
On behalf of CIGRE C4/C6.35/CIRED

Gustav Lammert1, Koji Yamashita2, Herwig Renner3, Sergio Martínez Villanueva4, José Carvalho Martins5, Petros Aristidou6, Thierry Van Cutsem7, Luis David Pabón Ospina8, Martin Braun1,8, Jens C. Boemer9

1University of Kassel, Kassel, Germany
2Central Research Institute of Electric Power Industry, Kanagawa, Japan
3Graz University of Technology, Graz, Austria
4Red Eléctrica de España, Alcobendas, Spain
5EDP Distribuição - Energia, Lisbon, Portugal
6University of Leeds, Leeds, United Kingdom
7University of Liège, Liège, Belgium
8Fraunhofer IWEs, Kassel, Germany
9Electric Power Research Institute, Palo Alto, USA
gustav.lammert@uni-kassel.de or koji.yamashita.jp@ieee.org

Abstract—This paper presents the recent activities of the joint working group CIGRE C4/C6.35/CIRED. Specifically, the characteristics of Inverter Based Generation (IBG) is compared in detail with the characteristics of synchronous generators used in conventional power plants. In this context, the main differences are identified as: 1) the inertia; 2) the fault current provision; 3) the synchronization capability; and 4) the fixed internal voltage source. Those characteristics are provided by synchronous generators, but they are not easily provided by IBG units. In order to overcome these differences, grid code requirements for IBG units need to be updated and thus, IBG units also have to provide ancillary services. Moreover, the paper presents the characteristics of IBG from the protection point of view. The internal and external protection of IBG is described in detail and examples are given.

Index Terms—Ancillary services, grid code requirements, PhotoVoltaic (PV) generation, power system stability, protection, dynamic models, Electro-Magnetic Transient (EMT) models, Root Mean Square (RMS) models.

I. OVERVIEW OF THE JOINT WORKING GROUP
A. Background of the joint working group

Over the past decades, Inverter Based Generation (IBG), such as wind turbine generators and PhotoVoltaic (PV) systems, have spread around the world to cope with governments’ commitment for increasing the share of renewable energies to deal with the global warming and other environmental problems. In the past, power system dynamics and security were determined by the characteristics of large synchronous generators connected to the transmission system level. However, nowadays the impact of IBG units and their specific characteristics can no longer be neglected.

With low penetration of IBG, its impact on power system security and adequacy is negligible. Yet today some transmission system operators and distribution system operators are facing operational situations with a penetration level of IBG reaching over 50% of the total generation [1]. This increasing penetration of IBG has started to affect power system stability and security. This is due to the displacement of conventional large synchronous generators and their stabilizing controls. Most of the existing IBG technologies in the grid do not always have the same features as synchronous generators. This led to the improvement of grid codes around the world requiring now that new installations of IBG units contribute to the grid operation with ancillary services such as voltage and frequency control [2].

To assess power system security, power system dynamic studies have played an important role for many years. Such studies have been performed by the power system planners and operators by means of numerical simulations. To this aim, tailored dynamic models of the elements in the system have been developed taking into account the physical phenomena to be investigated. Thus, synchronous generators and the associated control models for different applications are available over many years. Yet there are no generally accepted generic models for IBG that can be used in power system dynamic studies around the world. In fact, 35% of the utilities and
system operators still use negative load models to represent IBG in power system dynamic studies [1]. According to the results of the questionnaire survey performed by this Joint Working Group (JWG) [1], [3], the reasons for this approach are the:

- Lack of model requirements of IBG for specific power system phenomena
- Lack of well-validated detailed IBG models
- Lack of widely accepted generic IBG models
- Lack of widely accepted range of IBG model parameters
- Lack of specific grid code requirements
- Lack of information about the power system
- Lack of agreed methodology for the aggregation of distributed IBG units
- Lack of knowledge and experience of IBG operation in power systems

Many efforts have been made in the past by modelling experts to establish generic Root Mean Square (RMS) type models through organizations like the International Electrotechnical Commission (IEC), or the Western Electricity Coordinating Council (WECC). Some of those generic models have been already implemented in widely used commercial power system analysis software tools [4], [5]. However, the activities of the former organization focuses on the development of generic models for wind generation only. But these generic models are not widely used by the industry yet, especially in Europe, as they are still relatively new. Equally with regard to IBG units connected to the Medium Voltage (MV) and Low Voltage (LV) distribution levels, e.g., residential PV systems, there are still no widely accepted aggregated dynamic models [1].

