̄k
2

ρ̃k
2

+ (1− yk
2 ) log

1− ρ̄k
2

1− ρ̃k
2

. (4.28)

The term Ck
2j is sensitive to correlations between the input spike train at synapse j

and the output spike train of neuron 2. It counts the coincidences between postsynaptic
spikes (yl

2 = 1) and the time course of PSPs generated by presynaptic spikes (xn
j =

1), normalized to an expected value 〈Ck
2j〉Yk|Xk = 0. The quantity Gk

2 compares the
average firing probability ρ̄k

2 of neuron 2 at time step k with the desired target firing
probability ρ̃k

2 = g̃R(tk)∆t, thereby trying to maintain the postsynaptic target firing
rate g̃, and analogously the term F k

2 compares the instantaneous firing probability ρk
2

with the average probability ρ̄k
2. Note that each of these three terms also occurs equally

in the rule presented in section 3.2 (cf. equations (3.22) to (3.24)).
Aditionally, the value F k

12 accounts for the statistical independence between the firing
probabilities of both neurons, given the postsynaptic histories. It basically compares
the product of average firing probabilities, ρ̄k

1 ρ̄
k
2 of neuron 1 and 2 at time step k with

the average product of firing probabilites ¯̄ρk
12 = ρk

1ρ
k
2 (where ·̄ = 〈·〉Xk|Y k−1

i
and ¯̄· =

〈·〉Xk|Y k−1
1 ,Y k−1

2
). From now on, we assume that ρ̄k

i = ¯̄ρk
i .

We note that the terms F k
2 , F k

12 and Gk
2 depend on postsynaptic variables only; we

therefore introduce a postsynaptic factor Bk
12 = (F k

2 − γ1

∆tF
k
12 − γ2G

k
2)/∆t and take the

limit ∆t → 0 (see appendix A for details). Under the assumption of a small learning rate
α the expectations 〈·〉Xk,Yk

1 ,Yk
2

from equation (4.24) can be approximated by averaging
over a single long trial that allows us to define an online rule:

dw2j(t)
dt

= αC2j(t)B12(t− δ). (4.29)
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According to (Toyoizumi et al., 2005a; Toyoizumi et al., 2005b) the correlation term
Ck

2 can be transformed into the differential equation

dC2j(t)
dt

= −C2j(t)
τC

+
∑

f

ε(t− t
(f)
j )S2(t)[δ(t− t̂2 − δ)− g(u2(t))R2(t)], (4.30)

with a time constant τC = 1s. Here g(u2(t))R2(t) is the instantaneous firing rate of
neuron 2 modulated by the refractory function R2(t), and S2(t) = g′2(u2(t))/g2(u2(t))
is the sensitivity (the prime denoting the derivate with respect to u) of neuron 2 to a
change of its membrane potential. This correlation term is analagous to that in equation
(3.27).

The postsynaptic factor B12(t) is composed of two terms

B12(t) = Bpost
2 (t)− γ1B

post
12 (t), (4.31)

with

Bpost
2 (t) = δ(t− t̂2 − δ) log

[
g(u2(t))

ḡ2(t)

(
g̃

ḡ2(t)

)γ2
]
−

−R2(t) [g(u2(t))− (1 + γ2)ḡ2(t) + γ2g̃]
(4.32)

and

Bpost
12 (t) = δ(t− t̂2 − δ)

{
δ(t− t̂1 − δ) log

ḡ12(t)
ḡ1(t)ḡ2(t)

−R1(t)
[
ḡ12(t)
ḡ2(t)

− ḡ1(t)
]}

−

−R2(t)
{

δ(t− t̂1 − δ)
[
ḡ12(t)
ḡ1(t)

− ḡ2(t)
]
−R1(t) [ḡ12(t)− ḡ1(t)ḡ2(t)]

}
,

(4.33)

where t̂1 and t̂2 are the last postsynaptic spike times of neuron 1 and neuron 2, re-
spectively. The rate ḡi(t) = 〈g(ui(t))〉X|Yi

denotes an expectation of the instanta-
neous rate of neuron i over the input distribution given the recent firing history of
the postsynaptic neuron and is estimated in a numerical implementation by keeping
a running average of the firing rate with a sufficiently large exponential time win-
dow (In the implementation a time constant of 10s is used). Similarly, the average
product of firing rates ḡ12(t) = 〈g(u1(t))g(u2(t))〉X|Y1,Y2

is calculated by a running av-
erage over the product of postsynaptic firing rates with the same time constant. In
this way, the quantity ρ̄k

12 = ḡ12(tk)R1(tk)R2(tk)(∆t)2 measures the joint probabil-
ity for the two neurons to spike simultaneously within a time step of size ∆t and
ρ̄k
1 ρ̄

k
2 = ḡ1(tk)ḡ2(tk)R1(tk)R2(tk)(∆t)2 estimates the independent distribution of post-

synaptic spiking. The term Bpost
12 (t) tries to drive the joint distribution close towards

the independent distribution, thereby minimizing the mutual information between the
output neurons. It compares the average product of postsynaptic rates ḡ12(t) with the
product of the averages of the postsynaptic rates ḡ1(t)ḡ2(t), for all different postsynaptic
states.
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4. Extracting Independent Components

Additionally, Bpost
2 (t) compares the average rate of neuron 2 ḡ2(t) with the target

rate g̃, thereby accounting for homeostatic processes that tend to push the neuron back
into its preferred firing behaviour, and the instantaneous rate g(u2(t)) with the average
rate ḡ2(t), reflecting the momentary significance of the postsynaptic rate. This term is
analogous to that in equation (3.26).

Figure 4.1.: Visualization of the term Bpost
12 during 1 second. From top to bottom: the

output spike trains of neuron 1 (green) and neuron 2 (blue), the postsynaptic
term Bpost

2 , the term sensitive to the momentary statistical dependence be-
tween the outputs Bpost

12 , and the combined postsynaptic term Bpost
2 −γ1B

post
12

as a function of time (γ1 = 0.1).

Thus, the learning rule (4.29) is basically the same as derived in section 3.2, however,
the postsynaptic term Bpost

2 is augmented by an expression Bpost
12 that is sensitive to the

momentary statistical dependence between the outputs of two neurons. Figure 4.1 shows
these terms, as well as the combined postsynaptic term Bpost

2 − γ1B
post
12 , as a function

of time for a sample of output spike trains of both neurons during 1 second. One sees
that the standard postsynaptic term Bpost

2 has peaks during action potentials of neuron
2 and their sign and amplitude depends on the recent firing history, as already men-
tioned in section 3.2 (cf. figure 3.2). The term Bpost

12 (4.33) usually has negative peaks
when one of the two postsynaptic neurons is firing, according to the terms −δ(t − t̂2 −
δ)R1(t)

[
ḡ12(t)
ḡ2(t) − ḡ1(t)

]
and −δ(t− t̂1− δ)R2(t)

[
ḡ12(t)
ḡ1(t) − ḡ2(t)

]
, respectively, i.e., the am-

plitude of these peaks depend on the recent firing history and the refractory state of the
other neuron. Additionally, there may be positive peaks when both neurons fire simulta-
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neously in the same time step (according to δ(t− t̂2−δ)δ(t− t̂1−δ) log ḡ12(t)
ḡ1(t)ḡ2(t)). In times

when no neuron is firing, the term evolves according to R1(t)R2(t) [ḡ12(t)− ḡ1(t)ḡ2(t)],
i.e., it is reminiscent of the time course of the refractory variables (cf. figure 3.1(b))
since the gain averages are approximately constant during one second. The combined
postsynaptic term B12 = Bpost

2 −γ1B
post
12 now has additional peaks compared to the orig-

inal Bpost
2 due to the effect of Bpost

12 . It is also possible that some peaks are weakened or
strengthened, or that their direction even gets reversed. Note, however, that the actual
weight change of neuron 2 still depends on both the combined postsynaptic term and
the correlation term C2j .

