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Abstract. In this paper we propose the combination of several tech-
niques into an agile formal development process: model-based testing,
formal models, refinement of models, model checking, and test-driven de-
velopment. The motivation is a smooth integration of formal techniques
into an existing development cycle. Formal models are used to generate
abstract test cases. These abstract tests are verified against requirement
properties by means of model checking. The motivation for verifying the
tests and not the model is two-fold: (1) in a typical safety-certification
process the test cases are essential, not the models, (2) many common
modelling tools do not provide a model checker. We refine the models,
check refinement, and generate additional test cases capturing the newly
added details. The final refinement step from a model to code is done
with classical test-driven development. Hence, a developer implements
one generated and formally verified test case after another, until all tests
pass. The process is scalable to actual needs. Emphasis can be shifted
between formal refinement of models and test-driven development. A car
alarm system serves as a demonstrating case-study. We use Back’s Ac-
tion Systems as modelling language and mutation analysis for test case
generation. Model checking is done with the CADP toolbox.

1 Introduction

Test-Driven Development (TDD) [6] places test cases at the centre of the de-
velopment process. The test cases serve as specification, hence they have to be
written before implementing the functionality. Furthermore, the functionality is
only gradually increased, implementing test case after test case. The proposed
development cycle is (1) write a test case that fails, (2) write code such that
the test case passes, (3) refactor the code and continue with Step 1. It has been
reported that TDD is able to reduce the defect rate by 50% [15].

However, experience over time shows that these test cases become part of the
code-base and need to be maintained and refactored as well. “With time TDD
tests will be duplicated which will make management and currency of tests more
di�cult (as functionality changes or evolves). Taking time to refactor tests is a
good investment that can help alleviate future releases development frustrations



and improve the TDD test bank.” [16] Therefore, we propose the use of abstract
test cases, that are less exposed to changes in the interface. Only the test adaptor
mapping the abstract test cases to the (current) interface should be changed.

However, when functionality changes even the abstract test cases need up-
dates. Instead of manually editing hundreds of test cases, we propose their auto-
matic regeneration from updated models. This is what model-based testing adds
to our process [18]. Furthermore, the abstract models of the system under test
(SUT) serve as oracles, specifying the expected observations for a given stimuli.

When using models for generating test cases, the models are critical. In
model-based testing, wrong models lead to wrong test cases. Therefore, it is
important to validate and/or verify the models against the expected properties.
A prerequisite for this are formal models with a precise semantics. We use Back’s
Action Systems [3] for modelling embedded systems under test. For industrial
users a translator from UML state machines to Action Systems exists [13], but
in this work we will limit ourselves to Action Systems. The Action Systems are
extended with parametrised labels and interpreted as labelled transition systems
(LTS). For testing, we partition these labels into controllable (input), observable
(output) and internal actions.

Since most model-based testing tools do not provide a model checker, we
propose a pragmatic approach for checking the validity of models: we generate
a representative set of test cases from the model, import these test cases as a
model into a model checker in which we verify the required properties of the
SUT. Safety violations in the test cases will reflect problems in the model. This
approach places the test cases in the centre of formal development. The models
are a means for test case generation.

As a further formal technique, we propose refinement techniques to develop
a series of partial models into a refined more detailed model. The partial mod-
els shall capture di↵erent functional aspects of a system, contributing to test
cases focusing on the di↵erent functionality. More refined models, will generate
test cases focusing on more subtle behaviour. Our testing technique is regression
based, in the sense that we only generate tests for new aspects in the refined
models. Via automated refinement checking we ensure that the original proper-
ties of the abstract models are preserved.

Implementation follows an agile style via test-driven development. As soon
as the first tests from the small partial models have been generated and verified
in the model checker, the developers implement test after test incrementally.

This approach is based on our tool Ulysses [8]. Ulysses is an input-output
conformance checker for Action Systems. In case of non-conformance between
two models, a test case is generated that shows their di↵erent behaviour. Ulysses
has been designed to support model-based mutation testing. In this scenario, we
generate a number of faulty models from an original reference model. The faulty
models are called mutants. Then, Ulysses checks the conformance between the
original and the mutants producing test cases as counter-examples for confor-
mance. We say that these tests cover the injected faults. Hence, our coverage
criterion is fault-based. The generated test cases are then executed on the SUT.



