
On The Structure and Authorization Management of
RESTful Web Services

Bojan Suzic
Graz University of Technology
Institute for Applied Information
Processing and Communications

Graz, Austria
bojan.suzic@iaik.tugraz.at

Bernd Prünster
Graz University of Technology
Institute for Applied Information
Processing and Communications

Graz, Austria
bernd.pruenster@iaik.tugraz.at

Dominik Ziegler
Know-Center
Graz, Austria

dominik.ziegler@tugraz.at

ABSTRACT
A broad range of emerging business models relies on the continual
exchange of data that flow among different services to generate
additional value and derive knowledge in many domains. The mag-
nitude of resource sharing that form the basis of these interactions
raises new challenges concerning the effectivity of existing secu-
rity and privacy management instruments in environments of such
complexity.

In this work, we examine the practical application of authoriza-
tion management mechanisms employed over RESTful Web APIs,
which today serve as a major approach to expose service interfaces
on the web. For this purpose, we have examined the integration of
security mechanisms in n=523 public Web APIs. Our findings reveal
alarming integration patterns that demonstrate a rudimentary data
security and privacy protection in cross-service resource sharing.
Our analysis traces the cause back to the (1) shallow models and
security capabilities offered by service providers, and (2) design
deficiencies of dominantly applied OAuth 2.0 web authorization
framework that restrict capabilities and lower the interoperability
of underlying management functions. Following the initial discus-
sion, we summarize potential solutions and establish an outline of
the future work.

CCS CONCEPTS
• Security and privacy→Authorization; Distributed systems se-
curity;Web protocol security; • Information systems→RESTful
web services; Service discovery and interfaces;

KEYWORDS
Web services; Service security; Service integration;

ACM Reference Format:
Bojan Suzic, Bernd Prünster, and Dominik Ziegler. 2018. On The Structure
and Authorization Management of RESTful Web Services. In SAC 2018: SAC
2018: Symposium on Applied Computing , April 9–13, 2018, Pau, France. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3167132.3167315

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167315

1 INTRODUCTION
The World Wide Web has created unprecedented possibilities to
share, alter and process information without the regard to the geo-
graphic or organizational affiliation of manipulated resources, their
host systems, or involved persons. Service-oriented architecture
(SOA) has emerged as a paradigm to systematically and transpar-
ently support integrations in such distributed environment.

Presently, many businesses expose services using the structured
web interfaces, enabling their users and other entities to access
exposed resources programmatically, in a form that allows easier
integration and reuse on a global scale. Many novel service models
emerged following this possibility [27], establishing diverse integra-
tion scenarios that increasingly rely on cloud infrastructure [18] to
provide data and service integration. While different technologies
exist to support such integration, including traditional web services
stack [5] and more recent Web APIs based on RESTful architectural
style [11, 24], the previous research reveals the faster adoption of
RESTful paradigm in the recent years [3, 21, 28].

Considering the current popularity and the pervasive use of
Web APIs, in this work we investigate how the popular platforms
integrate security mechanisms in their publicly exposed service
interfaces. We focus on authorization, a process of specifying access
privileges to users or processes [17] with the purpose to enforce
access control [32] over resources in away that ensures a high degree
of overall security and privacy. Complementary to the work of
authors that investigate capabilities of service description languages
to express security mechanisms applied in Web APIs [22], in this
work we go a step further by examining the real application of these
mechanisms in a broad range of actively consumed Web APIs. Our
work derives key usage characteristics and reveals key deficiencies
both in terms of how service providers apply existing authorization
controls, and what these controls allow concerning the interactions
in cross-organizational context.

While the integration middleware and processes in traditional
environments consisting of single enterprises were able to rely on
proprietary and closed authorization models, the increasing depen-
dence on data and service integration across multiple organizations
requires more advanced mechanisms to address the complexity and
security requirements in an open world. This is especially impor-
tant if we want to achieve fine-grained security that restricts the
permissions to the minimally applicable set for the particular access
context, as mandated by the least privilege principle [33].

https://doi.org/10.1145/3167132.3167315
https://doi.org/10.1145/3167132.3167315


SAC 2018, April 9–13, 2018, Pau, France B. Suzic et al.

2 BACKGROUND AND MOTIVATION
Recent significant growth in the number of publicly available Web
APIs may be witnessed both by inspecting popular API catalogues,
such as ProgrammableWeb [28], and from the more insightful asses-
ments carried out by the research community [3, 30]. As Web APIs
have become a backbone of the Web, cloud, and mobile applica-
tions [38], increasing number of sectors recognizes their potential
to facilitate innovation, increase productivity and generate new
revenue streams [7].

Although their conformance to RESTful architectural style can
be a subject of further discussions [12, 29], it is commonly agreed
that the simplicity and consumability of underlying interfaces have
contributed to the growing adoption of Web APIs [3, 38].

Despite their widespread use, diversity and inconsistency in im-
plementations characterise Web APIs in practice. As oposed to tra-
ditional Web service stack [24], majority of Web APIs have evolved
autonomously, with the interfaces, structure, and documentation be-
ing determined based on techological understanding, business case
and the general discretion of implementing parties. The initiatives
such as OpenAPI1 aim to consolidate such fragmented ecosystem
by establishing structured API descriptions and providing the tools
that support their easier integration in development and integration
workflows. In this work we apply the OpenAPIs terminology. Thus,
service providers define endpoints (paths) and expose operations
over each path. Operations are determined by the HTTP method
[10] applied over the path, so that each path may expose several
operations.

API keys are one of common forms of credentials to restrict
access to Web APIs, broadly adopted during the previous decade
[8]. By issuing API keys, service providers can constrain access to
portions or complete web interfaces to particular clients only. Less
frequently, their additional purpose was to ensure the integrity of
incoming Web API invocations [8]. However, with the emergence
of new products and complex interactions, the management and
issuance of these credentials was associated with additional com-
plexities. One of primary functional concerns related to the use of
API keys was the lack of standardized mechanisms to automatically
issue tokens to third parties.