B. Objective of the joint working group

The goal of the JWG is to review and report on the latest developments in IBG models for power system dynamic studies, both of individual as well as aggregated units, with a special focus on PV systems. The technical brochure of this JWG, which is expected to be published by the end of the year 2017, provides some guidelines for the selection of the appropriate IBG model and its required functions, according to the type of power system dynamic study and the system characteristics.

C. Missing capabilities of inverter based generation and grid code requirements

The final technical brochure of this JWG identifies and categorizes the difference in characteristics between small-scale IBG units connected to MV/LV grid with a set of minimum grid code requirements, and conventional large synchronous generators connected to the High Voltage (HV) grid with standard controllers. These differences between IBG and synchronous generators are the major focus of this paper and therefore, explained in detail in the following sections.

In this context, the final technical brochure will provide a complete as possible list of IBG functions together with the corresponding model components required to provide these functions.

D. Selection of type of inverter based generation model

Moreover, the technical brochure investigates two types of models: Electro-Magnetic Transient (EMT) and RMS type models. The benefits and limitations of each type of model are presented, along with the functionalities that need to be implemented by each model depending on the type of power system dynamic study that is performed.

EMT models are identified to be more accurate and provide higher detail in power system dynamic studies. Furthermore, they are more complex, requiring advanced modelling details and knowledge of the components, and are unsuitable for large-scale studies (with hundreds or thousands of IBG units) due to the computational burden.

On the contrary, RMS models are computationally more efficient, allowing to perform large-scale studies, and are easier to create abstract generic models. Nevertheless, RMS models have been identified in this technical brochure as inadequate to model accurately IBG in situations of:

- Weak system conditions with a very low short-circuit ratio
- Detailed inverter and collector system design studies
- Detailed equipment and system interaction studies
- Unbalanced faults (note that many RMS models are only positive sequence models)

It is up to the power system engineer to know the scope of application and to be aware of possible model limitations.

E. Selection of inverter based generation functionalities

The final technical brochure has catalogued the components and functionalities that need to be included in the IBG model, depending on the power system phenomena to be studied, as already partly introduced in [6]. A set of 25 functionalities are classified into three categories:

1) Internal inverter control
2) Inverter protection
3) Grid supporting capability

The classification is ambiguous; yet, it gives a first impression about the relevance of the functionalities with regard to different power system stability studies. The necessity of each functionality is examined for the following five power system phenomena:

a) Frequency deviation
b) Large voltage deviation
c) Small but longer voltage deviation
d) Small disturbance analysis
e) Unintentional islanding

For example, the maximum power point tracking is necessary to be modelled for c), while it is generally unnecessary for a), b), d) and e).
Some representative power system dynamic simulation studies are also illustrated in the final technical brochure to bridge the power system phenomena with the types of the power system dynamic studies. For example, frequency deviation is relevant to transient stability as well as frequency regulation studies. Large voltage deviation is relevant to short-term voltage stability, transient stability, fault current contribution and Low Voltage Ride-Through (LVRT) as well as High Voltage Ride-Through (HVRT) studies.

F. Control block diagram for each functionality

In the final technical brochure, the model components representing the control block diagrams are further classified into:

1) Local/component level control
2) Plant level control

This classification is based on the required capabilities as they are different between small-scale IBG units, e.g., residential PV systems, and large-scale IBG units, e.g., PV plants/parks.

Furthermore, there is a difference between RMS type and EMT type models. The high-level control block diagrams of the model components are usually the same for both, RMS and EMT, but the low-level controls and electrical interface circuits are usually different and the level of detail for the RMS model is limited.

G. Aggregation of inverter based generation

Aggregation methodologies for IBG, and specifically PV systems, are presently under development. The technical brochure reviews one of the most advanced and recent aggregation methodologies, proposed by WECC [7]. This methodology is categorized into:

1) Steady-state representation for power flow and simplified short-circuit studies
2) Dynamic simulation representation for power system dynamic studies

The technical brochure of this JWG asserts that the different IBG requirements are most likely to be regulated separately in MV and LV networks and thus, the power flow representation for the aggregation of IBG should be performed depending on the voltage level. The technical brochure also sorts out the future technical challenges emphasizing the importance of the balance of the model accuracy levels between IBG models and load models.