This method represents a generalisation of the classical mutation testing tech-
nique [10, 9, 12] to model-based testing. We have presented our testing technique
before [1], here we extend it to a formal test-driven development process.

Note that Ulysses allows non-deterministic models, in which case adaptive
test cases are generated. An adaptive test case has a tree-like shape, branching
when several possible observations for one stimulus are possible.

We see our contributions as follows: (1) a new formal test driven development
process that is agile, (2) a combination of model-based testing and formal ver-
ification techniques, (3) the new idea to verify the generated test cases instead
of the models, (4) a novel approach of mutation testing under refinement.

Structure. In the following Section 2 we present our case-study of a car alarm
system. It will serve as a running example. Then, in Section 3 we give a detailed
overview of our formal test-driven development process. The empirical results of
our case study are presented and discussed in Section 4. Finally, we draw our
conclusions in Section 5.

2 Running Example: a Car Alarm System

A car alarm system (CAS) serves as our running example. The example is in-
spired from Ford’s automotive demonstrator within the past EU FP7 project
MOGENTES3. The list of user requirements for the CAS is short:

Requirement 1: Arming. The system is armed 20 seconds after the vehicle
is locked and the bonnet, luggage compartment and all doors are closed.

Requirement 2: Alarm. The alarm sounds for 30 seconds if an unauthorised
person opens the door, the luggage compartment or the bonnet. The hazard
flasher lights will flash for five minutes.

Requirement 3: Deactivation. The anti-theft alarm system can be deacti-
vated at any time, even when the alarm is sounding, by unlocking the vehicle
from outside.

The system is highly underspecified and a variety of design decisions have to be
considered. Furthermore, the timing requirements make the example interesting.

In the following section, we give an overview of our development process and
refer to the example where appropriate.

3 A Formal Test-Driven Development Process

3.1 Initial Phase

At the beginning of the test-driven development process, we fix the testing in-
terface of the system under development. First, the system boundaries are de-
termined. It must be clear what kind of functionality belongs to the system

3
http://www.mogentes.eu



under test and what belongs to the environment. At the most abstract level,
we enumerate the controllable and observable events. The controllable actions
represent stimuli to the system. The observable actions are reactions from the
system and are received by the environment. The test driver will emulate this
environment. The abstract test cases are expressed in terms of these abstract
controllable and observable actions. Actions can have parameters.

Example 1. For the CAS we identified the following controllable events: Close,
Open for closing and opening the doors, and Lock, and Unlock for locking and
unlocking the car.

The observables are ArmedOn, ArmedO↵ for signalling that the CAS is arm-
ing and disarming. In the real car, a red LED will blink to signal the armed
state. Furthermore, we can observe the triggering of the sound alarm, SoundOn,
SoundO↵, and flash alarm, FlashOn, FlashO↵.

In addition, we parametrise each event by time. For a controllable event
c(t) this means that the event should be initiated by the tester after t seconds
since the last event. An observable event o(t) must occur after t seconds. These
hard deadlines can be relaxed in the test driver. For example, the observable
ArmedOn(20) denotes our expectation that the CAS will switch to armed after
20 seconds. ⇤

Second, the test interface at the implementation level has to be fixed. For
each abstract controllable event, a concrete stimulus has to be provided by the
system under test. In addition, the test driver has to provide an interface for the
actual observations.

Next, the test driver is implemented. It takes an abstract test case as in-
put and runs the tests as follows: (1) the abstract controllables are mapped to
concrete input stimuli, (2) the concrete input is executed on the system under
test, (3) the actual output is mapped back to the abstract level and compared
to the expected outputs. This is classical o✏ine testing [19]. Note that we allow
non-determinism in both the models and the systems under test. Hence, our
test cases may be adaptive, i.e. they may have a tree-like shape [11]. The test
driver may issue three di↵erent verdicts: pass, fail and inconclusive. The latter
is used to stop an adaptive test run, if a given test purpose cannot be met.

The abstract test cases are represented in the Aldebaran format of the CADP
toolbox4 . This is a simple graph notation for labelled transition systems.