In practice, developers who wanted to integrate two systems had
to generate or receive API key from the service provider and employ
it in the local application that interacts with the service. Due to
the manual execution of this process, done using out-of-the-band
channels, API keys were not suitable to enable integrations with
third-party applications on a larger scale. OAuth 2.0 [15], among
others, aimed to address this issue by defining the protocol flows
and grant types that enabled structured resource sharing across
several separate entities. This way, resource owners were able to
authorize resource sharing at service provider with external, third-
party applications using consent-based flows. While API keys do
not offer means to control the extent of authorizations, OAuth 2.0
establishes scopes, which are parameters that inherently encompass
permissions specific for the managed service.

1https://www.openapis.org

2.1 Motivational scenario
In the current ecosystem, OAuth 2.0 is practically the only broadly
adopted mechanism that allows the scalable authorization manage-
ment of multilateral data sharing and service integrations. However,
as it will be shown in the subsequent sections, there are several
issues concering its underlying capabilities and the practical ap-
plication among service providers. To illustrate the problem of
coarse-grained scopes, we briefly rely on a scenario based on Za-
pier2, a cloud automation platform [27] that integrates and pro-
cesses resources of a single resource owner hosted at different ser-
vice providers. Consider that Zapier needs to periodically integrate
Gmail and MailChimp services with the goal to retrieve emails
from Google, extract email senders and add them as subscribers
to MailChimp marketing list. This step is repeated periodically,
typically every ten minutes, whereas only the recently received
messages are relevant, and only a particular list of subscribers at
MailChimp has to be updated. To obtain necessary permissions, in
its setup process Zapier creates separate permission requests for
both service providers using OAuth 2.0 authorization flows [15].
These permissions have to be consented by the resource owner,
which authorizes service provider to issue long-lived access token
to Zapier.

When requesting these permissions, Zapier has to rely on the
scopes defined by GMail and MailChimp. Currently, the GMail
scope that satisfies this scenario and includes the lowest range of
permissions is gmail.readonly. It, however, provides the access
to 12 resources and allows the execution of 24 operations over
them3. Among others, these include the ability to list all emails,
to read all the metadata and content of these emails, to check the
complete user’s history, as well as to inspect user’s drafts, settings
and labels. From the reference documentation we learn that the
access restriction in a more granular and context-sensitive manner
is not supported due to scope selection. While the scenario requires
that Zapier retrieves only the senders from the emails arrived during
the last ten minutes, it actually has access to all messaging content,
history and beyond of that.

In the case of the second service, the situation is simpler as
MailChimp does not define scopes. Hence, an accessing client would
be able to read, add and update all data exposed over all MailChip’s
endpoints. Besides lack of the complete support for requirements
such as privacy and data confidentiality, the second service fails to
support the requirement of data integrity and potentially introduces
weaknesses related to other security metrics.

While this scenario exemplifies the security and privacy risks4
that involve centralized resource sharing and processing using a
cloud integration platform [27], it should be stressed that similar
issues ocurr in other cases that rely on resource sharing in mul-
tilateral environment. We identify authorization management in
service integrations as a critical asset whose underlying capabilities
determine data security and privacy properties of those processes.
According to that, in the subsequent chapters we analyze and dis-
cuss the practical application of authorization management across
a broader range of RESTful services.

2https://zapier.com
3https://developers.google.com/gmail/api/v1/reference
4For the distinction between security and privacy in the cloud we refer to [25]



On The Structure and Authorization Management of
RESTful Web Services SAC 2018, April 9–13, 2018, Pau, France

3 ASSESMENT OF APIS
3.1 Data set and methodology
To perform this analysis, we have gathered, preprocessed and evalu-
ated n=523 descriptions ofWebAPIs published atOpenAPI Directory
[1]. Maintained by the APIs.guru project [1], OpenAPI directory is
an open source, a community-driven project dedicated to providing
machine-readable descriptions of public RESTful APIs. The speci-
fication and categorization of APIs are based on a structured and
open process that includes quality control and frequent updates.
The data published on this platform include descriptions of diverse
APIs both in terms of functionality and purpose.

To the best of our knowledge, OpenAPI Directory is the most
comprehensive source for structured API information on the In-
ternet. Other data sources, such as ProgrammableWeb [28], aim
to catalogize and provide basic information about APIs. This in-
formation is often focused on describing extrinsic properties that
include various meta-data, such as category, vendor, and purpose.
Our analysis, on the other hand, requires access to information
about intrinsic properties of APIs, which is typically not published
in such catalogs.

In our workflow, we have gathered API descriptions available
during the first week of September 2017 using a semi-automated
process. We have then applied discovery and transformation mecha-
nisms using a range of custom scripting tools to extract and process
necessary information. In the subsequent steps, we have exported
all gathered information to the format applicable for further statis-
tical analysis. The resulting data set is available at [36] to support
reuse and validation of our results.

In the remainder of this section, we provide basic descriptions
of our data set. We then define specific measures and apply them
to gather more insights into API authorization management.

3.2 API properties
Table 1 presents the summary of the dataset used in the subsequent
analysis steps. Overall, there were 523 structured APIs obtained.
Their interfaces define 11.664 endpoints and expose 14.991 opera-
tions to accessing agents.