H. Model validation of inverter based generation

Another topic that is covered by the technical brochure is the present validation methodologies of IBG used by the industry. Although, the relevant work is still ongoing within IEC activities, the technical brochure focuses more on the available measures for model validation, such as the test facilities for representing LVRT and power swing oscillations, and on the example model validation following system faults in a real transmission network. The general model validation iterative procedure is also provided in the technical brochure.
Many capabilities of IBG such as Fault Ride-Through (FRT) capability have been required as the renewable energy sources spread. It can be considered that the starting point of the advanced requirements is the difference of characteristics between synchronous generators and IBG. In other words, there are some capabilities which the synchronous generators have but the IBG do (did) not have. This paper clarifies the major differences of characteristics between synchronous generators and the initial IBG technology and gives sufficient explanation where the capabilities of the IBG come from.

B. Comparison of inverter based generation with synchronous generators

IBG, before adding additional functionalities according to the grid code requirements, will differ in its behaviour from large synchronous generators. It is noted that the term “IBG” used hereafter in this section only denotes IBG with minimum functionalities and with no advanced capability. It is also noted that the term, “synchronous generator” which is used hereafter denotes large synchronous generators in conventional power plants connected to the HV network and which are assumed to be replaced with IBG. The main differences between IBG and synchronous generators are summarized in Table I.

The most important differences between IBG and synchronous generators are further described in the following points:

1) Rotating mass/inertia:
Inverters do not have a rotating mass component, i.e., there is no inherent inertia. The prime mover behind the inverter might have the inertia, but its “usage” has to be achieved via the controls and the size of the inverter because all IBG technologies are limited in terms of maximum current through the power electronic device, as well as maximum voltage. To use the real available inertia, if any, of the “prime mover”, a significant oversize of the inverter may be necessary. Moreover, synthetic inertia cannot be considered completely equivalent to the inertia provided by conventional synchronous generators, which are directly connected to the grid, as measuring devices and control introduce delays in how the synthetic inertia reacts to events in the grid. The typical scheme for representing the synthetic inertia captures the Rate Of Change Of Frequency (ROCOF) and increases or decreases the IBG output so that the frequency change is mitigated. This concept enables the reduction of the mismatch between the mechanical output and the electrical output when ROCOF is not zero. However, the synthetic inertia concept of modifying the control depending on the measured ROCOF cannot be considered completely equivalent to the inertia provided by conventional synchronous generators. But it should be noted that other concepts are under discussion at the present. In general, inverters act as a current source and new concepts suggest that modifying the control in such a way that the inverters can also act as a voltage source and thus provide an instantaneous response (see also point 4).

2) Fault current contribution:
Inverters lack inductive characteristics that are associated with rotating machines. The classical fault circuit current contribution expected from synchronous machines does not apply (as caused by law of constant flux in rotating machines). Instead, a fault current contribution is possible by means of inverter control. However, this contribution is typically limited to slightly above 1 p.u. of the nominal current (limited overload capability of semiconductor valves), even if all the active power supplied to the network is reduced to zero and all the current which is able to flow through the valves without damaging them is turned into reactive power, which would not be sufficient enough for the correct operation of the present protections. Of course, a certain oversized IBG unit would help to reduce this gap on traditional synchronous generators. If the voltage at the point of common coupling during a fault is very low, the phase angle of the current injected by the IBG unit may be ill-defined. This means the expected fault current is unlikely to be provided no matter how oversized the IBG unit is.

3) Synchronization torque capability:
Synchronous generators have the synchronizing torque capability, which is a very important factor for rotor angle stability. The synchronizing torque index is proportional to the internal induced voltage of the synchronous generator and the equivalent synchronous generators and/or the angle difference between the synchronous generators and the equivalent synchronous generator. Such generators can automatically change their active power output so as to mitigate the angle deviation/oscillation. For IBG, it might be required to have the synchronizing torque capability in the future. However, it is not easy to achieve it because the angle difference between the IBG unit and the synchronous generator needs to be measured or observed all the time, including in the case of the disconnection of a synchronous generator which consists of the equivalent synchronous generator.

