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Abstract. Biomedical experts are confronted with ”Big data”, driven
by the trend towards precision medicine. Despite the fact that humans
are excellent at pattern recognition in dimensions of < 3, most biomedical
data is in dimensions much higher than 3, making manual analysis often
impossible. Experts in daily routine are decreasingly capable of dealing
with such data. Efficient, useable and useful computational methods,
algorithms and tools to interactively gain insight into such data are a
commandment of the time. A synergistic combination of methodologies
of two areas may be of great help here: Human—Computer Interaction
(HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of
supporting human intelligence with machine learning. Mapping higher
dimensional data into lower dimensions is a major task in HCI, and
a concerted effort including recent advances from graph-theory and al-
gebraic topology may contribute to finding solutions. Moreover, much
biomedical data is sparse, noisy and time-dependent, hence entropy is
also amongst promising topics. This tutorial gives an overview of the
HCI-KDD approach and focuses on 3 topics: graphs, topology and en-
tropy. The goal of this intro tutorial is to motivate and stimulate further
research.

Keywords: Knowledge Discovery, Data Mining, HCI-KDD, Graph-
based Text Mining, Topological Data Mining, Entropy-based Data
Mining.

1 Introduction and Motivation

Experts in the life sciences have to deal with large amounts of complex, high-
dimensional, heterogenous, noisy, and weakly structured data sets and massive
sets of unstructured information from various sources [1], [2]. ”Big Data” [3]
in the medical domain is driven by the trend towards precision P4-medicine
(Predictive, Preventive, Participatory, Personalized) and has resulted in an ex-
plosion in the amount of generated data sets, in particular ”-omics” data, for

D. Slezak et al. (Eds.): BIH 2014, LNAI 8609, pp. 502-515, 2014.
© Springer International Publishing Switzerland 2014


Trajan
Schreibmaschinentext

Trajan
Schreibmaschinentext
Uncorrected Preprint


On Hot Topics in Knowledge Discovery 503

example from genomics, proteomics, metabolomics, etc. [4]. Within such data,
relevant structural patterns and/or temporal patterns ("knowledge”) are often
hidden and not accessible to the expert. The progressively trend towards data
intensive science, which is nearly a reverse of the classical hypothetico-deductive
approach, makes optimization of discovery tools imperative [5], and calls for vi-
sual data mining approaches [6]. This paper is organized as follows: In section 2
some key terms are briefly explained. In section 3 the basic idea of the HCI-KDD
approach is presented, along with the seven research areas involved, however, in
the following we concentrate briefly on only three of them: In section 4 on graph-
based data mining, in section 5 on topological data mining and in section 6 on
entropy-based data mining, concluding by emphasizing that the combination of
such approaches may bring added values. In the limited space given, such vast
topics can only be touched, so the goal of this tutorial is to provide a coarse
overview, to motivate and stimulate further research and to encourage to test
crazy ideas.

2 Glossary and Key Terms

Algebraic Topology: is concerned with computations of homologies and ho-
motopies in topological spaces [7].

Alpha Shapes: family of piecewise linear simple curves in the Euclidean plane
associated with the shape of a finite set of points [8]; i.e. a-shapes are a
generalization of the convex hull of a point set: Let S be a finite set in
R3 and « a real number 0 < a < oo; the u-shape of S is a polytope that
is neither necessarily convex nor necessarily connected. For o« — oo the a-
shape is identical to the convex hull of S [9]; important e.g. in protein-related
interactions [10].

Betti Number: can be used to distinguish topological spaces based on the
connectivity of n-dimensional simplicial complexes: In dimension k, the rank
of the k-th homology group is denoted [, useful in the presence of noisy
shapes, because Betti numbers can be used as shape descriptor admitting
dissimilarity distances stable under continuous shape deformations [11].

Graph mining: is the application of graph-based methods to structural data
sets [12], a survey on graph mining can be found here [13].

Homomorphism: is a function that preserve the operators associated with the
specified structure.

Homotopy: Given two maps f,g : X — Y of topological spaces, f and g are
homotopic, f ~ g, if there is a continuous map H : X x [0,1] — Y so that
H(z,0) = f(x) and H(z,1) = g(z) for all z € X [14].