Table 1: Aggregate summary of API descriptions

Measure Number %

(1) APIs 523 -
(2) Endpoints 11.664 -
(3) Operations 14.991 -

(4) Protected APIs 365 69.79%
(5) Unprotected APIs 158 30.21%

In Table 2 we summarize the properties using per API measures.
Comparing the results for average and median numbers of end-
points, it can be observed that the most APIs tend to provide a
lower number of endpoints than suggested by aggregate average
value. This can be confirmed by looking at outliers in the dataset.
In fact, 259 (49.5%) of APIs tend to provide ten or fewer endpoints,
and 368 (70.3%) expose no more than twenty endpoints. On the
other hand, 19 (3.6%) APIs expose more than 100 endpoints. This
distribution is illustrated on Figure 1, with the vertical axis showing

the number of APIs using a logarithmic scale, and the horizontal
axis representing the number of endpoints exposed by each data
segment.

1

2

4

8

16

32

64

128

256

512

1
-1
0

1
1
-2
0

2
1
-3
0

3
1
-4
0

4
1
-5
0

5
1
-6
0

6
1
-7
0

7
1
-8
0

8
1
-9
0

9
1
-1
0
0

1
1
1
-1
2
0

1
2
1
-1
3
0

1
3
1
-1
4
0

1
4
1
-1
5
0

1
5
1
-1
6
0

1
9
1
-2
0
0

2
1
1
-2
2
0

2
2
1
-2
3
0

2
3
1
-2
4
0

2
5
1
-2
6
0

2
6
1
-2
7
0

2
7
1
-2
8
0

Fig. 1: Number of endpoints across APIs

What distinguishes operations from endpoints is their invoca-
tion using supported HTTP methods [10]. Thus an operation can
be considered as an abstraction over an endpoint using a particular
invocation method. In the analyzed dataset, operations exposed by
APIs are accessible using one of seven HTTP methods, as presented
in Table 3. Considering that the endpoint exposes a resource, and
an operation provides access to a specific function for that resource,
we can conclude that vendors tend to associate one method per
endpoint. This can be observed from the average number of meth-
ods of 1.25 (Table 2) and the fact that 333 (63.6%) of APIs expose no
more than this average of different methods per endpoint.

Table 2: Summary of API properties

Measure #

(1) Average number of endpoints 22.30
(2) Average number of operations 28.66
(3) Average number of methods 1.25

(4) Median number of endpoints 11
(5) Median number of operations 14
(6) Median number of methods 1

The distribution of HTTP methods applied over endpoints in all
APIs is presented in Table 3. We show here the number of applied
HTTP methods, followed by their percentual contribution, average
and median measures. These represent aggregate counts derived
from the whole data set.

Table 3: Distribution of HTTP methods
Method # % Avg Med

(1) HEAD 16 0.11 0.15 0.00
(2) DELETE 1,213 8.09% 5.13 0.00
(3) POST 5,373 35.84% 35.60 25.00
(4) GET 6,726 44.87 52.25 50
(5) OPTIONS 2 0.01 0.00 0.00
(6) PUT 1,245 8.30 4.87 0.00
(7) PATCH 416 2.77 2.0 0.00

The application of these methods in requests determines the
type of operation that is expected to be executed on the server



SAC 2018, April 9–13, 2018, Pau, France B. Suzic et al.

side. According to the semantics of HTTP methods [10], OPTIONS
method is used to describe the communication options for the tar-
get resource. The methods GET and HEAD are applied to retrieve
resource representation or its metadata, respectively. The use of
POST initiates the request-specific processing of the request pay-
load, while PUT and PATCH imply the update of state of the target
resource or its parts. Removal of the association between the target
resource and its functionality is instructed by applying DELETE
method. For the more detailed specification these of methods we
refer to [6, 10].

From Table 3 we can observe the dominant use of HTTP GET
and POST methods. We can also notice that more than half of
all exposed operations serve the purpose of modifying existing or
creating new resources. These are referred to as unsafe methods that
may produce side-effects on resources, as established by Fielding
and Reschke [10]. For detailed explanation of side effects of HTTP
methods and the overview of their use in surveyed APIs we refer
to Section 3.6.

3.3 Access control in APIs
Depending on the use-case and practical integration concerns, many
service providers need to restrict access to exposed endpoints and
operations. This is especially important if their interfaces provide
access to sensitive or critical data that should be protected. Several
access control mechanisms that support this requirement have been
developed and more or less adopted in practice. In this section, we
examine the application of these mechanisms across a broad range
of web services.

Based on the analysis of the provided data set, we have discov-
ered that 30.21% of APIs do not declare access requirements for the
external clients. Most APIs (365 or 69.79%) declare the use of some
access control mechanism to restrict the access to their endpoints
(Table 1). From this set, 347 APIs (95.07%) support one authoriza-
tion mechanism, 16 APIs (4.38%) apply two, and only 2 APIs (<1%)
require three or more authorization mechanisms.

In Table 4 we show the overview of supported security mecha-
nisms in examinedAPIs. These numbers are derived from structured
service specifications on an aggregate level, with the percentage
ratios referring to the summarized count of different mechanisms
across all services. This overview does not include 158 APIs that
do not support any security mechanism. Included in the overview
are 20 APIs that support two or more security mechanisms. From
this data we can observe the broad and approximatelly similar use
of two principal mechanisms - API keys [8] and OAuth [15].

Table 4: Application of security mechanisms

Mechanism APIs %

(1) HTTP 15 3.90%
(2) API-Key 185 48.05%
(3) OAuth 177 45.97%
(4) Custom 8 2.08%

There are two key functional differences between API Keys and
OAuth that are relevant for this work. They primarily concern the
projected resource sharing scenario of a security mechanism and
its capability to restrict access to the resources in a focused and
granular manner.