4.4. Results

Using a setup with two postsynaptic neurons that receive the same input at 100 synapses
a learning rule has been derived that minimizes the mutual information between both
output spike trains under the constraint that each neuron by itself maximizes information
transmission and that the output firing rates stay close to a desired target firing rate.
In the following experiments, we let the weights of neuron 1 evolve according to the
learning rule of (Toyoizumi et al., 2005a) presented in section 3.2, which maximizes the
mutual information between input and output spike trains, and apply the update rule
presented in this chapter to the second neuron. More precisely, the learning rule

dw1j

dt
= α1C1j(t)B

post
1 (t− δ), (4.34)

with C1j(t) and Bpost
1 (t − δ) defined in (3.27) and (3.26)1, respectively, is applied to

neuron 1 (α1 = 10−5, γ = 1), and the weights of neuron 2 are changed according to

dw2j(t)
dt

= α2C2j(t)
[
Bpost

2 (t− δ)− γ1B
post
12 (t− δ)

]
, (4.35)

with the additional term Bpost
12 given in (4.33).

4.4.1. Correlation Experiment

In a first experiment the 100 inputs consist of Poisson spike trains at 20Hz each, however,
correlation among the inputs is established in the following way: The spike trains at the
first 80 synapses are divided into two groups (group 1: spike trains 1 to 40, group 2: spike
trains 41 to 80). Within each group a correlation coefficient of 0.5 is established, but
spike trains from different groups are uncorrelated. The remaining 20 synapses receive
uncorrelated Poisson input (group 3). Weights are initialized randomly between 0.10
and 0.12 for both neurons and can change between the bounds 0 and 1. The results can
be seen in figures 4.2 to 4.4.

Figure 4.2 (top) shows the evolution of weights for both neurons during 30 minutes
of learning. Weights close to the maximal efficacy wmax = 1 are developed for one
1The additional index 1 indicates that the terms are applied to neuron 1.
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4. Extracting Independent Components

Figure 4.2.: Correlation experiment. (Top) Evolution of weights during 30 minutes of
learning for both postsynaptic neurons receiving Poisson input at 20Hz from
100 synapses. Inputs to synapses 1 to 40 and 41 to 80 are both correlated
with a coefficient of 0.5, but any two inputs belonging to different grups
are uncorrelated. Synapses 81 to 100 receive uncorrelated Poisson input.
(red: strong synapses, wj ≈ 1, blue: depressed synapses, wj ≈ 0.) Weights
were initialized randomly between 0.10 and 0.12, α2 = 10−6, γ1 = 0.1,
γ2 = 10. (Bottom) Evolution of the average mutual information per time
bin between input and output (blue solid line, left scale) and the Kullback-
Leibler divergence per time bin for both neurons (green dashed line, right
scale) as a function of time. Averages are calculated over segments of 1
minute.
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of the groups of synapses that receives correlated input (group 1 in this case) whereas
those for the other correlated group (group 2) as well as those for the uncorrelated
group (group 3) stay low (cf. similar results in (Toyoizumi et al., 2005a)). Neuron 2
develops strong weights to the other correlated group of synapses (group 2) whereas
the efficacies of the second correlated group (group 1) remain low. The uncorrelated
synapses of group 3 develop efficacies close to 0 as well, however, some of these synapses
still increase their weight. Since uncorrelated inputs are likely to produce uncorrelated
output spike trains and uncorrelated Poisson spike trains have a mutual information of
0, the tendency to produce mutual information independent output develops stronger
weights to group 1 and group 3. However, the update rule also tries to maximise the
mutual information between input and output, therefore the weights of the uncorrelated
group 3 are weakened, and strong weights are developed solely for the correlated group
1.

Figure 4.3.: Correlation experiment. Evolution of the average mutual information per
time bin between both output spike trains as a function of time. Averages
are calculated over segments of 1 minute.

Figure 4.2 (bottom) shows the average mutual information per time bin between in-
put and output spike trains for both neurons, as well as the average Kullback-Leibler
divergence per time bin. It can be seen that for both neurons the mutual information
is maximized and the target output distribution of a constant firing rate of 30Hz is ap-
proached well. Figure 4.3 shows the evolution of the average mutual information per
time bin between the output spike trains of the postsynaptic neurons 1 and 2. After
an initial increase where the weights of both neurons start to grow simultaneously, the
amount of information drops as both neurons develop strong efficacies to their specific
parts of the input.

Figure 4.4 shows the final weight distribution for both postsynaptic neurons after 30
minutes of learning in 9 consecutive trials. Note that in four trials (numbers 2, 4, 5, and
8) the weights of neuron 1 are driven to the first and in the other five runs (numbers
1, 3, 6, 7, and 9) to the second correlated group of inputs, whereas the efficacies of the
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4. Extracting Independent Components

Figure 4.4.: Correlation experiment. Final weight distributions of both postsynaptic
neurons (blue crosses: neuron 1, red circles: neuron 2) in 9 consecutive
trials after 30 minutes of learning.

other correlated group remain low. In all cases the update rule of neuron 2 drives the
weights to the other correlated group as to develop a mutual information independent
output.

4.4.2. Time-Varying Correlations

In a second experiment again correlated input spike trains are considered, however, this
time the correlations change over time. Again, 100 synapses receive Poisson input at the
same rate of 20Hz and two correlation groups of 50 synapses each are established among
the inputs such that spike trains from the same group are correlated, but spike trains
from different groups are uncorrelated. More precisely, the 100 synapses are separated
into 4 groups of 25 inputs each (group A, 1 ≤ j ≤ 25, group B, 26 ≤ j ≤ 50, group C,
51 ≤ j ≤ 75, and group D, 76 ≤ j ≤ 100). All groups are correlated with a coefficient
of 0.5, but first, inputs to group A and B are uncorrelated with respect to group C and
D. After 15 minutes correlations change such that A becomes correlated with C and B
becomes correlated to D. After 35 minutes, finally A and D as well as B and C become
correlated. Weights were initialized randomly between 0.10 and 0.12 for both neurons
and could change between the bounds 0 and 1.

Figure 4.5 shows the evolution of weights and the time course of the mutual information
and the Kullback-Leibler divergence for both neurons. It can be seen that neuron 1
always develops strong weights to one of the correlation groups with 50 synapses even
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Figure 4.5.: Time-varying correlations. (Top) Evolution of weights during 60 minutes of
learning for both postsynaptic neurons receiving Poisson input at 20Hz from
100 synapses. The 100 synapses are separated into 4 groups of 25 inputs
each (group A, 1 ≤ j ≤ 25, group B, 26 ≤ j ≤ 50, group C, 51 ≤ j ≤ 75, and
group D, 76 ≤ j ≤ 100). All groups are correlated with a coefficient of 0.5,
but first, inputs to group A and B are uncorrelated with respect to group C
and D. After 15 minutes correlations change such that A becomes correlated
with C and B becomes correlated to D. After 35 minutes, finally A and D
as well as B and C become correlated. (red: strong synapses, wj ≈ 1, blue:
depressed synapses, wj ≈ 0.) Weights were initialized randomly between
0.10 and 0.12, α2 = 10−6, γ1 = 0.1, γ2 = 10. (Bottom) Evolution of the
average mutual information per time bin between input and output (blue
solid line, left scale) and the Kullback-Leibler divergence per time bin for
both neurons (green dashed line, right scale) as a function of time. Averages
are calculated over segments of 1 minute.
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4. Extracting Independent Components

when correlations change. Initially, these are groups A and B, after 15 minutes of
learning, efficacies grow for groups B and D, and finally after 35 minutes, groups B
and C. Note that the groups to which neuron 1 specializes may vary randomly from
trial to trial (e.g., due to different initial weights), however, at each time 50 correlated
synapses have high weights. Neuron 2, on the other hand, develops strong efficacies to
the complementary group of inputs, whose synaptic weights for neuron 1 remained low,
i.e., initially to groups C and D, after 15 minutes to A and C and after 35 minutes to A
and D.

Figure 4.6.: Time-varying correlations. Evolution of the average mutual information per
time bin between both output spike trains as a function of time. Averages
are calculated over segments of 1 minute.