Homology: (and cohomology) are algebraic objects associated to a manifold,
which give one measure of the number of holes of the object. Computation
of the homology groups of topological spaces is a central topic in topology;
if the simplicial complex is small, the homology group computations can be
done manually; to solve such problems generally a classic algorithm exists
[15].
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Human—Computer Interaction: study, design and development of the inter-
action between end users and computers; this classic definition goes back to
the work of Alan Newell and Herbert Simon (refs), and HCI research has
in the last decades focused almost exclusively on ergonomics of the user
interface, while the HCI-KDD approach concentrates almost exclusively on
human-data interaction.

Information Entropy: is a measure of the uncertainty in a random variable.
This refers to the Shannon entropy, which quantifies the expected value of
the information contained in a message.

Manifold: is a fundamental mathematical object which locally resembles a line,
a plane, or space.

Network: Synonym for a graph, which can be defined as an ordered or un-
ordered pair (N, E) of a set N of nodes and a set F of edges [16]. Engineers
often mention: Data + Graph = Network, or call at least directed graphs as
networks; however, in theory, there is no difference between a graph and a
network.

Pattern discovery: subsumes a plethora of machine learning methods to de-
tect complex patterns in data sets [17]; applications thereof are, for instance,
graph mining [18] and string matching [19].

Persistent Homology: Persistent homology is an algebraic tool for measuring
topological features of shapes and functions. It casts the multi-scale organi-
zation we frequently observe in nature into a mathematical formalism [20].

Simplicial Complex: is made up of simplices, e.g. a simplicial polytope has
simplices as faces and a simplicial complex is a collection of simplices pasted
together in any reasonable vertex-to-vertex and edge-to-edge arrangement.
A graph is a 1-dim simplicial complex.

Small world networks: are generated based on certain rules with high clus-
tering coefficient [16, 21] but the distances among the vertices are rather
short in average, hence they are somewhat similar to random networks and
they have been found in several classes of biological networks, see [22].

Topological Entropy: is a nonnegative real number that is a measure of the
complexity of a dynamical system [23].

3 The HCI-KDD Approach

Humans are very good at pattern recognition in the low-dimensional space, al-
though humans do not see in three spatial dimensions directly, but rather via
sequences of planar projections integrated in a manner that is semsed if not
comprehended. Humans spend a lot of their life time to learn how to infer three-
dimensional spatial data from paired planar projections. Years of practice have
tuned a remarkable ability to extract global structures from representations in
lower dimension. On the other hand, computers can be used to deal with high-
dimensional data, where we can make use of the benefits of computational topol-
ogy [24], e.g. by replacing a set of point cloud data with a simplicial complex,
which converts the data into global topological objects. To combine the most
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Fig. 1. This image, created originally by A. Holzinger as logo for his group, emphasizes
the importance of the interaction between high-dimensional computational spaces in
R™ and highlights the reality that current devices only allow data visualization in
R2. Consequently, the major task of Human-Computer Interaction is to map data
from high-dimensional spaces into lower-dimensional spaces, hence enabling interaction,
which is the most difficult and challenging task in this field.

desirable of these formidable talents might highly benefit the knowledge discov-
ery process [25]. The most critical and not easy endeavour is in interaction and
visualization (see Figure 1).

The original idea of the HCI-KDD [26] approach (Figure 2) is in combining
aspects of the best of two worlds: Human—Computer Interaction (HCI), with
emphasis on perception, cognition, interaction, reasoning, decision making, hu-
man learning and human intelligence, and Knowledge Discovery/Data Mining
(KDD), dealing with data processing, computational statistics, artificial intelli-
gence and particularly with machine learning [27].

Whilst interactive knowledge discovery encompasses the horizontal process
ranging from physical aspects of data (left in Figure 2) to the human aspects
of information processing (right in Figure 2), data mining can be seen vertically
and deals specifically with methods, algorithms and tools for finding patterns in
the data. In the HCI-KDD approach, seven (the new magical number 7) essential
research areas can be determined as outlined in Figure 2, including: Area 1: Data
integration, data fusion and data mapping; Area 2: mining algorithms and Area
6: data visualization [28], [29], [30]. This tutorial focuses on three hot topics:
Area 3: Graph-based Data Mining (GDM) [31], [32], [33],[34].