In the first instance, API keys are credentials aimed at developers
building applications that do not access more than a single user’s
data. This restricts the process of obtaining and distributing such
credentials for an application to a manually performed activity.
Although it does not represent a technical restriction, the number
of API keys is in practice often limited to a couple of clients per
service tenant. This corresponds to the envisaged use scenario, as
these credentials are meant to support integration between two het-
erogeneous systems, whereas one party exhibits a (virtual) presence
on both sides. OAuth, on the other hand, provides a mechanism to
issue an access token in an automated way, enabling resource own-
ers to share their data hosted at service providers with third-party
applications. The process of obtaining such a token is based on an
explicit consent of a resource owner to share its resource. OAuth
hence involves multiple parties, implicitly providing a mechanism
to manage the credentials issued to diverse connecting agents.

The second difference between API keys and OAuth reflects
their ability to control the degree of given permissions. As API
keys do not provide means to granularly restrict access to service
resources and operations, they typically get applied in the form of an
authentication mechanism. In comparison to that, the abstraction of
access scopes in OAuth provides granular authorization capabilities
that enable providers to associate token permissions with a subset
of operations or resources. This is due to the underlying intention
for API keys to be used in closed service integrations, whereas the
developer acts both as access client and resource owner. While it
does not explicitly specify underlying semantics and applications,
the concept of scopes enables service providers to associate logical
compartments to scopes and restrict the extent of permissions
applicable to tokens provided under a particular scope.

Following these distinctions, we can conclude that nearly half
of the services aim to provide their customers with means to share
resources with third parties using a structured authorization mech-
anism.

Considering the limited capabilities and expressiveness of API
keys, and OAuth with scopes as currently only applied concept that
enables permissioning across the services, in the rest of this analysis
we examine the application of OAuth authorization framework and
its particular properties. For this purpose we have derived several
metrics which we present in the subsequent sections.

3.4 Application of OAuth
The first dimension that describes the application of OAuth scopes
relates to the degree of integration of scopes in specification and
enforcement of access control of web services. In Table 5 we cat-
egorize the services based on the number of different scopes that
were declared to be used. Here we can observe that nearly half of
the services apply only one scope in their authorization models.
Up to some extent this may contradict with OAuth’s design inten-
tion, as one of its purposes was to enable the resource owner to
restrict access permissions for third-party agents. By relying on
only one scope, the resource owner practically allows the access
to the complete range of resources and operations exposed by the
service.

By analyzing the gathered data we have observed a particular dis-
crepancy among the declaration of security mechanisms, and their



On The Structure and Authorization Management of
RESTful Web Services SAC 2018, April 9–13, 2018, Pau, France

practical application in service specification documents. Namely,
of 177 services that declared the use of OAuth, 173 have speci-
fied authorization scopes. Furthermore, 130 services have actually
used the specified scopes in API descriptions, and of them, 89 have
employed two or more scopes. From this point, in the following
sections we use these two data sets, refered as standard and reduced
where appropriate, to perform the further analysis.

Table 5: Declared OAuth scopes

Scopes APIs %

(1) One 80 46.24
(2) Two 29 16.76
(3) Three 13 7.51
(4) Four 14 8.09
(5) Five+ 37 21.39

3.5 Scope coverage and similarity
OAuth 2.0 defines the structure of the scope parameter as a list
of space-delimited, case-sensitive strings, whose inherent permis-
sion extent is determined by the provider. Multiple of these strings
(scopes) can be combined as a single parameter to express a com-
bined range of access permissions.

Besides recommending that service providers should document
their scopes, OAuth 2.0 specification does not provide any fur-
ther guidance on the establishment of scopes, nor does impose
any requirements that would allow automated dereferencing of
scopes. Consequently, the scopes get applied as opaque strings with
hard-wired logic, without reliance on a standardized approach to
realize machine-based readability and an understanding of under-
lying permissions. Instead, the degree of permissions offered by
scopes is typically explained in a service’s documentation in a nat-
ural language, with the primary aim of supporting developers in
implementations and service integrations. Due to the diversified
approaches and expressive power of natural languages, these de-
scriptions may vary across service providers or API versions, which
increases the complexity and imposes additional overhead in the
implementation and maintenance of service integrations.

As there is no machine-readable way to obtain scope permissions
and relate them to running systems or resources, we have decided
to take another approach and derive their extent by analyzing the
practical application of scopes in APIs. With this aim we have
constructed two metrics to support quantifying, expressing and
comparing the permission properties of scopes in a single API.

Considering that each scope supports a subset of available op-
erations, we define the scope coverage as a measure that describes
the proportion of operations that a scope supports in an API. We
apply the following equation to express the coverage of a scope s
in an API α using the total number of operations in α (opα ), and
the number of operations covered by the scope s (opαs ):

covαs =
|opαs |

|opα |
Scope coverage is expressed with values in the range 0..1, with

1 implying that the scope s covers all operations in the API α . In
other words, the API that relies on such scope allows the authorized
agent to exploit all functionalities and access all resources under a
single access token.

In addition to that, we derive an additional metric to express
similarity between two scopes based on their common supported
operations. Scope similarity is hence defined as a measure of opera-
tions shared among two scopes. Similarity of the scopes s1 and s2
under the API α is expressed as follows:

simα
s1,s2 =

|opαs1 ∩ opαs2 |

|opαs1 ∪ opαs2 |

This measure takes values in the range 0..1, with 1 implying com-
plete functional equivalence between the scopes s1 and s2. Com-
pared to scope coverage, this measure goes beyond the quantitative
degree of underlying permissions, enabling the examination of two
scopes using a range of equivalent operations they cover. While
there might be legitimate reasons to define scopes that are virtu-
ally the same, the existence of functionally equivalent scopes may
serve as a starting point to assess the quality of an API design,
its underlying authorization model, and potential security-related
weaknesses.

We have analyzed scope coverage and similarity across the re-
duced data set to examine the application and distribution of un-
derlying permissions in APIs. Both measures were derived from a
reduced data set (n=89), as the analysis of granularity of permis-
sions in APIs makes sense in environments relying on two or more
scopes.