Figure 4.6 shows the evolution of the average mutual information per time bin between
both output spike trains as a function of time. Whenever the correlations among the
inputs change the statistical dependence between the outputs increases for a short time
during which the neurons adapt to the new situation, but after a while the mutual
information goes to zero again. This means that the learning rule not only drives the
neurons’ weights to different correlation groups, but also manages to keep the outputs
independent if the correlations between the inputs change.

4.4.3. Rate Modulation Experiment

In another experiment, again Poisson input is presented to 100 synapses, however, the
rate of the inputs to synapses 1 to 40 is modulated periodically with r0 + A sin(2πt/T )
(r0 = 20Hz, A = 10Hz, T = 100ms); the rate of inputs to synapses 41 to 80 is modulated
in the same way, but phase-shifted by 180 degrees (r0 + A sin(2πt/T + π)). Synapses 81
to 100 receive Poisson input at a constant rate of r0 = 20Hz. Figure 4.7 (top) shows the
evolution of weights for both neurons during 60 minutes of learning. Neuron 1 develops
strong weights to one of the two groups with rate modulation. The synapses of neuron
2 develop high efficacies to the second rate modulated group of synapses. Figure 4.7
(bottom) shows the average mutual information per time bin between input and output
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spike trains for both neurons, as well as the average Kullback-Leibler divergence per
time bin; figure 4.8 shows the evolution of the average mutual information per time bin
between the output spike trains of the postsynaptic neurons 1 and 2.

In this rate modulation paradigm the statistical depencence between the outputs is
much smaller than in the experiments before, where correlations have been established
among the inputs (cf. fig. 4.3 and 4.8). Even in this more difficult case the neurons’
weights are driven to separate groups in the input.

Figure 4.7.: Rate modulation experiment. (Top) Evolution of weights during 60 minutes
of learning for both postsynaptic neurons receiving Poisson input from 100
synapses. The rate of inputs to synapses 1 to 40 was modulated periodically
with r0 + A sin(2πt/T ) (r0 = 20Hz, A = 10Hz, T = 100ms). The rate of
inputs to synapses 41 to 80 was modulated in the same way, but phase-shifted
by 180 degrees (r0 +A sin(2πt/T +π)). Synapses 81 to 100 received Poisson
input at a constant rate of r0 = 20Hz. (red: strong synapses, wj ≈ 1, blue:
depressed synapses, wj ≈ 0.) Weights were initialized randomly between
0.10 and 0.12. α2 = 10−5, γ1 = 0.1, γ2 = 1. (Bottom) Evolution of the
average mutual information per time bin between input and output (blue
solid line, left scale) and the Kullback-Leibler divergence per time bin for
both neurons (green dashed line, right scale) as a function of time. Averages
are calculated over segments of 1 minute.
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Figure 4.8.: Rate modulation experiment. Evolution of the average mutual information
per time bin between input and output and the Kullback-Leibler divergence
per time bin for both neurons as a function of time. Averages are calculated
over segments of 1 min.

Figure 4.9.: More than two neurons. Evolution of weights during 30 minutes of learning
for three postsynaptic neurons receiving the same Poisson input at 20Hz
from 100 synapses. Inputs to synapses 1 to 30, 31 to 60 and 61 to 90 are each
correlated with a coefficient of 0.5, but any two inputs belonging to different
grups are uncorrelated. Synapses 91 to 100 receive uncorrelated Poisson
input. (red: strong synapses, wj ≈ 1, blue: depressed synapses, wj ≈ 0.)
Weights were initialized randomly between 0.10 and 0.12, αi = 5 · 10−6,
γ1 = 0.03, γ2 = 10.
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4.4.4. More Than Two Neurons

In the experiments so far we considered only two neurons that tried to keep their outputs
statistically independent. It is natural to ask whether and how our learning rule can
be extended to the case of more than two neurons. Looking at equations (4.34) and
(4.35) we find that the weights wij of each neuron i are modified by terms Cij and
Bpost

i ; additionally, a term Bpost
ik has to be considered for each pair of neurons i and

k accounting for the mutual information between the outputs of these neurons. There
are basically two possibilities, either we consider in the learning rule of each neuron the
statistical dependencies on previous neurons, i.e.,

dwij(t)
dt

= αiCij(t)

[
Bpost

i (t− δ)− γ1

i−1∑
k=1

Bpost
ki (t− δ)

]
, (4.36)

or on all other neurons, i.e.,

dwij(t)
dt

= αiCij(t)

Bpost
i (t− δ)− γ1

∑
k 6=i

Bpost
ki (t− δ)

 . (4.37)

The second version (4.37) looks more appealing because of symmetry reasons, however,
experiments show that the first version (4.36) is more robust in the sense that the outputs
of the neurons are more reliably statistically independent. This may be because the first
neuron can maximize information transmission without influence from the firing behavior
of the other neurons, the second neuron is influenced only by the the first neuron, and
so on, whereas in (4.37) each neuron is influenced by all other neurons. Therefore the
neurons sometimes may not be able to find a solution at all, especially if the number
of neurons is large. On the other hand, version (4.36) needs different learning rates for
every neuron.

In this experiment the latter version (4.37) is used, where each neuron receives infor-
mation about the mutual information between its output and the output of all other
neurons. Three postsynaptic neurons receive 100 inputs consisting of correlated Poisson
spike trains at 20Hz each. This time the spike trains at the first 90 synapses were di-
vided into three groups (group 1: spike trains 1 to 30, group 2: spike trains 31 to 60, and
group 3: spike trains 61 to 90). Within each group a correlation coefficient of 0.5 was
established, but spike trains from different groups were uncorrelated. The remaining 10
synapses received uncorrelated Poisson input (group 4). Weights were initialized ran-
domly between 0.10 and 0.12 for all three neurons and could change between the bounds
0 and 1.

Figure 4.9 shows the evolution of weights for all three postsynaptic neurons. Each
neuron develops strong weights to one of the correlated groups: neuron 1 to group 1,
neuron 2 to group 3, and neuron 3 to group 2. One sees that although the synaptic
efficacies of neuron 2 initially grow for the second group of inputs, they later change to
group 3 as neuron 3 starts to drive its weights toward group 2. This demonstrates how
the weight change of each neuron is influenced by the mutual information between its

43



4. Extracting Independent Components

output and the output of the other neurons. The strength of the uncorrelated group of
synapses remained low for all three neurons, although some sporadically increased their
efficacies. This is due to the fact that uncorrelated input does not induce statistical
dependence between the outputs and that a constant target firing rate of 30Hz has to
be maintained.

Figure 4.10.: More than two neurons. Final weight distributions of all three postsynaptic
neurons (blue crosses: neuron 1, red circles: neuron 2, green plusses: neuron
3) in 9 consecutive trials after 30 minutes of learning.

Figure 4.10 shows the final weight distribution for all three postsynaptic neurons after
30 minutes of learning in 9 consecutive trials. Each neuron develops strong synaptic
efficacies to a different correlation group in the inputs, even though the group number
may vary from trial to trial. This means that via the synaptic update rule (4.37) for more
than two neurons the three postsynaptic neurons in this case extract three independent
components in the input.
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In the previous chapter a learning rule was presented that optimizes the information
transmission of two neurons, but at the same time keeps their outputs statistically in-
dependent. However, the rule for updating the weights of neuron 2 (4.29) is not local
since it requires access to the firing behavior of neuron 1 (cf. (4.33)). In a more realistic
setup neuron 2 would receive this information via synaptic connections from neuron 1.

In general, such connections are formed in the brain by (inhibitory) interneurons.
These interneurons exhibit a large functional diversity, i.e., they may not only influence
the membrane potential of the target neuron in the traditional additive way, but they
are also able to affect the gain of the summated synaptic potentials, for example, or
completely disable spiking of the postsynaptic neuron for a short period of time. Ad-
ditionally there may be different time constants due to different neurotransmitters (e.g.
GABAA or GABAB) or different forms of inhibition like shunting inhibition, where due
to strategic position of inhibitory synapses on the target neuron the postsynaptic mem-
brane voltage can be clamped to the resting potential by “shunting” the excitatory input
from large parts of the dendritic tree.