Example 2. For our experiment we implement the CAS in Java. Hence, the test
driver maps controllable events to method calls to the SUT. The observables
are realised via callbacks to the test driver. With respect to timing we opted for
simulated time. The test driver sends tick events to the SUT.

Figure 1 shows three abstract test cases that can be executed by the test
driver. This graph representation of the test cases is automatically drawn with
CADP. ⇤

4
http://www.inrialpes.fr/vasy/cadp/
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Fig. 1. Three abstract test cases for the
CAS based on the first partial model.
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Fig. 2. The labelled transition system se-
mantics of the partial model of Figure 4.

After this initial phase, we enter the iterative phase of our agile process. The
cycle is shown in Figure 3. First, a small partial model is created. This model
captures some basic functionality that should be implemented first. Then, a set
of abstract test cases is generated from the model. Next, we verify the test cases
with respect to temporal properties. Then, the test cases are implemented in a
test-driven fashion. Finally, the implementation is refactored. After this cycle,
a di↵erent aspect of the system is modelled or a given model is refined and the
cycle starts again. In the following, we present the techniques supporting this
process.

3.2 Model

Our formal modelling notation is a version of Object-Oriented Action Systems
(OOAS) [7], an object-oriented extension of Back’s classical Action Systems [3].
However, in this paper we will not make use of the object-oriented features.

A classical Action System consists of a set of variables, an initial state and one
loop over a non-deterministic choice of actions. An action is a guarded command
that updates the state, if it is enabled. The action system iterates as long as a
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Fig. 3. The formal test-driven development cycle.

guard is enabled and terminates otherwise. In case of several enabled guards,
one is chosen non-deterministically.

In our version of Action Systems, actions may be sequentially or non-deter-
ministically composed as well as nested. For testing, we have instrumented each
action with a parametrised label. These labels represent the abstract events.
Hence, actions are categorised into controllable and observable events. In addi-
tion, we allow internal actions.

Example 3. Figure 4 shows a partial Action System model of the CAS. Its pur-
pose is to express the arming and disarming behaviour. After two basic type
definitions (Line 2-3) the Action System class is defined. Its initialisation is ex-
pressed in the system block at the bottom (Line 31). Here, several objects could
be assembled via composition operators. Three Boolean variables define the state
space of the Action System (Line 7). Next, we present three actions (Line 9-20).
The controllable action Close(t) is only enabled in the state ”disarmed and doors
open”. Furthermore, it must happen immediately (Line 10). The action sets the
variable closed to true. Similarly the controllable Lock(t) is defined (Line 13-16).
The observable ArmedOn(t) happens after 20 seconds, if the car is locked and
doors are closed (Line 17-20). The remaining three actions follow the same style
and are omitted for brevity. Finally, in the do-od block (Line 22-29) the actions
are composed via non-deterministic choice. ⇤

We define the operational semantics of an action system by a labelled tran-
sition system (LTS) with transition relation T as follows: if in a given state s an
action with label l is enabled, resulting in a post state s0, then (s, l, s0) 2 T .

Example 4. Figure 2 shows the LTS of the Action System of Figure 4. ⇤

3.3 Generate Test Cases

In this phase a model-based testing tool generates the test cases from the partial
models. Di↵erent strategies for generating the test cases from models exist. We



1 types

2 TimeSteps = { Int0 = 0 , Int20 = 20 , Int30 = 30 , Int270 = 270} ;
3 Int = in t [ 0 . . 2 7 0 ] ;
4 AlarmSystem = autocons system

5 | [
6 var

7 c l o s ed : bool = fa l se ; l ocked : bool = fa l se ; armed : bool = fa l se

8 actions

9 ctr Close ( waitt ime : Int ) =
10 requires not armed and not c l o s ed and waitt ime = 0 :
11 c l o s ed := true

12 end ;
13 ctr Lock ( waitt ime : Int ) =
14 requires not armed and not locked and waitt ime = 0 :
15 l ocked := true

16 end ;
17 obs ArmedOn( waitt ime : Int ) =
18 requires ( waitt ime = 20 and not armed and l ocked and c l o s ed ) :
19 armed := true

20 end ;
21 . . .
22 do

23 var t : TimeSteps : Close ( t ) [ ]
24 var t : TimeSteps : Open( t ) [ ]
25 var t : TimeSteps : Lock ( t ) [ ]
26 var t : TimeSteps : Unlock ( t ) [ ]
27 var t : TimeSteps : ArmedOn( t ) [ ]
28 var t : TimeSteps : ArmedOff ( t )
29 od

30 ] |
31 system AlarmSystem

Fig. 4. Partial model describing the arming of the CAS.

have developed our own test case generator Ulysses that supports random test
case generation and model-based mutation testing from Action Systems [8, 1].