Area j: Entropy-based Data Mining (EDM) [35], [36].
Area 5: Topological Data Mining (TDM) [37].
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In the biomedical domain as in some other domains issues of Area 7: privacy,
data protection, safety and security are mandatory [38].

Data
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[
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HCI GDM 9 Graph-based Data Mining KDD
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Fig. 2. The big picture of the HCI-KDD approach: KDD encompasses the whole hor-
izontal process chain from data to information and knowledge; actually from physical
aspects of raw data, to human aspects including attention, memory, vision, interaction
etc. as core topics in HCI, whilst DM as a vertical subject focuses on the development
of methods, algorithms and tools for data mining (Image taken from the hcidall.at
website, as of May, 2014)

4 Graph-Based Data Mining

Graph-Theory [39] provides powerful tools to map data structures and to find
novel connections between single data objects [16, 40]. The inferred graphs can
be further analyzed by using graph-theoretical, statistical and machine learning
techniques [41]. A mapping of already existing and in medical practice approved
knowledge spaces as a conceptual graph (as e.g. demonstrated in [32] and a sub-
sequent visual and graph-theoretical analysis can bring novel insights on hidden
patterns in the data, which exactly is the goal of knowledge discovery. Another
benefit of a graph-based data structure is in the applicability of methods from
network topology and network analysis and data mining, e.g. small-world phe-
nomenon [42, 43|, and cluster analysis [44, 45]. However, the first question is
”"How to get a graph?”, or simpler "How to get point sets?”, because point cloud
data sets (PCD) are used as primitives for such approaches. The answer to this
question is not trivial (see [46]), apart from “naturally available” point clouds,
e.g. from laser scanners, protein structures [47], or text mapped into a set of
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points (vectors) in R™. Sticking on the last example, graphs are intuitively more
informative as example words/phrase representations [48], and graphs are the
best studied data structures in computer science, with a strong relation to log-
ical languages [49]. The beginning of graph-based data mining approaches was
two decades ago, some pioneering work include [50-52]. According to [49] there
are five theoretical bases of graph-based data mining approaches such as (1)
subgraph categories, (2) subgraph isomorphism, (3) graph invariants, (4) min-
ing measures and (5) solution methods. Furthermore, there are five groups of
different graph-theoretical approaches for data mining such as (1) greedy search
based approach, (2) inductive logic programming based approach, (3) inductive
database based approach, (4) mathematical graph theory based approach and (5)
kernel function based approach [53]. However, the main disadvantage of graph-
theoretical text mining is the computational complexity of the graph represen-
tation, consequently the goal of future research in the field of graph-theoretical
approaches for text mining is to develop efficient graph mining algorithms which
implement effective search strategies and data structures [48].

In [54] a graph-theoretical approach for text mining is used to extract relation
information between terms in ”free-text” electronic health care records that are
semantically or syntactically related. Another field of application is the text
analysis of web and social media for detecting influenza-like illnesses [55].

Moreover there can be content-rich relationship networks among biological
concepts, genes, proteins and drugs developed with topological text data mining
like shown in [56]. According to [57] network medicine describes the clinical
application field of topological text mining due to addressing the complexity of
human diseases with molecular and phenotypic network maps.

5 Topological Data Mining

Closely related to graph-based methods are topological data mining methods;
for both we need point cloud data sets - or at least distances - as input. A
set of such primitives forms a space, and if we have finite sets equipped with
proximity or similarity measure functions sim,: ST — [0,1], which measure
how “close” or “similar” (g + 1)-tuples of elements of S are, we speak about a
topological space. A value of 0 means totally different objects, while 1 corresponds
to equivalent items. Interesting are manifolds, which can be seen as a topological
space, which is locally homeomorphic (that means it has a continuous function
with an inverse function) to a real n-dimensional space. In other words: X is a
d-manifold if every point of X has a neighborhood homeomorphic to B¢; with
boundary if every point has a neighborhood homeomorphic to B or Bi [58].