Both metrics for coverage and similarity grouped by the number
of APIs corresponding to a range of average values are presented
in Table 6. The average values in both cases have been calculated
separately on the basis of each service and its applied scopes. In
calculating scope similarities we have included only the unique
scope pairs in each API and then derived their average values, as
shown in Table 6 and Figure 3.

The distribution of scope coverages across services is visualized
in Figure 2. The horizontal axis represents each service, while the
vertical axis shows the coverage ratio. The value 1 indicates the
coverage of 100% of operations available in an API. The vertical
lines in the figure depict the range of a minimal (bottom) and a
maximal coverage (top) found in an API . The average coverage of
all scopes employed in an API is represented as a circle on the line.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 11 21 31 41 51 61 71 81

Fig. 2: Distribution of scope coverages

As observable from the respective table and figure, nearly a quar-
ter of services use scopes with complete coverage (n=21, cov=1). Al-
though their APIs employ several scopes, in practice all these scopes
allow access to the same operations, rendering them functionally
equivalent. Contributing to this aspect are the environments with



SAC 2018, April 9–13, 2018, Pau, France B. Suzic et al.

a lower count of scopes whose extent is adapted from an imma-
ture development stage, potentially incepted during the initial API
design. The second factor are cross-API scopes which are applied
across several APIs of a single vendor. One of such examples is
the Google Cloud Platform API, which defines two scopes, namely
datastore and cloud-platform. While both of them support all
of the operations exposed by the API, the latter can be obtained and
applied for operations in other APIs of the same vendor, as well.

Table 6: Averages of scope coverages and similarities

Range
Coverage #

APIs % Similarity #
APIs %

(1) 0-0.1 5 5.62 15 16.85
(2) 0.1-0.2 3 3.37 6 6.74
(3) 0.2-0.3 8 8.99 5 5.62
(4) 0.3-0.4 5 5.62 9 10.11
(5) 0.4-0.5 4 4.49 9 10.11
(6) 0.5-0.6 6 6.74 4 4.49
(7) 0.6-0.7 13 14.61 12 13.48
(8) 0.7-0.8 15 16.85 5 5.62
(9) 0.8-0.9 6 6.74 1 1.12
(10) 0.9-1.0 24 26.97 23 25.84

Following the data from Table 6 we may further observe that
more than 70% of APIs exhibit a scope coverage of more than
0.5. This suggests that, on average, most APIs employ scopes that
allow a broad range of permissions. This can be confirmed by the
visualization on Figure 2, which shows that more than 79% of APIs
define at least one scope with a maximum coverage equal to 1,
while a single scope with a minimal coverage greater than 1

3 can be
found in 56% of services. Only a fraction of services (n=10, 11.2%)
uses a scope that covers no more than 50% of defined operations.
Both of these metrics suggest that service providers tend to define
scopes with relaxed and, on average, broader permissions.

The distribution of scope similarities across services is presented
on Figure 3. The horizontal axis represents services, the vertical
axis relative ratios in the scale 0..1. Vertical lines in the diagram
depict minimum and maximum observed scope similarity (bottom
and top values, respectively). The average similarity value derived
from each API is represented as a circle on the vertical line.

In the figure, we can observe a similar permissioning trend as
shown in the case of scope coverages. However, the data from
Figure 3 and Table 6 shows a slightly different distribution of scope
similarities. Here we can notice that roughly half of the services
(n=45, 50.5%) exhibit an average scope similarity of more than 0.5,
while a fraction of APIs contains a scope that exhibits a maximal
similarity of 1

3 (n=14, 15.7%). We have found that the majority of
services with such a similarity (n=8) rely on three or more scopes.

Due to its dependence on semantically specific operations, we
can consider scope similarity as a more strict measure of diversity
in applied authorization and permission models. Looking at both
measures, we can confirm the existence and significant degree of
broad permissions in APIs.

In the following section, we extend this analysis by examining
the relationship between authorization and interaction layers in
service interfaces.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81

Fig. 3: Distribution of scope similarities

3.6 Application of HTTP methods in scopes
RFC7231 [10] distinguishes two categories of HTTP methods based
on the degree of their side effects. Methods which are not intended
to be used for actions other than retrieval are considered safe meth-
ods. This category includes GET and HEAD. Other methods, such
as POST, PUT, and DELETE, are expected to induce effects when
invoked and hence should be treated in a special way. Due to the
possible effects on target resources, these are considered unsafe
methods.

Scopes in APIs are usually applied to authorize one or more
operations. In a typical scenario, an operation can be abstracted as
an invocation of a specific HTTP method over a particular resource
(endpoint). From this point, each scope can be related to one or
more HTTP methods and resources.

In this analysis we have investigated how scopes from the dataset
encompass the application of safe and unsafe methods. For this
purpose we had separately summarized data for each API and cal-
culated the degree of scopes that include safe and unsafe methods.
Based on these results, we derived the proportion of the overlapping
scopes, which are the ones that support both safe and unsafe meth-
ods. To support the visualization of the results, Figure 4 additionally
includes this third category. The distribution of both categories is
shown in a stacked form. The horizontal axis on the figure is used
to represent APIs, while the vertical axis provides the values for
each of three measures.