Random generation produces long unbiased test cases but has no stopping
criterion. Mutation testing adds a fault-centred approach. The goal is to cover as
many possible faults as anticipated in the model. In the following we concentrate
on the mutation testing approach.

Our test case generator Ulysses is realised as a conformance checker for Ac-
tion Systems. It takes two Action Systems, an original and a mutated one, and
generates a test case that kills the mutant. Killing a mutant means that the test
case can distinguish the original from the mutated model. The mutated models,
i.e. the mutants, are automatically generated by so-called mutation operators.
They inject faults into a given model, in our case one fault per mutant.

Ulysses expects the actions being labelled as controllable, observable and
internal actions. For deterministic models, the generated test case is a sequence
of events leading to the faulty behaviour in the mutant. For non-deterministic
models a tree-like adaptive test case is generated. Ulysses explores both labelled
Action Systems, determinizes them, and produces a synchronous product modulo
the ioco conformance relation of Tretmans [17]. The ioco relation supports non-
deterministic, partial models. Ulysses is implemented in Sicstus Prolog exploiting
the backtracking facilities during the model explorations.



Di↵erent strategies for selecting the test cases from this product are sup-
ported: linear test cases to each fault, adaptive test cases to each fault, adaptive
test cases to one fault. Ulysses also checks if a given or previously generated test
case is able to kill a mutant. Only if none of the test cases in a directory can kill a
new mutant, a new test case is generated. Furthermore, as mentioned, Ulysses is
able to generate test cases randomly. Our experiments showed that for complex
models it is beneficial to generate first a number of long random tests for killing
the most trivial mutants. Only when the randomly generated tests cannot kill a
mutant, the computationally more expensive product calculation is started. The
di↵erent strategies for generating test cases are reported in [1].

Example 5. Our mutation tool produces 114 mutants out of the partial model
of Figure 4. Ulysses generates 12 linear test cases killing all of these mutants.
These test cases ensure that none of the 114 faulty versions will be implemented.

Next, we discuss how we run additional verification on the test cases before
implementing them.

3.4 Verify Test Cases

In this phase, we verify di↵erent temporal properties of the generated test cases.
This ensures that the generated test cases satisfy our original requirements. If
wrong tests have been generated due to modelling errors, this would be detected.
This provides the necessary trust in the test cases required for safety certification.
The advantage of this method is that a special-purpose test case generator and
a model checker can be combined without integrating them into a tool set. The
mapping from abstract test cases into a model checker language is trivial.

We use the model checker of CADP, a toolbox for the design of communica-
tion protocols and distributed systems. It o↵ers a wide set of functionality for
the analysis of labelled transition systems, ranging from step-by-step simulation
to massively parallel model-checking.

Our test case generator Ulysses is able to generate the test cases as labelled
transition systems in one of CADP’s input formats, namely the Aldebaran for-
mat. These are text files describing the vertexes and edges in a labelled directed
graph. In the following, we discuss how we merge the set of generated test cases
into a single model.

Merging of Test Cases. The merging of the test cases into a model for analysis
comprises three steps.

First, we copy all test cases in one single file and rename the vertexes in
order to keep unique identifiers. The only exception are the start vertexes that
share the same identifier. This joins all test cases in the start state. After this
syntactic joining the file is converted into a more e�cient binary representation
(BCG format).

Second, we use the CADP Reductor tool to simplify the joint test cases
via non-deterministic automata determinisation. This determinisation follows a
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Fig. 5. The LTS after merging the 12 test cases generated from Figure 4.

classical subset construction and is initiated with the traces option. The deter-
minisation merges the common prefixes of test cases.

Third, the CADP Reductor tool is applied again. This time we run a simpli-
fication that merges states that are strongly bisimilar (option strong)5.