A topological space may be viewed as an abstraction of a metric space,
and similarly, manifolds generalize the connectivity of d-dimensional Euclidean
spaces B? by being locally similar, but globally different. A d-dimensional chart
at p € X is a homeomorphism ¢ : U — R? onto an open subset of R?, where
U is a neighborhood of p and open is defined using the metric. A d-dimensional
manifold (d-manifold) is a topological space X with a d-dimensional chart at
every point = € X [59].
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For us also interesting are simplicial complexes (”simplicials”) which are
spaces described in a very particular way, the basis is in Homology. The rea-
son is that it is not possible to represent surfaces precisely in a computer system
due to limited computational storage; thus, surfaces are sampled and represented
with triangulations. Such a triangulation is called a simplicial complex, and is a
combinatorial space that can represent a space. With such simplicial complexes,
the topology of a space from its geometry can be separated. Zomorodian [59]
compares it with the separation of syntax and semantics in logic.

Topological techniques originated in pure mathematics, but have been adapted
to the study and analysis of data during the past two decades. The two most
popular topological techniques in the study of data are homology and persistence.
The connectivity of a space is determined by its cycles of different dimensions.
These cycles are organized into groups, called homology groups. Given a rea-
sonably explicit description of a space, the homology groups can be computed
with linear algebra. Homology groups have a relatively strong discriminative
power and a clear meaning, while having low computational cost. In the study
of persistent homology the invariants are in the form of persistence diagrams or
barcodes [60].

In data mining it is important to extract significant features, and exactly
for this, topological methods are useful, since they provide robust and gen-
eral feature definitions with emphasis on global information, for example Alpha
Shapes [9].

A recent example for topological data mining is given by [61]: Topological text
mining, which builds on the well-known vector space model, which is a standard
approach in text mining [62]: a collection of text documents (corpus) is mapped
into points (=vectors) in R™. Moreover, each word can be mapped into so-called
term vectors, resulting in a very high dimensional vector space. If there are n
words extracted from all the documents then each document is mapped to a
point (term vector) in R* with coordinates corresponding to the weights. This
way the whole corpus can be transformed into a point cloud data set. Instead of
the Euclidean metric the use of a similarity (proximity) measure is sometimes
more convenient; the cosine similarity measure is a typical example: the cosine
of the angle between two vectors (points in the cloud) reflects how “similar” the
underlying weighted combinations of keywords are. Amongst the many different
text mining methods (for a recent overview refer to [63]); topological approaches
are promising, but need a lot of further research.

Due to finding meaningful topological patterns greater information depth can
be achieved from the same data input [64]. However, with increasing complexity
of the data to process also the need to find a scalable shape characteristic is
greater [65]. Therefore methods of the mathematical field of topology are used
for complex data areas like the biomedical field [65], [60]. Topology as the math-
ematical study of shapes and spaces that are not rigid [65], pose a lot of possi-
bilities for the application in knowledge discovery and data mining, as topology
is the study of connectivity information and it deals with qualitative geometric
properties [66].
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One of the main tasks of applied topology is to find and analyse higher dimen-
sional topological structures in lower dimensional spaces (e.g. point cloud from
vector space model as discussed in [64]). A common way to describe topological
spaces is to first create simplicial complexes, because a simplicial complex struc-
ture on a topological space is an expression of the space as a union of simplices
such as points, intervals, triangles, and higher dimensional analogues. Simpli-
cial complexes provide an easy combinatorial way to define certain topological
spaces [66]. A simplical complex K is defined as a finite collection of simplices
such that ¢ € K and 7, which is a face of o, implies 7 € K, and 0,0’ € K
implies o N ¢’ can either be a face of both ¢ and ¢’ or empty [67]. One way to
create a simplical complex is to examine all subsets of points, and if any sub-
sets of points are close enough, a p-simplex (e.g. line) is added to the complex
with those points as vertices. For instance, a Vietoris-Rips complex of diameter
€ is defined as VR(e) = o|diam(o) < €, where diam(e) is defined as the largest
distance between two points in o [67]. A common way a analyse the topological
structure is to use persistent homology, which identifies cluster, holes and voids
therein. It is assumed that more robust topological structures are the one which
persist with increasing e. For detailed information about persistent homology,
see [67], [68], [69].