Safe Unsafe Overlapping Idempotent ratio
0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00
1.00 0.00 0.00 1.00
0.25 0.75 0.00 0.25
0.83 0.17 0.00 0.83
1.00 0.00 0.00 1.00
0.00 1.00 0.00 0.00
1.00 0.00 0.00 1.00
0.00 1.00 0.00 0.00
1.00 0.00 0.00 1.00
0.67 0.33 0.00 0.67
1.00 0.00 0.00 1.00
0.50 0.50 0.00 0.83
0.60 0.40 0.00 0.80
0.67 0.33 0.00 1.00
0.00 1.00 0.00 0.00
1.00 0.00 0.00 1.00
0.00 1.00 0.00 0.00
0.81 0.21 0.02 0.94
0.53 0.53 0.07 0.80
0.60 0.47 0.07 0.93
1.00 0.11 0.11 1.00
0.63 0.50 0.13 1.00
0.70 0.50 0.20 0.80
0.59 0.71 0.29 1.00
0.67 0.67 0.33 1.00
0.67 0.67 0.33 0.67
1.00 0.33 0.33 1.00
0.40 1.00 0.40 0.40
1.00 0.40 0.40 1.00
0.43 1.00 0.43 0.43
1.00 0.47 0.47 1.00
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
0.50 1.00 0.50 0.50
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
0.50 1.00 0.50 0.50
1.00 0.50 0.50 1.00
0.50 1.00 0.50 0.50
0.83 0.67 0.50 0.83
1.00 0.50 0.50 1.00
0.83 0.67 0.50 0.83
1.00 0.50 0.50 1.00
0.67 0.83 0.50 0.67
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
1.00 0.50 0.50 1.00
0.71 0.86 0.57 1.00
1.00 0.60 0.60 1.00
1.00 0.63 0.63 1.00
0.67 1.00 0.67 0.67
1.00 0.67 0.67 1.00
1.00 0.67 0.67 1.00
0.67 1.00 0.67 0.67
1.00 0.67 0.67 1.00
0.67 1.00 0.67 0.67
1.00 0.75 0.75 1.00
0.80 1.00 0.80 0.80
0.80 1.00 0.80 1.00
0.88 0.88 0.88 0.88
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Safe Unsafe Overlapping

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Safe Unsafe Overlapping

Fig. 4: Distribution of HTTP methods among scopes

All values presented in the figure are based on relative ratios
applied to each category. Thus, the value of 0.85 for safe scopes
implies that 85% of all scopes of an API use safe HTTP methods.



On The Structure and Authorization Management of
RESTful Web Services SAC 2018, April 9–13, 2018, Pau, France

The measure of overlapping scopes provides information on the
degree of scopes that use safe and unsafe methods simultaneously.

We have identified 18 (20.2%) APIs that specify scopes with no
overlapping, which are shown in the left part of the diagram. The
depicted sum of ratios of these scopes amounts no more than 1,
as each scope relies only on one type of HTTP method. On the
other side, 23 (25.8%) APIs apply scopes that exhibit full overlapping
between those two categories of methods (right on the figure).
48 (54%) APIs, represented in the middle of the diagram, exhibit an
overlap between safe and unsafe operations to some degree.

Based on the provided data we can observe a tendency of APIs
to employ scopes whose reach combines safe and unsafe methods.
In practice, 57 (64%) APIs demonstrate an overlapping of 0.5 or
higher degree. We also observe a correlation between the use of
unsafe methods and overall overlapping. Tested using Pearson’s
coefficient, this measure accounts 0.79 (p<0.01).

One of the contributing factors for such a distribution is the gen-
eral tendency of API vendors to separate scopes to ones that support
read-only, and others that support both read and modify operations.
This can be illustrated with the example of GMail, which among oth-
ers, establishes scopes gmail.readonly and gmail.modify, used
to allow operations that perform retrieval and modification of
emails, respectively. The latter scope practically encapsulates a
broad range of operations, including the ones included in the scope
gmail.readonly. Such an approach hinders users in fine-tuning
application privileges. Not to mention that the second scope in
this example supports a broad range of modification operations on
different resources; it also does not allow resource owners to issue
modify-only permissions.
As a result, resource owners and accessing agents are forced to
rely on the permission package discretionary chosen by the ser-
vice provider that might not optimally support their scenario and
security requirements. This assumption may simplify the imple-
mentation of the authorization model at the service provider, but at
the same time, it restricts the capability of other parties to manage
resource sharing and use authorizations in a fine-grained manner.

4 DISCUSSION
In this section, we summarize and discuss the findings presented in
this work. Our conclusions lead to the notion of interoperability of
authorization management controls, which we see as an essential
building block to advance security management from hard-wired
controls with implicitly derived meanings, to the structured and
machine-interpretable form that is applicable beyond a single use-
case or the boundaries of a single organization.

4.1 Deriving authorization patterns
The findings presented both in sections 3.5 and 3.6 show the issues
in determining access permissions for agents accessing web service
APIs. We can identify several issues in the application of scopes.
Analysis of the dataset provided the first insights on a broader scale
on the degree of the application of scopes. While OAuth 2.0 enabled
the service providers and clients to specify requested and provided
extent of the authorization using the scope parameter, more than
60 % of evaluated APIs declare no more than two scopes. This
practically restricts the choice for resource owners and accessing

clients, as the requested and given permissions can be established
on a coarse-grained level only. If we consider that an average API
exposes some 22 endpoints or 28 operations, one or two scopes may
enable controlling access to these resources in a limited manner
only.

The presented findings further demonstrate the bias among
providers towards coarse-grained permissioning that stems from
the use of (1) low number of scopes, (2) their broad coverage and/or
significant overlap of supported operations and (3) low distinction
level among single scopes. In Section 3.6 we evidenced the con-
struction of authorization mechanisms that (4) inconsistently map
HTTP methods to scopes, in a way that encapsulates the invocation
of different groups of methods under the same scope. All of these
issues effectivelly lead to overprivileging, a well-known problem in
information security.

While during the last decades many researchers invested signifi-
cant efforts to produce a range of access control models to support
efficient and effective authorization management in various scenar-
ios (including [2, 16, 32]), it is surprising that not much concern
has been raised when it comes to data and resource sharing across
several entities and organizations using the scenarios discussed
above. Here we primarily mean on the capability of underlying
technologies to support the principle of least privilege and adapt it
to conform to the new dynamic context characterized by the data
exchange and service consumption across different organizational
entities.