4) Constant voltage source:
The voltage induced in the windings of a synchronous generator is larger than the grid voltage. Moreover, this internal induced voltage is independently regulated from the grid voltage. It will cause increasing reactive current injection shortening the electrical distance between the fault point and the internal induced voltage source when the grid voltage sags and hence typically contributes positively to network stability. IBG units usually do not have such an inherent internal voltage source. The current that can be provided to the grid during a voltage sag is dominated by the IBG control behaviour and typically limited to around 1 p.u.
Major Existing and/or Potential Differences between Inverter Based Generation (IBG) and Synchronous Generators

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Synchronous generator</th>
<th>IBG with minimum functionality</th>
<th>IBG with advanced capability/feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotating mass/inertia(^a)</td>
<td>Yes</td>
<td>No</td>
<td>Yes, depends on prime mover, operating point, storage, direction of frequency deviation</td>
</tr>
<tr>
<td>Frequency response capability</td>
<td>Yes</td>
<td>No</td>
<td>Yes, depends on prime mover, operating point, storage, direction of frequency deviation</td>
</tr>
<tr>
<td>Limited frequency sensitive mode</td>
<td>Yes</td>
<td>No</td>
<td>Yes, depending on prime mover</td>
</tr>
<tr>
<td>Constant voltage source(^a)</td>
<td>Yes</td>
<td>No, if connected to the grid</td>
<td>Yes, but in order to have a constant voltage following faults, oversizing of the inverter is necessary</td>
</tr>
<tr>
<td>Grid voltage support (steady state)</td>
<td>Yes</td>
<td>No</td>
<td>Yes, (large-scale IBG units) with reactive power compensators (shunt capacitor, static var compensator, etc.)</td>
</tr>
<tr>
<td>Reactive power support (V-Q steady state)</td>
<td>Yes, according to PQ-capability</td>
<td>No</td>
<td>Yes, according to PQ-capability</td>
</tr>
<tr>
<td>Reactive power support (reactive current control during incidents)</td>
<td>Yes</td>
<td>No</td>
<td>Yes, usually during faults IBG units may be able to provide a reactive current injection with some delay</td>
</tr>
<tr>
<td>Synchronization torque capability(^a)</td>
<td>Yes</td>
<td>No</td>
<td>Yes, but almost infeasible</td>
</tr>
<tr>
<td>Damping torque capability (power oscillation damping capability)</td>
<td>Yes, damper windings and power system stabilizer</td>
<td>No</td>
<td>Yes, power oscillation damping functionality</td>
</tr>
<tr>
<td>Fault Ride-Through (FRT) capability</td>
<td>Yes</td>
<td>No</td>
<td>Yes, depending on prime mover</td>
</tr>
<tr>
<td>Harmonic emission</td>
<td>No</td>
<td>Yes, supra-harmonics</td>
<td>–</td>
</tr>
<tr>
<td>Harmonic voltage reduction</td>
<td>Yes, for low-order harmonics</td>
<td>No</td>
<td>Yes, if active filter algorithms are implemented</td>
</tr>
<tr>
<td>Fault current contribution(^a)</td>
<td>Yes</td>
<td>No</td>
<td>Yes, but contribution is limited to around 1 p.u., for more than 1 p.u. oversizing of the inverter is necessary</td>
</tr>
<tr>
<td>Control response capability</td>
<td>Fast, depending on the time constants involved</td>
<td>Inverter itself fast, possible limitations due to measurement delay</td>
<td>Inverter itself fast, possible limitations due to measurement delay</td>
</tr>
<tr>
<td>Overload capability (up to few seconds)</td>
<td>Yes</td>
<td>Limited depending on semiconductor devices</td>
<td>Yes, but IBG unit needs to be oversized significantly</td>
</tr>
</tbody>
</table>

\(^a\)Explained in detail in Section II-B.

In the case of high penetration of IBG, which means conventional synchronous generators are replaced with IBG, functionalities which the conventional generators have and which IBG does not have, will be lost and the system stability could be affected. In order to cope with this, such functionalities have been required for IBG through updating grid codes. It should be noted that the aforementioned advanced functionalities and capabilities could require an upgrade of the IBG unit.