6 Entropy-Based Data Mining

In the real medical world, we are confronted not only with complex and high-
dimensional data sets, but usually with sparse, noisy, incomplete and uncertain
data, where the application of traditional methods of knowledge discovery and
data mining always entail the danger of modeling artifacts. Originally, informa-
tion entropy was introduced by Shannon (1949), as a measure of uncertainty in
the data. To date, there have emerged many different types of entropy methods
with a large number of different purposes and applications. Here we mention
only two:

Graph Entropy was described by [70] to measure structural information con-
tent of graphs, and a different definition, more focused on problems in infor-
mation and coding theory, was introduced by Kérner in [71]. Graph entropy is
often used for the characterization of the structure of graph-based systems, e.g.
in mathematical biochemistry, but also for any complex network [72]. In these
applications the entropy of a graph is interpreted as its structural information
content and serves as a complexity measure, and such a measure is associated
with an equivalence relation defined on a finite graph; by application of Shan-
nons Eq. 2.4 in [41] with the probability distribution we get a numerical value
that serves as an index of the structural feature captured by the equivalence
relation [41].

Topological Entropy (TopEn), was introduced by [73] with the purpose to
introduce the notion of entropy as an invariant for continuous mappings: Let
(X,T) be a topological dynamical system, i.e., let X be a nonempty compact
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Hausdorff space and T : X — X a continuous map; the TopEn is a nonnegative
number which measures the complexity of the system [74].

Hornero et al. [75] performed a complexity analysis of intracranial pressure
dynamics during periods of severe intracranial hypertension. For that purpose
they analyzed eleven episodes of intracranial hypertension from seven patients.
They measured the changes in the intracranial pressure complexity by applying
ApEn, as patients progressed from a state of normal intracranial pressure to
intracranial hypertension, and found that a decreased complexity of intracranial
pressure coincides with periods of intracranial hypertension in brain injury. Their
approach is of particular interest to us, because they proposed classification
based on ApEn tendencies instead of absolute values.

Pincus et al. took in [76] heart rate recordings of 45 healthy infants with
recordings of an infant one week after an aborted sudden infant death syndrom
(SIDS) episode. They then calculated the ApEn of these recordings and found
a significant smaller value for the aborted SIDS infant compared to the healthy
ones.

Holzinger et al. (2012) [77] experimented with point cloud data sets in the
two dimensional space: They developed a model of handwriting, and evaluated
the performance of entropy based slant and skew correction, and compared the
results to other methods. This work is the basis for further entropy-based ap-
proaches, which are very relevant for advanced entropy-based data mining ap-
proaches.

7 Conclusion and Future Outlook

Discovering knowledge in complex, high-dimensional data sets needs a concerted
effort of various topics, ranging from data preprocessing, data fusion, data inte-
gration and data mapping to interactive visualization within a low-dimensional
space. For this reason, graph-based and topological methods are very useful, since
they provide robust and general feature definitions and may support a ”global
information view”. A promising area of future research is in graph-theoretical
approaches for text mining, in particular to develop efficient graph mining algo-
rithms which implement robust and efficient search strategies and data structures
[48]. Such approaches could be combined with techniques from machine learning,
e.g. multi-agents and evolutionary algorithms [78]. However, there remain many
open questions, for example about the graph characteristics and the isomor-
phism complexity [49], to mention just only one. A further promising research
route is to combine such methods with entropy-based approaches, which have
extensively been applied for analyzing sparse and noisy time series data, but so
far have not yet been applied to weakly structured data in combination with
techniques from computational topology. Consequently, the inclusion of entropy
measures for discovery of knowledge in high-dimensional biomedical data is a
big future issue, opening a lot of challenging research routes [35].

The grand vision for the future is to effectively support human learning with
machine learning. The HCI-KDD network of excellence is proactively support-
ing this vision in bringing together people with diverse background - sharing a
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common goal: finding solutions for dealing with big and complex data sets. A
recent output of the network can be found here [79] (for more information please
refer to www.hcidall.at).
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