Due to the legal requirements, the sensitivity of private and busi-
ness data and the scale of potential impacts, we see the increasing
need to advance the capabilities of technologies that support the
security management of cross-organizational data and service in-
tegrations. This is not important due to the related security and
privacy risks, but also due to the potential of these technologies
that can be unleashed only if they are considered as secure.

4.2 Maturity of current approaches
The overprivileging demonstrated in this work broadly disobeys
the principle of least privilege [33], one of the key principles when
it comes to protecting data confidentiality and integrity. Due to
the current development level we see the current ecosystem for
multilateral authorization management in early phases of maturity.
For this we identify two contributing reasons.

While the initial version of OAuth 1.0a has been more of an effort
produced by a dedicated community [14], the subsequent version
in the form of OAuth 2.0 got a broader institutional attention and,
after several refinements, got advanced as an IETF standard [15].
In this process, Eran Hammer resigned as a lead author and editor,
citing reasons such as bad security and interoperability of the pro-
tocol and its bias towards enabling enterprises to solve use cases
with the minimal effort [13]. While some of these statements may
pose the ground for further debate, a range of discovered flaws
[4, 9, 40] partially prove Hammer’s expectations on the emergence
of insecure implementations. In this work we have shown that
service providers tend to employ authorization management to use
a simpler set of capabilities, producing permission models that are
inconsistent and less secure. While there is not enough evidence to
draw a general conclusion, the issues summarized in this section



SAC 2018, April 9–13, 2018, Pau, France B. Suzic et al.

may suggest that in some cases service providers invested subop-
timal resources to integrate security capabilities provided by the
OAuth 2.0 framework.

As a second reason, we may notice that the underlying tech-
nical mechanisms provide only limited capabilities to integrate
and execute authorization management processes across several
organizations. One of these immature capabilities is restricted inter-
operability, an issue which is separately mentioned in the original
specification as well (Section 1.8 of [15]). The high level of a scope’s
abstractness, its unspecified underlying semantics andmissing guid-
ance on application and integration have left an open space for a
broad range of implementation and integration approaches, with
some of them representing suboptimal solutions both in terms of
security and functionality. The underspecification of this element
results in a lacking vertical and horizontal interoperability.

We consider the vertical dimension of interoperability as the
capability of a scope to be related to other parts of a system in
a machine-readable way. These include, for instance, referencing
resources and operations of an API, as well as their constitutive
parts or subsets. By relying on existing service descriptions incepted
using available service description frameworks5 the capabilities of
scopes could be dynamically defined in a manner that allows fine-
grained and contextually adaptable permissions. Instead of being
opaque strings without dereferenceable structure, the scopes could
reference a range of operations, resources or their segments in a
way that is machine-interpretable, and hence, potentially subjected
to more comprehensive security evaluation and enforcement.

For a further discussion and proposal that explores this direction,
we refer to the work of Suzic et al. that deals with the cross-cloud
aware specification of access scopes [37].

Under horizontal scope interoperability we understand the ca-
pability to relate and apply the scopes across several systems or
organizations. Instead of being related to a single organization,
scopes should be interpretable in the context going beyond of that.
For the example of such interoperability level, we could take Google
scopes mentioned in Section 3.6, which demonstrates the first step
in this direction by being applicable beyond a single API. This
would allow the cross-API reuse of scopes and definition of permis-
sions that are applicable beyond a single environment. From this
perspective, the horizontal interoperability of scopes could have
the potential to unify and automate authorization management
across services, leading to a higher level of security due to lower
interoperability and integration obstacles.

We refer to our other work that relies on semantic vocabularies6
to define and transparently enforce access controls among different
cloud-based services [35]. We consider that work as an orthogo-
nal contribution to [37] that aims to advance the authorization
management by unifying service descriptions and security policies.
Such approach allows the definition and enforcement of security
policies across a range of supported web services in a granular,
context-sensitive and user-centric manner.

5Such as OpenAPI semantic descriptions [39]
6DASP-Sec domain-specific vocabularies, available at http://daspsec.org

5 RELATEDWORK
To the best of our knowledge, there is no study that systematically
and transparently examines the use of OAuth 2.0 authorization
mechanisms across services and their Web APIs. Previous work
of Suzic et al. [34] has investigated the security aspects of cross-
domain service integrations, considering particularly OAuth 2.0
framework [15] and emerging UMA protocol [19, 20]. The identified
deficiencies from this work motivated us to perform the analysis of
the practical application of OAuth 2.0 in a larger context.

One of the initial studies of Web API descriptions has been car-
ried out by Maleshkova et al. [21]. In this work, authors retrieved
a set of 222 APIs from the ProgrammableWeb directory [28] and
analyzed their metrics that include the distribution of API types and
input parameters and formats employed in API invocations. The
later studies with more detailed insights have been published by
Bülthoff and Maleshkova [3], and Renzel et al. [29]. These surveys
included descriptions of 45 and 20 Web APIs, respectively, selected
by their popularity measure according to Alexa web ranking.

More recent findings on Web APIs are provided in the surveys
of Rodriguez et al. [30] and Petrillo et al. [26]. In contrast to other
works, the study by Rodriguez et al. investigated a data set derived
from the mobile traffic of the largest Italian mobile internet provider.
The motivating goals of these studies were the mapping of the API
structures, as well as the assessment of their conformity to RESTful
principles [23] and maturity models [31]. However, in terms of
security properties, only the surveys of Bülthoff andMaleshkova [3]
and Renzel et al. [29] derived particular insights on authentication
methods employed in the APIs. However, no more details beyond
the distribution of these mechanisms were provided.