When using inhibitory interneurons there is a trade-off between the performance of
the learning rule (or approximation of (4.29), respectively) and the complexity of the
connection between the two neurons. In the simplest case we can assume that there is
a single interneuron that synapses on neuron 2 and emits a spike whenever neuron 1
fires an action potential. This is a strong simplification since usually a single neuron
is not sufficient to make an interneuron fire. Any form of inhibition between neuron 1
and neuron 2 has to implement or to approximate the effect of the term Bpost

12 (4.33),
while the weights of both neurons evolve according to the learning rule (3.25) presented
in section 3.2, which maximizes the mutual information between input and output (cf.
figure 4.1).

First, a brief overview of types of interneurons in the brain and their functional prop-
erties is given. In section 5.2 a gain modulation mechanism is introduced by which
the gain of neuron 2 is changed in order to implement the term sensitive to the statis-
tical dependence between the outputs implicity in the postsynaptic term of the BCM
rule. Then, section 5.3 presents some results of computer simulation experiments and in
general discusses the use of interneurons for this task.

5.1. Interneurons of the Neocortex

The majority of neocortical neurons (about 70-80%) are excitatory pyramidal neurons,
which have relatively stereotyped anatomical, physiological and molecular properties.
The remaining 20-30% consist of interneurons, most of which are inhibitory. Their
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characteristics are highly diverse (see (Toledo-Rodriguez et al., 2002; Markram et al.,
2004) for reviews); and this daunting variety of inhibitory interneurons is currently one
of the largest obstacle in the quest to fully understand the principles of neural circuits
in the brain. However, interneurons also share some common features, most of which
distinguish them from pyramidal neurons. Interneurons use GABA (γ-aminobutyric
acid) as their neurotransmitter, and they can receive both excitatory and inhibitory
synapses onto their somata.

Interneurons are usually classified by the domain of target cells on which their synapses
are placed1. This selective innervation allows each type of interneuron to effect its target
cell in a different specific way (Miles et al., 1996; Buhl et al., 1994). Typical target
domains are

• the (peri-)somatic region of the target cells; in this case inhibitory interneurons
affect the gain of the summated synaptic potentials and thereby the action potential
discharge of target cells (Wang et al., 2002; Miles et al., 1996; Buhl et al., 1995).
According to their appearance, these cells are usually named basket cells. These
neurons are often involved in phasing and synchronizing neuronal activity (Cobb
et al., 1995).

• the dendrites of the target cells; this type of inhibition influences dendritic pro-
cessing and integration of synaptic inputs to influence synaptic plasticity. It also
accounts for the “classical” form of inhibition where the membrane potential of the
postsynaptic neuron is additively influenced. Interneurons targeting dendrites in-
clude bitufted cells, bipolar cells, double bouquet cells and neurogliaform cells, as
well as Martinotti cells and neurons exclusive to layer I, such as the Cajal-Retzius
cells.

• the axon initial segment of the target cells; this targeting places these interneurons
in a powerful position to override all the complex dendritic integration and so-
matic gain settings by “editing” the neuron’s action potential output. Due to their
candlestick-like axonal terminals these neurons are called chandelier cells and affect
the generation and timing of action potentials (Zhu et al., 2004).

5.2. Gain Modulation

Gain modulation has emerged in recent years as a general neural computational principle
by which cortical neurons combine and process information (Salinas and Thier, 2000;
Chance et al., 2002). The term refers to a change in the response amplitude of a neuron
that is independent of its selectivity or receptive field characteristics. It is a nonlinear
way to combine or integrate information from different sources of input, thereby giving
rise to multiplicative interactions between neurons. Gain modulation has been found

1Different types of interneurons are also identified from their electrophysiological properties (i.e., accord-
ing to their characteristic onset and steady-state response to a step current injection into the soma)
and their molecular properties (Toledo-Rodriguez et al., 2002; Markram et al., 2004).
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to be a useful for certain computations such as coordinate transformations or invariant
object recognition (Salinas and Thier, 2000). However, the exact mechanisms by which it
occurs are yet unknown; it has been found to be caused by background synaptic inputs
(Chance et al., 2002) or by activation of GABA receptors, both tonically (Semyanov
et al., 2004) or by inhibitory synapses close to the soma, usually via basket cells (Miles
et al., 1996; Wang et al., 2002).

Gain modulation is not equivalent to the modification of neuronal responses by tradi-
tional additive excitation or inhibition. This distinction can be illustrated by looking at
the firing rate of a neuron in resonse to an injected current or, equivalently, to the mem-
brane potential (cf. figure 3.1(a)). Classical excitation (inhibition) would merely shift
this curve to the left (right), whereas gain modulation leads to a change in the slope
of the firing-rate curve, thereby corresponding to a multiplicative or divisive scaling,
distinct from these additive or subractive shifts.

In our case we have to model the mutual information or the statistical dependence
between the outputs of two neurons receiving the same input by modulating the gain
g(u2(t)) of neuron 2. Remember that the postsynaptic term of neuron 2 can be written
as

B2(t) = Bpost
2 (t)− γ1B

post
12 (t), (5.1)

where

Bpost
2 (t) = δ(t− t̂2 − δ) log

[
g(u2(t))

ḡ2(t)

(
g̃

ḡ2(t)

)γ2
]
−

−R2(t) [g(u2(t))− (1 + γ2)ḡ2(t) + γ2g̃]
(5.2)

and

Bpost
12 (t) = δ(t− t̂2 − δ)

{
δ(t− t̂1 − δ) log

ḡ12(t)
ḡ1(t)ḡ2(t)

−R1(t)
[
ḡ12(t)
ḡ2(t)

− ḡ1(t)
]}

−

−R2(t)
{

δ(t− t̂1 − δ)
[
ḡ12(t)
ḡ1(t)

− ḡ2(t)
]
−R1(t) [ḡ12(t)− ḡ1(t)ḡ2(t)]

}
.

(5.3)

For a discrete time implementation with step size ∆t, we can distinguish between 4
postsynaptic states for both neurons in each time step k: one where both are spiking,
one where neither of them emits a spike and two cases where only one of them fires. For
these cases (denoted as two binary variables yk

1 , yk
2 ) the postsynaptic term evaluates to

• yk
1 = yk

2 = 1:

B2(t) =
1

∆t
log
[
g(u2(t))

ḡ2(t)

(
g̃

ḡ2(t)

)γ2
]
− 1

(∆t)2
γ1 log

ḡ12(t)
ḡ1(t)ḡ2(t)

, (5.4)

• yk
1 = 0, yk

2 = 1:

B2(t) =
1

∆t
log
[
g(u2(t))

ḡ2(t)

(
g̃

ḡ2(t)

)γ2
]

+
1

∆t
γ1R1(t)

[
ḡ12(t)
ḡ2(t)

− ḡ1(t)
]

, (5.5)
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• yk
1 = 1, yk

2 = 0:

B2(t) = −R2(t) [g(u2(t))− (1 + γ2)ḡ2(t) + γ2g̃] +
1

∆t
γ1R2(t)

[
ḡ12(t)
ḡ1(t)

− ḡ2(t)
]

,

(5.6)

• yk
1 = yk

2 = 0:

B2(t) = −R2(t) [g(u2(t))− (1 + γ2)ḡ2(t) + γ2g̃]−γ1R1(t)R2(t) [ḡ12(t)− ḡ1(t)ḡ2(t)] ,
(5.7)

where for simplicity t stands for tk = k∆t.
We want to model the contribution of the term expressing the mutual information

between the outputs (5.3) by modulating the gain g(u2(t)). That is, we again apply the
simple postsynaptic BCM-term

Bpost
2 (t) = δ(t− t̂2 − δ) log

[
g′2(t)
ḡ2(t)

(
g̃

ḡ2(t)

)γ2
]
−

−R2(t)
[
g′2(t)− (1 + γ2)ḡ2(t) + γ2g̃

] (5.8)

to neuron 2, but try to encapsulate the effect of making the output independent of neuron
1 in changing the gain g(u2(t)) into g′2(t).