Example 6. Figure 5 shows the 12 merged test cases of Figure 4. The common
end state of this model is the pass state of all test cases. ⇤

This simplification is actually not necessary for the following verification process.
However, the elimination of redundant parts facilitates the visual inspection of
the behaviour defined by the test cases. Furthermore, we observed that the
visualisation of the simplified model provides an insight into the redundancy of
the test cases: the simpler the resulting model, the more redundant were the
original test cases.

Verification of Test Cases. CADP provides the Evaluator tool, an on-the-fly
model checker for labelled transition systems. Evaluator expects temporal prop-
erties expressed as regular alternation-free mu-calculus formula [14]. It is an

5 Note that our test cases have no internal transitions, hence, strong and weak bisim-
ulation are equivalent.



extension of the alternation-free fragment of the modal mu-calculus with action
predicates and regular expressions over action sequences.

Example 7. We checked several safety properties related to our requirements.
For example, the following temporal Property P1 is satisfied by our test cases.

[(not ’ctr Lock.*’)* . ’ctr Close.*’ . (not ’ctr Open.*’)* . ’ctr Lock.*’ (P1)

.
(not (’ctr Unlock.*’ or ’ctr Open.*’ or ’obs.*’))*
.
(not (’obs ArmedOn(20)’ or ’ctr .*(.)’ or ’ctr .*(1.)’ or ’obs pass’))
] false

It partly formalises Requirement 1 and says that if the doors are closed and
locked it must not happen (expressed by the false at the end) that any con-
trollable with more than 20 seconds as parameter or any other observable than
the activation of the alarm system occurs. Note that in mu-calculus the states
are expressed via event histories. Here, the state closed and locked is expressed
via a sequence of events: the doors had been first closed and not later opened
etc. ⇤
We can also check for test case completeness in the sense that we verify that
certain traces are included in our test cases.

Example 8. For example the next Property P2 checks if a trace with first locking
and then closing the doors leading to an armed state is included:
<true*><’ctr Lock.*’> <(not ’ctr Unlock.*’)*> <’ctr Close.*’> (P2)

<((not ’ctr Unlock.*’) and (not ’ctr Open.*’))*> <’obs ArmedOn(20)’> true

Here the diamond operator <.> is used to express the existence of traces. ⇤
Our integration with the CADP toolbox also allows us to check if certain scenar-
ios are included in a test suite by checking if certain test purposes are covered
by the test cases. A test purpose is a specification for test cases expressing a
certain test goal.

Example 9. The next Property P3 was implemented to guarantee the inclusion
of a scenario in which the alarm is turned o↵. Which of the two alarms is first
turned o↵ is underspecified. Hence, it allows both scenarios.
(<true*> <’obs SoundOff.*’> <’obs FlashOff.*’> true) or (P3)

(<true*> <’obs FlashOff.*’> <’obs SoundOff.*’> true)

3.5 Implementation and Refactoring

Once the test cases are formally checked, we implement them. Here, the par-
tial models serve to group them into functional units. Alternatively, for larger
models, the test purposes may serve to categorise the test cases. A negated test
purpose property will report the test case to be implemented next. In general,
the developer starts with the shortest test cases and adds functionality until all
tests pass.

As in common test-driven development, after a (set of) tests pass, the im-
plementation is refactored. Hence, the code is simplified and rechecked against
the existing test cases.



# Mutants # Test cases Mutation Score Safety Completeness Purposes
CAS1 114 12 81% 18/18 10/25 3/8
CAS2 1889 17 73% 18/18 24/25 8/8
CAS1+2 2003 29 97% 18/18 25/25 8/8
CAS3 2179 53 100% 18/18 25/25 8/8
CAS1+2+3 2179 54 100% 18/18 25/25 8/8

Table 1. Quality check of the test cases over the iterations, measured in mutation
score on the faulty implementations and by model checking of the merged test cases.

Next Iteration. After this phase, the development cycle starts again with either
(1) a further partial model, capturing a di↵erent aspect of the system, or (2) a
refined model adding details to existing models. Our refinement relation is the
input-output conformance (ioco) relation. Hence, we can check the refinement
of our models with our ioco-checker Ulysses. In the following, we discuss the
empirical results of this process for the CAS.