Ancillary Services of Inverter Based Generation

Because of the flexibility of the inverter control, IBG units may be required either, from the technical standards and/or from grid codes, to provide some additional capabilities for grid support, among them:

- Zero-sequence current injection
- Reactive current control by mean of power factor input
- Maximum reactive current injection
- Reactive current level depending on voltage depth

Table II shows the most relevant requirements of capabilities for IBG from EU Regulation 2016/631 (2016) [8] establishing network code requirements for generators and from the IEEE 1547 Standard (2014) [9]. Because it is more likely that IEEE 1547 (2014) [9] and UL 1741 (2016) [10] will dramatically evolve, the possible future requirements for IEEE 1547 [11]–[13] are also introduced in this table.
TABLE II
ANCILLARY SERVICES OF INVERTER BASED GENERATION DEFINED IN GRID CODES AND STANDARDS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency control (over/under) by means of active power (P(f))</td>
<td>×</td>
<td>(×)</td>
<td>×</td>
</tr>
<tr>
<td>Voltage control by means of reactive power (Q(V))</td>
<td>×</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Voltage control by means of active power (P(V))</td>
<td>(×)</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Synthetic inertia</td>
<td>(×)</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Rate Of Change Of Frequency (ROCOF) immunity</td>
<td>×</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Voltage phase angle jump immunity</td>
<td>×</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Low Voltage Ride-Through (LVRT) and/or High Voltage Ride-Through (HVRT)</td>
<td>(LVRT only)</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Anti-islanding detection methods</td>
<td>(×)</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Dynamic voltage support during faults and voltage dips</td>
<td>(×)</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Power oscillation damping</td>
<td>(×)</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Black start capability</td>
<td>(×)</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Capability of islanding operation</td>
<td>×</td>
<td>(×)</td>
<td>(×)</td>
</tr>
<tr>
<td>Automatic disconnection with abnormal voltage</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Automatic connection with active power recovery speed</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Constant power at low voltage</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Constant power at low frequency</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

× denotes one or more classes/categories of the inverter based generation are required.
() denotes a non-mandatory requirement.

D. Protection of inverter based generation for power system dynamic studies

An inverter’s protection may be distinguished into two main classes, internal and external. This classification has nothing to do with the physical location of the protections.

- **Internal protection:**
 Internal protections are primarily to assure the safety of the inverter itself, may be not in accordance with relevant standards of protection relays, and are applied by the manufacturers. Internal protections are generally suggested to be inserted in inverter models, in such a way they do not affect IBG capabilities and requirements. Each IBG type has its own type of internal protections focused on avoiding damage to the inverter itself. These internal protections are also known as generator protections (nothing to do with the interface protection). Some examples of inverter internal protections are:
 - Reduction of maximum inverter current when the DC voltage exceeds a certain limit
 - Limitation of inverter current’s variation rate after a fault
 - Limitation of total reactive current
 - Manual PV field shutdown with emergency stop
 - PV field insulation detection
 - DC overcurrent protection
 - Over/under voltage protection
 - Over/under frequency protection

- **External protection:**
 External protection is required to serve a different purpose and considers the network. Physically, in some cases, the external protection may be the same as the internal inverter protection, but, despite this, they are not “monitoring” the inverter (internal), but the network (external). External protections, despite that they are physically inside the inverter control, may be modelled separately, in such way to allow changes in the models or different combination of different regulations without any change in inverter model. IBG units may have external protections to:
 - Detect uncontrolled local islanding situations and disconnect generators to shut down this island. This functionally is also known as “loss of main protection”
 - Reduce the power production from the generating plant to prevent an over-voltage situation in the network it is connected to
 - Assist the power system to reach a controlled state in case of voltage or frequency deviations beyond corresponding regulation values
These protections (or combination of different elementary protection functions) are usually referred to as interface protection or Interface Protection System (IPS). The IPS is generally based on combinations of over/under voltage and over/under frequency protections. It is not the purpose of the IPS to:

- Disconnect the IBG unit from the network in case of internal faults (inside the IBG unit). Protection against internal faults or abnormal operating conditions, e.g., short-circuits, grounding faults, overloads, etc., is provided by other external protection relays coordinated with network protection, according to the system operator protection criteria.
- Prevent damage to the IBG unit due to incidents, e.g., short-circuits, asynchronous reclosing operations, on the network. To avoid possible damage, the IBG unit must have an appropriate immunity level.