First, we try to find arithmetic expressions for g′2(t) by comparing formula (5.8) with
equations (5.4) to (5.7). Then we get

• yk−1
1 = yk−1

2 = 1:

g′2(t) = g(u2(t))
(

ḡ1(t)ḡ2(t)
ḡ12(t)

)Ginh

, (5.9)

• yk−1
1 = 0, yk−1

2 = 1:

g′2(t) = g(u2(t)) exp
[
R1(t)γ1

(
ḡ12(t)
ḡ2(t)

− ḡ1(t)
)]

, (5.10)

• yk−1
1 = 1, yk−1

2 = 0:

g′2(t) = g(u2(t))−Ginh

[
ḡ12(t)
ḡ1(t)

− ḡ2(t)
]

, (5.11)

• yk−1
1 = yk−1

2 = 0:

g′2(t) = g(u2(t)) + R1(t)γ1 [ḡ12(t)− ḡ1(t)ḡ2(t)] , (5.12)

where Ginh is a dimensionless constant proportional to γ1.
The gain of neuron 2 is changed multiplicatively if it itself has spiked in the previ-

ous time step (denoted by yk−1
2 = 1) and additively otherwise (yk−1

2 = 0). Remem-
ber that the running average ḡ12(t) estimates the joint postsynaptic spiking probability
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5.2. Gain Modulation

P (yk
1 , yk

2 |Y
k−1
1 , Y k−1

2 ), whereas the product ḡ1(t)ḡ2(t) is a measure for the independent
spiking probability P (yk

1 |Y
k−1
1 )P (yk

2 |Y
k−1
2 ). Usually, ḡ12(t) is larger than ḡ1(t)ḡ2(t) and

if the outputs are statistically independent, these values would be approximately equal.
Since ḡ1(t) and ḡ2(t) will approach the target firing rate g̃ due to the BCM-rule, the
update rule will try to push ḡ12(t) towards the product ḡ1(t)ḡ2(t).

In the first case (5.9) the gain is in general multiplicatively decrased by a factor mea-
suring how far the current postsynaptic activity is away from statistical independence.
This means that simultaneous activity of both neurons is punished if the neurons’ activ-
ity has recently been statistically dependent (e.g., if they were both highly active before).
When on the other hand only neuron 1 has spiked in the previous time step (5.11) the
gain is inhibited by an additive amount. The cases where neuron 1 is not spiking, i.e.,
(5.10) and (5.12), would result in an multiplicative or additive increase of the gain. Note
that these values depend not only on the current firing rates, but also on the refractory
state of neuron 1, that is, it differs between whether neuron 1 did not spike because of
a low firing rate or because of refractoriness.

However, figure 4.1 on page 34 suggests that significant effects are encountered only
when one of the two neurons is firing; also the influence of simultaneous action potentials
within the same time step can be neglected as ∆t gets small. Therefore we focus only
on cases (5.10) and (5.11) representing a multiplicative increase or an additive decrease
of the gain. Incorporating an exponential decay with time constant τg, we define two
functions

kg2(t) =
∏
f

[
1 +

(
G0(t

(f)
2 )− 1

)
exp

(
t− t

(f)
2

τg

)]
, (5.13)

dg2(t) = −
∑

f

G1(t
(f)
1 ) exp

(
t− t

(f)
1

τg

)
, (5.14)

with

G0(t) = exp
[
γ1R1(t)

(
ḡ12(t)
ḡ2(t)

− ḡ1(t)
)]

, (5.15)

G1(t) = min
{

g(u2(t)), Ginh

[
ḡ12(t)
ḡ1(t)

− ḡ2(t)
]}

, (5.16)

such that the gain is modulated according to

g′2(t) = g(u2(t)) · kg2(t) + dg2(t). (5.17)

The term kg2(t) models the multiplicative gain increase which occurs at spike times of
neuron 2 (t(f)

2 ); in the absence of action potentials it decays back to 1. The term dg2(t)
accounts for the additive decrease of the gain at postsynaptic spike times of neuron 1.
Note that the gain cannot take negative values, therefore it is decreased at most by its
current value g(u2(t)). Between spikes this inhibition term decays back to 0. Figure
5.1 shows both of these terms as a function of time during 1 second for a sample of
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5. Using Interneurons

Figure 5.1.: Visualization of the gain modulation mechanism during 1 second. From top
to bottom: the output spike trains of neuron 1 (green) and neuron 2 (blue),
the terms kg2 (blue, left scale) and dg2 (green, right scale), the original gain
g(u2) (green) and the modulated gain g′2 (blue), and the postsynaptic term
Bpost

2 without (green) and with (blue) gain modulation as a function of time
(τg = 10ms).
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5.3. Results

postsynaptic spike trains of both neurons, as well as the gain g2 and the postsynaptic
term Bpost

2 both with and without gain modulation.
One sees that whenever neuron 1 emits a spike the gain of neuron 2 is decreased; the

firing probability is almost 0 for a short period of time. On the other hand, if neuron
2 fires an action potential itself its gain is slightly increased. Thus repetitive firing of
neuron 2 is more enforced if these spikes are not accompanied by spikes from neuron 1.
Considering the time course of the postsynaptic term one finds that the peaks caused
by firings of neuron 2 are approximated well due to the multiplicative gain modulation,
whereas peaks caused by action potentials of neuron 1 cannot be fully modelled since it
is not possible to make the gain negative. However, this effect is still accounted for by
the fact that the postsynaptic term is larger for a short period of time afterwards which
is given by the time constant of the additive gain decrease.

5.3. Results

The effect of the term Bpost
12 measuring the statistical dependence between both outputs

has now been implemented by a gain modulation mechanism, such that the synaptic
weights of both neurons simply evolve according to the generalized BCM rule for spiking
neurons. First, it has to be said that due to the time course of this term (cf. figure
4.1), which has sharp peaks at postsynaptic spike times, it is rather hard to model with
synaptic connections that have certain time constants, etc. Furthermore, it is necessary
to distinguish between spikes of neuron 1 and spikes of neuron 2 (or between spikes of
the target neuron and those of other neurons, respectively), that is, probably more than
one interneuron is needed. Third, inhibition alone, in the sense that firing of the target
neuron is made more difficult, is not enough, it is also necessary to enforce the emission
of action potentials.

Despite these difficulties I have derived a gain modulation mechanism from purely
theoretical considerations how the gain has to be changed in order to achieve the desired
effect. The result suggests that the gain of neuron 2 (i.e., the firing propability as
a function of the membrane potential) should be additively decreased in the case of
spikes of neuron 1, and multiplicatively increased when neuron 2 fires itself. However,
it has yet to be discussed how this approach may in detail be implemented by one or
more interneurons. Gain changes can usually be implemented by basket cells, which
synapse at regions on or near the soma. The inhibitory effect usually results in a firing
probabilty close to 0 for a short period of time and therefore might also be realized by
fully prohibiting action potential generation during that time, e.g., by chandelier cells
and by innervation of the axon initial segment.

Gain changes have to occur during a short period of time since they presumably carry
information about spike times. Therefore smaller time constants (GABAA) are favored;
in the simulations a time constant of 10ms has been used. Longer time constants of about
100ms (GABAB) have proven to be not so suitable. Attempts to change the membrane
potential, either in the traditional additive way, or by shunting inhibition, have not been
fruitful either.
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5. Using Interneurons

Figure 5.2.: Correlation experiment using gain modulation. (Top) Evolution of weights
during 30 minutes of learning for both postsynaptic neurons receiving Pois-
son input at 20Hz from 100 synapses. Inputs to synapses 1 to 40 and 41
to 80 are both correlated with a coefficient of 0.5, but any two inputs be-
longing to different grups are uncorrelated. Synapses 81 to 100 receive un-
correlated Poisson input. (red: strong synapses, wj ≈ 1, blue: depressed
synapses, wj ≈ 0.) Weights were initialized randomly between 0.10 and
0.12, α2 = 3 · 10−6, γ1 = 0.01, γ2 = 10. (Bottom) Evolution of the aver-
age mutual information per time bin between input and output (blue solid
line, left scale) and the Kullback-Leibler divergence per time bin for both
neurons (green dashed line, right scale) as a function of time. Averages are
calculated over segments of 1 minute.
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5.3. Results

Figure 5.3.: Correlation experiment using gain modulation. Evolution of the average
mutual information per time bin between both output spike trains as a
function of time. Averages are calculated over segments of 1 minute.