4 Empirical Results

In the following, we report the results of developing the CAS over several devel-
opment cycles. We implemented in Java. By definition of TDD all test cases pass
our implementation. Therefore, in order to evaluate the quality of our generated
test cases, we run a mutation analysis on the implementation level. For this we
use 38 faulty Java implementations of the CAS already used in our previous
work [1]. The novelty in this paper is that we analyse how the mutation score
develops under refinement. The mutation score is the number of killed mutants
divided by the total number of mutants. We eliminated equivalent mutants.

For test case generation, we used the strategy A5 reported in [1]. With this
lazy strategy, Ulysses first checks whether any of the previously created test
cases is able to kill the mutated model before a new test case is generated. We
have also taken eight test purposes used in [1] and analysed at what refinement
step they are satisfied by the generated test cases.

Iteration 1. The first iteration in our development process covers the partial
model of Figure 4. The first line of Table 1 (CAS1) summarises the results.
As already mentioned, we generated 114 model mutants from which Ulysses
generated 12 test cases. These tests were able to kill 81% of the implementation
mutants. The tests passed our 18 safety checks, but were neither complete nor all
test purposes were covered. This is obvious, since only a part of the functionality
was captured in the model and our properties required full functionality.

Iteration 2. In the second iteration, the triggering of the sound and flash alarm
was modelled. Figure 6 shows the LTS of this Action System model. This model
is not input-output conform to CAS1, since it includes only one trace arming the
system. The second line of Table 1 shows the results of this iteration (CAS2).
This model produces a high number of mutants, but they result in 17 test cases



only. The reason is that we selected all mutation operators in our tool. The low
number of test cases generated indicates that we could have done with a smaller
subset. These 17 test cases kill 73% of the Java mutants. Note that this model
already satisfies all test purposes.

The test cases of both models together (CAS1+2) kill already 97% of all faulty
implementations. Furthermore, all required completeness properties of the test
case are satisfied.

Iteration 3. In the third iteration, we merged the behaviour of the first two
iterations into one Action System model. Figure 7 presents the corresponding
LTS semantics. We checked with Ulysses that this integrated model input-output
conforms to the two previous ones. Hence, we formally verified that the new
model is a refinement of both partial models. Note the di↵erent use of Ulysses.
Previously, we used the conformance checker to generate test cases by comparing
a model with mutated version. Here, we first checked a complete model against
a partial model to show that we did not introduce unwanted behaviour.

The fourth line of Table 1 (CAS3) shows that the integrated model adds value.
The combined behaviour leads to 176 new mutants (2179�2003). The number of
test cases has increased, too. The result is a mutation score of 100%. Hence, all
of 38 faulty Java implementations have been detected with these 53 test cases.
We argue that this maximal mutation score provides a high trustworthiness in
our test suite. Hence, we implemented these test cases in a test-driven style and
stopped the iterative development at this point.

The results of a further experiment are shown in the bottom line of Table 1
(CAS1+2+3). Again, Ulysses takes the CAS3 model and its 2179 mutants as
input. The di↵erence here is the test case generation. Ulysses starts with the
given 29 test cases of the previous two iterations. Hence, for every mutant Ulysses
first checks, if it can be killed by the given tests. This is a kind of regression
test case generation under model refinement. The results are very similar, except
that in total one more test case has been generated. The reason is that the test
cases of Iteration 1 are very short and longer tests subsuming them are added
during the process. Currently, we do not post process the test cases in order to
minimise their number. Neither do we order the given test cases, which would
be beneficial. This is future work.

4.1 Discussion

In the following, we discuss some of the pros and cons of this approach as expe-
rienced in the case study.

Benefits. The proposed development process combines the advantages of three
disciplines: (1) model-based testing, (2) test-driven development, and (3) formal
methods. Classical test-driven development is ad-hoc, in the sense that the im-
plementation will be as good as the test designer: manually designed tests may
be incorrect and/or incomplete. Consequently, the implementation may be in-
correct and/or incomplete. Our approach guarantees a correct and complete test
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ctr Unlock(0)

ctr Unlock(0)

ctr Open(0)

ctr Close(0)

obs ArmedOff(0)

obs ArmedOn(0)

obs ArmedOff(0)

obs FlashOn(0)
obs SoundOn(0)