A good overview on external protection can be found in CIGRE technical brochure 613 “Protection of Distribution Systems with Distributed Energy Resources” [14] and CIGRE technical brochure 421 “The Impact of Renewable Energy Sources and Distributed Generation on Substation Protection Automation” [15].

III. Conclusions

This paper provides an overview of the recent activities of the JWG CIGRE C4/C6.35/CIRED: “Modelling and Dynamic Performance of Inverter Based Generation in Power System Transmission and Distribution Studies”. The content of this paper mainly focuses on one chapter of the technical brochure, namely the characteristics of IBG.

The characteristics of IBG is addressed and the differences between small-scale IBG units and synchronous generators are highlighted. The major differences are: 1) the inertia; 2) the fault current provision; 3) the synchronization capability; and 4) the fixed internal voltage source. These four characteristics are provided by synchronous generators. However, they are not easily provided by IBG units. But many of the characteristics, such as the frequency control capability or the reactive power control capability, can be provided by IBG. Because of the increasing functionalities of IBG, IBG models need to be further extended.

Moreover, this paper addresses the difference of the characteristics of IBG from a protection point of view. Compared to synchronous generators, IBG is more likely to be disconnected due to the high sensitivity of inverter protections. Because of the operation of the inverter protection could result in the disconnection of the IBG unit, the inverter protection models play an important role for most of the power system dynamic studies. However, the primary source and its controls may often be neglected for dynamic stability analyses.

IV. Outlook

Additional to the aforementioned point, the final technical brochure of the JWG introduces the type of models, which is used for specific power system dynamic studies, namely RMS model or EMT model. The selection of the model type (EMT or RMS) is very much dependent on the specific phenomenon to be investigated. In this context, the selection of the model type with the necessary model element for each type of phenomenon is further discussed in the final technical brochure.

Furthermore, the technical brochure reviews the present industry practices and provides constructive recommendations for the development and use of IBG models in power system dynamic studies. It has been identified that the functions which need to be implemented for IBG models are different depending on the power system components, power system conditions, and type of power system dynamic study.

The technical brochure does not recommend the application of any specific dynamic model (RMS or EMT [1]; individual or aggregated [3]) for a specific power system dynamic study, but rather, identifies dynamic models which are applied and provides some fundamental information and guidance on their use. Based on the key findings and observations, this technical brochure emphasizes the necessity and importance of the proper use of the various IBG models. The goal is to encourage utilities, system operators, research institutes and academia, to pay more attention to the selection of the necessary functionalities and the type of IBG model when performing power system dynamic studies with IBG.

The final technical brochure of this JWG is expected to be published by the end of the year 2017 and can be accessed via e-CIGRE: https://e-cigre.org/.

Acknowledgment

The authors appreciate the support of their colleagues from the JWG CIGRE C4/C6.35/CIRED, who contributed in many useful ways to this paper. In particular, the authors acknowledge the contributions of the following JWG members: Ab Halim Bin Ab Bakar (MY), Robert Adams (AU), Igor Aronovich (IL), Babak Badrzadeh (AU), Matteo Barbieri (IT), Nicola Cammalleri (IT), Alberto Cerretti (IT), Kevin Chan (CH), Florin-Emilian Ciausu (RO), Etore T. De Bernardinis (IT), Herivelto de Souza Bronzeado (BR), Vincent Debusschere (FR), Luming Ge (CN), Irina Green (US), Andrew Halley (AU), Garth Irwin (CA), Stanko Jankovic (DE), Karim Karoui (BE), Lidija Korunovic (RS), Jin Ma (AU), Paolo Mattavelli (IT), Thomas McDermott (US), Jovica V. Milanovic (UK), Marta Molinas (NO), David Mu vera (ZA), Pouyan Pourbeik (US), Ziming Song (UK), Michael Steurer (US), Roberto Turri (IT), Stanislav Uts (RU), Klaus Vennemann (DE), Eknath Vittal (US), Xinhui Wu (US), Changjiang Zhan (UK), and Lingzhi Zhu (CN).

The work of some of the authors was supported by the German Federal Ministry for Economic Affairs and Energy within the projects Netz:Kraft (FKZ: 0325776J) and DEA-Stabil (FKZ: 0325585A).

The work of some of the authors was supported by the German Federal Ministry for Economic Affairs and Energy within the projects Netz:Kraft (FKZ: 0325776J) and DEA-Stabil (FKZ: 0325585A).
REFERENCES