Figure 5.4.: Correlation experiment using gain modulation. Final weight distributions
of both postsynaptic neurons (blue crosses: neuron 1, red circles: neuron 2)
in 9 consecutive trials after 30 minutes of learning.
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5. Using Interneurons

This approach is tested by the correlation experiment of section 4.4.1, where the
input consisted of two correlated groups, but spike trains from different groups were
uncorrelated (cf. figures 4.2, 4.3, and 4.4). Figures 5.2 and 5.3 show the evolution
of weights and information transmission for both neurons, and the evolution of mutual
information between the outputs, respectively. Even though the weights of neuron 2 start
growing for the same correlation group in the input as to which neuron 1 specializes,
it finally develops strong efficacies to the other group. However, in 2 of 9 consecutive
trials (trial 1 and 8 in figure 5.4) the neurons failed to specialize for different correlation
groups.
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6. Conclusion

In this thesis a learning rule for spiking neurons is derived that extracts statistically
independent components from an ensemble of input spike trains. The approach is based
on a recent result proposing a generalized BCM rule for spiking neurons that maximizes
information transmission between the input and the output of a stochastically spiking
neuron model (Toyoizumi et al., 2005a). There a synaptic update rule has been derived
which maximizes the mutual information between input and output spike trains under
the constraint of a constant target firing rate and which exhibits all the basic features of
the BCM model (Bienenstock et al., 1982), namely regimes of LTP and LTD separated
by a sliding threshold on the postsynaptic activity. In this thesis this idea is extended in
a way that a second neuron, which receives the same input, also maximizes information
transmission, but at the same time tries to keep its output statistically independent to
the output of the first neuron.

Optimization under these constraints yields a plasticity rule similar to the general-
ized BCM rule for spiking neurons proposed in (Toyoizumi et al., 2005a), however, an
additional term is included that is sensitive to the momentary statistical dependence
between the outputs of both neurons. This term depends on the recent firing history
of both neurons; more precisely, it compares the average product of firing rates of both
neurons (accounting for the output joint probability) with the product of their average
firing rates (estimating the independent output distribution). Thereby, it minimizes the
mutual information between the output spike trains. The learning rule is tested in sev-
eral computer simulation experiments, and it is also suggested how it may be extended
to the case of more neurons.

However, this requires information about the firing behavior of one neuron to be non-
locally available at the site of the other neuron. In a biologically more realistic setup,
this neuron would receive this information via (usually inhibitory) synaptic connections.
Information about the firing behavior of both neurons could at least in principle be
available for an interneuron connecting them. For simplicity, it is assumed that there is
an interneuron that fires whenever its presynaptic neuron fires. In reality, one neuron
alone is not sufficient to make an interneuron fire, therefore one could, for instance,
replace the neurons by populations of clones of neurons.

Any interneuron has to implement the effect of the term Bpost
12 sensitive to the mo-

mentary statistical dependence between the outputs. It turns out that it is necessary
to distinguish between spikes of both neurons, i.e., spikes of neuron 1 have a different
effect than spikes of neuron 2. Furthermore, firing of the target neuron has to be both
weakened and encouraged, that is, both inhibition and excitation are needed. Here, the
approximation is achieved by a gain modulation mechanism derived from theoretical
considerations how the gain function should be changed to have the desired effect. How-
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6. Conclusion

ever, it has yet to be discussed how this approach may in detail be implemented by one
or more interneurons. It should be also possible to extend this approach to the case of
more than two neurons (e.g., analogously to the result suggested in section 4.4.4), but
there has been no time to investigate this idea.

The proposed learning rule is not perfect; for example, there are a lot of parameters
(αi, γ1, γ2) that require a relatively fine tuning in order to get some reasonable results.
For example, if the learning rate α is too high the weights do not converge to a stable
solution, but start to oscillate. The same applies for the case if γ1 is too large; if
it is too low, however, the statistical dependence between the outputs has no effect.
Especially in the experiments of chapter 5 I have invested a lot of time searching for
good parameters. Furthermore, the learning rule has yet to be tested in more complex
experiments. Simulations have been performed in MATLAB on a standard personal
computer.

The learning rule presented in this thesis provides an idea for a first step towards an
application of (nonlinear) independent component analysis (ICA) (Hyvärinen and Oja,
2000) to the case of spiking neurons. It seems to be an important mechanism of neural
systems in the brain to extract statistically independent features for several reasons.
First, it can be shown that ICA and related approaches can reproduce many properties
of cells in the brain, especially in visual cortex (Hyvärinen et al., 2005). Second, ICA
produces an efficient coding scheme in the sense that it finds sparse representations of
the input data, supporting the idea that one of the main aims of stimulus processing
is the reduction of redundancy (Barlow, 1961; Barlow, 1989). Finally, ICA provides a
generative model and tries to explain how the observed signals are constructed. While I
do not propose that independent component analysis in the brain works via the suggested
learning rule, it nevertheless shows some interesting properties and it might provide some
ideas for future work.

56



A. Derivation of the Learning Rule

The quantity we want to maximize is

L = I(XK ,YK
2 )− γ1I

′(YK
1 ,YK

2 )− γ2D(P (Y K
2 )||P̃ (Y K

2 )), (A.1)

where the random variables XK , YK
1 and YK

2 describe the input spike trains and the
output spike trains of neuron 1 and 2, respectively, of length K ·∆t. I(XK ,YK

2 ) is the
mutual information between the input spike trains and the output spike train of neuron 2,
and I ′(YK

1 ,YK
2 ) = I(YK

1 ,YK
2 )/(K ·∆t) is the information rate between the output spike

trains of both neurons. The Kullback-Leibler divergence D(P (Y K
2 )||P̃ (Y K

2 )) measures
the distance between the current distribution P (Y K

2 ) over all possible output spike trains
from some target distribution P̃ (Y K

2 ). γ1 and γ2 are weighting constants, where γ2 is
dimensionless and γ1 has dimension s.

The mutual information I(X,Y) between two random variables X and Y is defined
by

I(X,Y) =
∑
X,Y

P (X, Y ) log
P (Y |X)
P (Y )

=
∑
X,Y

P (X, Y ) log
P (X, Y )

P (X)P (Y )
,

(A.2)

where the sum runs over all instances X and Y of the random variables X and Y. The
Kullback-Leibler divergence D(P (Y )||P̃ (Y )) between two distributions P (Y ) and P̃ (Y )
of the same random variable Y is given by the expression

D(P (Y )||P̃ (Y )) =
∑
Y

P (Y ) log
P (Y )
P̃ (Y )

, (A.3)

where the sum runs over all instances Y of Y.
Note that the expressions for mutual information and Kullback-Leibler divergence are

both expectation values, therefore we can write

L =

〈
log

P (Y K
2 |XK)

P (Y K
2 )

− γ1

K∆t
log

P (Y K
1 , Y K

2 )
P (Y K

1 )P (Y K
2 )

− γ2 log
P (Y K

2 )
P̃ (Y K

2 )

〉
XK ,YK

1 ,YK
2

. (A.4)
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A. Derivation of the Learning Rule

Remember from chapter 4 how the following probabilities are defined (for i = 1, 2):

P (Y K
i |XK) =

K∏
k=1

P (yk
i |Y k−1

i , Xk),

P (Y K
i ) =

K∏
k=1

P (yk
i |Y k−1

i ),

P (Y K
1 , Y K

2 ) =
K∏

k=1

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 ),

P̃ (Y K
i ) =

K∏
k=1

P̃ (yk
i |Y k−1

i ).