Fig. 6. The second partial model of the
CAS capturing only one trace to the
armed state and all the traces afterwards.
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obs ArmedOff(0)

obs FlashOff(0)

ctr Open(0)

obs SoundOff(30)

obs SoundOff(270)

obs FlashOn(0)

ctr Open(0)

ctr Unlock(0)
ctr Lock(0)

obs SoundOn(0)

ctr Unlock(0)

ctr Unlock(0)

obs SoundOff(0)

obs SoundOn(0)

ctr Unlock(0)

obs FlashOn(0)

ctr Open(0)

ctr Close(0)

ctr Close(0)

obs FlashOff(0)
ctr Unlock(0)

obs SoundOff(0)
obs ArmedOn(20)

obs ArmedOff(0)

ctr Unlock(0)

obs SoundOff(0)

obs FlashOff(0)

obs ArmedOn(0)

ctr Lock(0)
ctr Close(0)

obs FlashOff(270)

Fig. 7. The third, complete model of the
CAS containing all traces.

suite. Generating the test cases systematically from a model gives a certain kind
of coverage. In our case it is a fault coverage. However, the model may be in-
correct. Therefore, it has to be checked against the requirements. Our approach
allows to do so even if the modelling tool does not support model checking. The
importing of abstract test cases into a model checker is easy. This allows us to
check certain safety invariants indirectly. We can also add manually designed
abstract test cases, or combine test cases from di↵erent tools. The incomplete-
ness issue is checked via completeness properties and test purposes. The latter
links the test cases to the requirements, although the model does not refer to
them. Traceability is an important aspect. Negating a test purpose property and
checking it, will immediately report a test case that covers this test purpose.

The iterative process with refinement, adds more and more functionality to
the models. However, in contrast to classical refinement from an abstract model
to the implementation code, we immediately start coding in the first iteration.
This combines the advantages of a formal process with agile iterative methods.

The mutation analysis is not the main point of this paper, but it provided
a coverage on the abstract modelling level as well as on the implementation
level. We could show that the test cases covering all fault-models in the Action
Systems, were su�cient to cover all faulty Java implementations. This adds a
second, fault-centred, perspective to the completeness check of our test cases.



Limitations. It is obvious, that model checking test cases is not the same as
verifying an implementation model. Many test cases may be required to capture
the subtle cases of concurrent interleavings. Therefore, we have added the test
purposes and completeness properties. In future, we may apply model-learning
[2] to merge the test cases into more concise models.

A further limitation concerns our mutation approach. Our new mutation tool
for Action Systems produced far too many mutants. This leads to extremely long
test case generation times. The 114 model mutants of CAS1 could be processed
in less than a minute. However, CAS2 took almost 8 hours to process the 1889
mutants, and CAS3 run 22 hours. In future, we will apply mutation avoidance
techniques in order to reduce the number of mutants [12]. Fortunately, the situa-
tion is not that severe as it might look like. The regression strategy of CAS1+2+3

saved over 2 hours generation time. Furthermore, Ulysses continuously produces
test cases while analysing the mutants. For example, after 10 seconds of analysing
CAS2 4 test cases are available, after 1 minute 6, after 10 minutes 8, after 1 hour
14 of the 17 test case. Hence, one can perform the safety checks and implement
the first test cases while Ulysses is looking for further test cases.

5 Conclusions

We have motivated and presented a formal test-driven development technique
that combines the benefits of (1) model-based testing, (2) test-driven develop-
ment, and (3) formal methods. The novelty of this approach is the model check-
ing of the test cases as well as the combination of refinement and test-driven
development. In our experiments, we used mutation testing to generate the tests
and to evaluate them on the implementation level. We have presented the first
study of model-based mutation testing under refinement. Our own tool Ulysses
and the CADP toolbox automate the whole process.

Baumeister proposed the combination of TDD with formal specifications.
His ideas di↵er to ours. In [4] he uses the tests to develop JML contracts. In
[5] he proposes an iterative TDD process for developing UML state machines.
His idea is to instrument the models with OCL constraints, but this was not
implemented. It seems our approach is novel.

Of course, we are not the first who propose model-based mutation testing. A
good survey can be found in [12]. However, to the best of our knowledge this is
the first experiment of applying it in combination with refinement.

In future, we will work on overcoming the discussed limitations and perform
larger case studies.
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