With these expressions we can write L as L =
∑K

k=1 ∆Lk with

∆Lk =

〈
log

P (yk
2 |Y

k−1
2 , Xk)

P (yk
2 |Y

k−1
2 )

− γ1

∆t
log

P (yk
1 , yk

2 |Y
k−1
1 , Y k−1

2 )
P (yk

1 |Y
k−1
1 )P (yk

2 |Y
k−1
2 )

−γ2 log
P (yk

2 |Y
k−1
2 )

P̃ (yk
2 |Y

k−1
2 )

〉
Xk,Yk

1 ,Yk
2

. (A.5)

Assuming slow changes of synaptic weights, a gradient ascent algorithm is applied to
maximize the objective function (A.1) and the weight w2j of neuron 2 is changed at each
time step by

∆wk
2j = α

∂∆Lk

∂w2j
, (A.6)

with an appropriate learning rate α > 0.

A.1. Evaluation of the Gradient

To evaluate the gradient we have to calculate the partial derivative of (A.5) with respect
to w2j . This expression contains several terms which are functions of the input spike
trains Xk and the output spike trains Y k

1 and Y k
2 .

The average of an arbitrary function fw with arguments x, y1 and y2 is by definition

〈fw(x, y1, y2)〉x,y1,y2
=
∑

x,y1,y2

pw(x, y1, y2)fw(x, y1, y2), (A.7)

where pw(x, y1, y2) denotes the joint probability of the triple (x, y1, y2) to occur. The sum
runs over all configurations of x, y1 and y2 and the subscript w indicates that both the
probability distribution pw and the function fw may depend on an additional parameter
w.
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A.1. Evaluation of the Gradient

We have pw(x, y1, y2) = p(x)p(y1|x)pw(y2|x)1, where p(x) is a given input distribution
and p(y1|x) and pw(y2|x) the conditional probabilities of generating outputs y1 and y2

given the input x. Note that since we take the derivative with respect to weights of
neuron 2 only, pw(y2|x) depends on the additional parameter w whereas p(y1|x) does
not. Hence, (A.7) can be transformed into:

〈fw(x, y1, y2)〉x,y1,y2
=
∑

x,y1,y2

p(x)p(y1|x)pw(y2|x)fw(x, y1, y2)

=
∑
x,y1

p(x, y1)
∑
y2

pw(y2|x)fw(x, y1, y2)

=

〈∑
y2

pw(y2|x)fw(x, y1, y2)

〉
x,y1

.

(A.8)

Taking the derivative with respect to w, the product rule yields two terms,

∂

∂w
〈fw(x, y1, y2)〉x,y1,y2

=

〈∑
y2

pw(y2|x)
∂

∂w
fw(x, y1, y2)

〉
x,y1

+

〈∑
y2

∂

∂w
pw(y2|x)fw(x, y1, y2)

〉
x,y1

,

(A.9)

where the first term contains the derivative of the function fw and the second term
contains the derivative of the conditional probability pw. Since

∂

∂w
pw(y2|x) = pw(y2|x)

∂

∂w
log pw(y2|x), (A.10)

the right-hand side of (A.9) evaluates to〈
∂

∂w
fw(x, y1, y2)

〉
x,y1,y2

+
〈[

∂

∂w
log pw(y2|x)

]
fw(x, y1, y2)

〉
x,y1,y2

, (A.11)

i.e., it can be written as an average over the joint distribution of x, y1 and y2.
Now we can evaluate each of the terms of (A.5) using (A.11). Considering the term

∂
∂w2j

〈
log P (yk

1 , yk
2 |Y

k−1
1 , Y k−1

2 )
〉

Xk,Yk
1 ,Yk

2

first, we get

〈
∂

∂w2j
log P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

〉
Xk,Yk

1 ,Yk
2

+
〈[

∂

∂w2j
log P (Y k

2 |Xk)
]

log P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 )
〉

Xk,Yk
1 ,Yk

2

. (A.12)

1since the outputs y1 and y2 are independent given the input x
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A. Derivation of the Learning Rule

We find that the first term of (A.12) vanishes because〈
∂

∂w2j
log P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

〉
Xk,Yk

1 ,Yk
2

=

=

〈〈
∂

∂w2j
log P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

〉
yk

1 ,yk
2 |Y

k−1
1 ,Y k−1

2

〉
Yk−1

1 ,Yk−1
2

=

〈∑
yk
1 ,yk

2

[
∂

∂w2j
log P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

]
P (yk

1 , yk
2 |Y k−1

1 , Y k−1
2 )

〉
Yk−1

1 ,Yk−1
2

=

〈
∂

∂w2j

∑
yk
1 ,yk

2

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 )

〉
Yk−1

1 ,Yk−1
2

= 0. (A.13)

In the second line of (A.13) we drop the expectation over Xk since the argument of the
expectation operator is independent of the input spike train Xk and use the identity
〈·〉Yk

1 ,Yk
2

=
〈
〈·〉yk

1 ,yk
2 |Y

k−1
1 ,Y k−1

2

〉
Yk−1

1 ,Yk−1
2

.

With the same argument it can be shown that〈
∂

∂w2j
log P (yk

i |Y k−1
i )

〉
Xk,Yk

1 ,Yk
2

=
〈

∂

∂w2j
log P (yk

i |Y k−1
i , Xk)

〉
Xk,Yk

1 ,Yk
2

= 0 (A.14)

for i = 1, 2 (see also (Toyoizumi et al., 2005b)), and P̃ (yk
i |Y

k−1
i ) is by definition inde-

pendent of w2j . Hence, the only term that gives a nontrivial contribution in (A.12) is
the second one. With an analogous evaluation for the other terms in (A.5) we finally
have

∂

∂w2j
∆Lk =

〈[
∂

∂w2j
log P (Y k

2 |Xk)
](

log
P (yk

2 |Y
k−1
2 , Xk)

P (yk
2 |Y

k−1
2 )

− γ1

∆t
log

P (yk
1 , yk

2 |Y
k−1
1 , Y k−1

2 )
P (yk

1 |Y
k−1
1 )P (yk

2 |Y
k−1
2 )

− γ2 log
P (yk

2 |Y
k−1
2 )

P̃ (yk
2 |Y

k−1
2 )

)〉
Xk,Yk

1 ,Yk
2

. (A.15)

From chapter 4 we know that

P (yk
i |Y k−1

i , Xk) = (ρk
i )

yk
i (1− ρk

i )
(1−yk

i ),

P (yk
i |Y k−1

i ) = (ρ̄k
i )

yk
i (1− ρ̄k

i )
(1−yk

i ),

P̃ (yk
i |Y k−1

i ) = (ρ̃k
i )

yk
i (1− ρ̃k

i )
(1−yk

i ),

P (yk
1 , yk

2 |Y k−1
1 , Y k−1

2 ) = (¯̄ρk
12)

yk
1yk

2 (¯̄ρk
1 − ¯̄ρk

12))
yk
1 (1−yk

2 )(¯̄ρk
2 − ¯̄ρk

12)
(1−yk

1 )yk
2 ·

· (1− ¯̄ρk
1 − ¯̄ρk

2 + ¯̄ρk
12)

(1−yk
1 )(1−yk

2 ),
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A.1. Evaluation of the Gradient

where ρk
i is the firing probability of neuron i in time step k, ρ̄k

i =
〈
ρk

i

〉
Xk|Y k−1

i
and

¯̄ρk
i =

〈
ρk

i

〉
Xk|Y k−1

1 ,Y k−1
2

are average firing probabilities of neuron i at time k, and ¯̄ρk
12 =〈

ρk
1ρ

k
2

〉
Xk|Y k−1

1 ,Y k−1
2

is the average product of firing probabilities of both neurons.
Hence, we can define the factors

F k
2 := log

P (yk
2 |Y

k−1
2 , Xk)

P (yk
2 |Y

k−1
2 )

= yk
2 log

ρk
2

ρ̄k
2

+ (1− yk
2 ) log

1− ρk
2

1− ρ̄k
2

,

(A.16)

Gk
2 := log

P (yk
2 |Y

k−1
2 )

P̃ (yk
2 |Y

k−1
2 )

= yk
2 log

ρ̄k
2

ρ̃k
2

+ (1− yk
2 ) log

1− ρ̄k
2

1− ρ̃k
2

,

(A.17)

and

F k
12 := log

P (yk
1 , yk

2 |Y
k−1
1 , Y k−1

2 )
P (yk

1 |Y
k−1
1 )P (yk

2 |Y
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1yk

2 log
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12
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k
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2 ) log
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12
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1 )yk

2 log
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12
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Furthermore, we can calculate the derivative in (A.15) which yields the correlation term

Ck
2j :=

∂

∂w2j
log P (Y k

2 |Xk)

=
∂

∂w2j
log

[
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l=1
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(1−yl
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(A.19)

Summarizing the derived update rule, the weight change at time step k is given by

∆wk
2j = α

〈
Ck

2j(F
k
2 −

γ1

∆t
F k

12 − γ2G
k
2)
〉

Xk,Yk
1 ,Yk

2

. (A.20)
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A. Derivation of the Learning Rule

A.2. From Averages to an Online Rule

Now we want to derive an online rule dw2j/dt for ∆t → 0. First, we note that the
terms F k

2 , F k
12 and Gk

2 depend on postsynaptic variables only and therefore introduce a
postsynaptic factor

Bk
12 =

F k
2 − γ2G

k
2

∆t
− γ1

F k
12

(∆t)2
, (A.21)

and write
∆wk

2j

∆t
= α

〈
Ck

2jB
k
12

〉
Xk,Yk

1 ,Yk
2

. (A.22)

Taking the limit ∆t → 0, according to (Toyoizumi et al., 2005a; Toyoizumi et al.,
2005b) the correlation term Ck

2j can be transformed into the term C2j(t) given by the
differential equation

dC2j(t)
dt

= −C2j(t− δ)
τC

+
∑

f

ε(t− t
(f)
j )S2(t)[δ(t− t̂2 − δ)− g(u2(t))R2(t)]. (A.23)

Considering the postsynaptic term Bk
12, we make the assumption that the expectations

〈〉Xk|Y k−1
i

and 〈〉Xk|Y k−1
1 ,Y k−1

2
are approximately equal. This simplifies the expression and

we get
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(A.24)

We recall the definition

ρk
i = 1− exp[−g(ui(tk))Ri(tk)∆t] ≈ g(ui(tk))Ri(tk)∆t (A.25)

and define

ḡi(tk) = 〈g(ui(tk))〉Xk|Y k−1
i

(A.26)

ḡ12(tk) = 〈g(u1(tk))g(u2(tk))〉Xk|Y k−1
1 ,Y k−1

2
; (A.27)

then,

ρ̄k
i = ḡi(tk)Ri(tk)∆t (A.28)

ρ̄k
12 = ḡ12(tk)R1(tk)R2(tk)(∆t)2. (A.29)
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A.2. From Averages to an Online Rule

Using log(1− x) ≈ −x, we get

Bk
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− ḡ2(tk)
]

+

+ (1− yk
1 )(1− yk

2 )R1(tk)R2(tk)
[
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(A.30)

Taking the limit ∆t → 0, we replace the term Bk
12 with the postsynaptic factor

B12(t) = Bpost
2 (t)− γ1B

post
12 (t), (A.31)

with terms

Bpost
2 (t) = δ(t− t̂2 − δ) log

[
g(u2(t))

ḡ2(t)

(
g̃

ḡ2(t)

)γ2
]
−

−R2(t) [g(u2(t))− (1 + γ2)ḡ2(t) + γ2g̃]
(A.32)

and

Bpost
12 (t) = δ(t− t̂2 − δ)

{
δ(t− t̂1 − δ) log

ḡ12(t)
ḡ1(t)ḡ2(t)

−R1(t)
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}
.

(A.33)

Under the assumption of a small learning rate α the expectations 〈·〉Xk,Yk
1 ,Yk

2
from

(A.20) can be approximated by averaging over a single long trial that allows us to define
the online rule:

dw2j(t)
dt

= αC2j(t)B12(t− δ). (A.34)
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B. Notation

wij weight value of the synapse connecting presynaptic neuron j to
postsynaptic neuron i

uj presynaptic acivity (e.g., firing rate) of neuron j
vi postsynaptic acivity (e.g., firing rate) of neuron i
α learning rate (α > 0)
δ(t) Dirac-δ function (

∫ +∞
−∞ δ(t)dt =

∫ +ε
−ε δ(t)dt = 1, for any ε > 0)

t
(f)
j (t(f)

i ) time of f -th presynaptic (postsynaptic) spike of neuron j (i)
X, X a random variable (X) and a specific instantiation of this random

variable (X)
P (X) the probability that X takes on value X; or the probability distri-

bution of X
H(X) entropy of the random variable X (or of the probability distribution

P (X))
H(X,Y) joint entropy of the random variables X and Y (i.e., the entropy

of the joint distribution P (X, Y ))
H(Y|X) conditional entropy of Y given X (i.e., the average entropy of the

distribution P (Y |X) over all X)
I(X,Y) mutual information between random variables X and Y (or be-

tween the distributions P (X) and P (Y ))
I ′(X,Y) information rate between X and Y
D(P (X)||Q(X)) Kullback-Leibler divergence between two probability distributions

P (X) and Q(X) of the same random variable (X)
〈·〉X|Y angular brackets denote an average with respect to the distribution

given in the subscript, i.e., in this case 〈·〉X|Y =
∑

X ·P (X|Y )
xk

j indicates if there is a input spike at presynaptic neuron j at time
step k (i.e., at a time t

(f)
j with tk−1 ≤ t

(f)
j ≤ tk, with tk = k∆t),

xk
j ∈ {0, 1}

yk
i indicates if there is a output spike at postsynaptic neuron i at time

step k, yk
i ∈ {0, 1}

XK
j input spike train at synapse j of length K∆t (K time bins), XK

j =
(x1

j , x
2
j , . . . , x

K
j )
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B. Notation

XK ensemble of input spike trains of length K∆t arriving at all
synapses 1 ≤ j ≤ N , i.e., XK = (XK

1 , XK
2 , . . . , XK

N )
Y K

i output spike train of neuron i of length K∆t (K time bins), Y K
i =

(y1
i , y

2
i , . . . , y

K
i )

XK ,YK
i ,yk

i random variables characterizing the values XK , Y K
i , and yk

i

ε(t− t
(f)
j ) time course of a postsynaptic potential (PSP) caused by a presy-

naptic spike arrival at synapse j at time t
(f)
j

ui(t) membrane potential of neuron i at time t
Ri(t) refractory variable of neuron i at time t, Ri(t) ∈ [0; 1]
g(u) gain function; firing rate in Hz as a smooth increasing function of

the membrane potential u
g̃ constant target firing rate
ḡi(t) average of the output firing rate of neuron i at time t, ḡi(t) =

〈g(ui(t))〉X|Yi

ḡil(t) average product of firing rates of neurons i and l at time t, ḡil(t) =
〈g(ui(t))g(ul(t))〉X|Yi,Yl

ρk
i firing probability of neuron i at time step k, ρk

i ≈ g(ui(tk))Ri(tk)∆t
ρ̃k

i target firing probability of neuron i at time step k, ρ̃k
i = g̃Ri(tk)∆t

ρ̄k
i average firing probability of neuron i at time step k, ρ̄k

i =
ḡi(tk)Ri(tk)∆t

ρ̄k
il average product of firing probabilities of neurons i and l at time

step k, ρ̄k
il = ḡil(tk)Ri(tk)Rl(tk)(∆t)2

Cij(t) correlation term sensitive to coincidences between presynaptic in-
put spikes at synapse j and postsynaptic output spikes of neuron
i

Bpost
i (t) postsynaptic term measuring the information transmission be-

tween input and output spike trains of neuron i

Bpost
il (t) postsynaptic term reflecting the statistical dependence (mutual in-

formation) between the output spike trains of neurons i and l
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