Recent work of Nguyen et al. [22] reviews security-related capa-
bilities of description languages for RESTful web services. While
this contribution delivers a systematic overview of the most rele-
vant and recent API specification frameworks, its scope focuses on
identifying supported security mechanisms and protocols. No in-
sights were given on the actual application of these security controls
in practice, nor their capabilities were evaluated beyond expressing
the service invocation requirements.

The coarse-grained permissions and over-privileging are present
on other platforms. Fernandes et at. have analyzed the security of
SmartThings, a Samsung’s smart home appliance for management
of a broad range of devices including motion sensors, alarms, and
door locks [9]. SmartThings uses proprietary cloud environment to
expose and control a large number of applications (SmartApps) and
relies on OAuth protocol to protect third-party integrations. Both
the privileges on the level of home appliance and OAuth scopes used
to protect access to SmartApps establish coarse-grained capabilities
that encompass operations with different risk classes. Fernandes
et al. constructed four proof-of-concept attacks that demonstrate
security impacts of the underlying design flaws [9].

Chen et al. have discovered the flaws in the integration of OAuth
protocol with Android mobile applications. In their study [4], 59.%
of 600 analyzed mobile applications were vulnerable due to devel-
oper misconceptions. Both Fernandes et al. and Chen et al. point to
the protocol underspecification, vagueness and missing guidelines
in the implementation of OAuth protocol flows.



On The Structure and Authorization Management of
RESTful Web Services SAC 2018, April 9–13, 2018, Pau, France

6 CONCLUSION
By exhibiting a pervasive and the significant growth during the re-
cent years, RESTful Web APIs have been established as an essential
infrastructural constituent of modern Web, cloud, and mobile appli-
cations. Service providers from diverse business sectors expose their
interfaces using Web APIs to allow their users and other services
to establish integrations and (re)use data and services in a broad
range of scenarios. As many modern services rely on data sharing
and service consumption that span across different organizational
entities, the capability to establish and maintain the comprehensive
security and privacy management of the underlying interactions
requires additional attention.

In this work, we examined the application of authorization man-
agement mechanisms over a broad range of RESTful APIs currently
exposed and used in many applications. We particularly focused on
the capability of OAuth 2.0 web authorization framework, currently
only standardized and broadly adopted approach for managing
resource sharing on the web. We have demonstrated deficiencies
both in the application of this framework, and its underlying ca-
pabilities. Our analysis points to overprivileging present at a large
scale across many providers. To advance the security and privacy of
cross-organizational data sharing and to support further prospects
of emerging complex ecosystem we motivate the establishment of
interoperability in cross-organizational authorization management
on the level of security controls.

ACKNOWLEDGMENTS
This work has been partially supported by A-SIT Secure Informa-
tion Technology Center Austria, and EU H2020 Programme under
the SUNFISH project with grant № 644666.

REFERENCES
[1] APIs.guru. 2017. APIs.guru Wikipedia for WEB APIs . (2017). https://apis.guru/

openapi-directory//
[2] Jasper Bogaerts, Maarten Decat, Bert Lagaisse, and Wouter Joosen. 2015. Entity-

Based Access Control: supporting more expressive access control policies. In
Proceedings of the 31st Annual Computer Security Applications Conference. ACM,
291–300.

[3] Frederik Bülthoff and Maria Maleshkova. 2014. RESTful or RESTless–Current
state of today’s top Web APIs. In European Semantic Web Conference. Springer,
64–74.

[4] Eric Y Chen, Yutong Pei, ShuoChen, Yuan Tian, Robert Kotcher, and Patrick Tague.
2014. OAuth Demystified for Mobile Application Developers. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 892–903.

[5] Robert Daigneau. 2011. Service Design Patterns: fundamental design solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley.

[6] L Dusseault and J Snell. 2010. PATCH Method for HTTP, Internet Request for
Comments, vol. RFC 5789 (Proposed Standard). (2010).

[7] Peter C Evans and Rahul C Basole. 2016. Revealing the API ecosystem and
enterprise strategy via visual analytics. Commun. ACM 59, 2 (2016), 26–28.

[8] Stephen Farrell. 2009. API Keys to the Kingdom. IEEE Internet Computing 13, 5
(2009).

[9] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 636–654.

[10] R Fielding and J Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content, Internet Request for Comments, vol. RFC 7231 (Proposed
Standard). (2014).

[11] Roy T Fielding and Richard N Taylor. 2002. Principled design of the modern
Web architecture. ACM Transactions on Internet Technology (TOIT) 2, 2 (2002),
115–150.

[12] Roy T Fielding, Richard N Taylor, Justin R Erenkrantz, Michael M Gorlick, Jim
Whitehead, Rohit Khare, and Peyman Oreizy. 2017. Reflections on the REST
architectural style and principled design of the modern web architecture (impact

paper award). In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM, 4–14.

[13] Eran Hammer. 2012. OAuth 2.0 and the Road to Hell. (2012). https://hueniverse.
com/oauth-2-0-and-the-road-to-hell-8eec45921529

[14] Eran Hammer-Lahav. 2010. The OAuth 1.0 Protocol, Internet Request for Com-
ments, vol. RFC 5849 (Informational). (2010).

[15] Dick Hardt. 2012. The OAuth 2.0 authorization framework, Internet Request for
Comments, vol. RFC 6749 (Proposed Standard). (2012).

[16] Xin Jin, Ram Krishnan, and Ravi S Sandhu. 2012. A Unified Attribute-Based
Access Control Model Covering DAC, MAC and RBAC. DBSec 12 (2012), 41–55.

[17] Audun Jøsang. 2017. A Consistent Definition of Authorization. In International
Workshop on Security and Trust Management. Springer, 134–144.

[18] Michael Kleeberg, Christian Zirpins, and Holger Kirchner. 2014. Information
Systems Integration in the Cloud: Scenarios, Challenges and Technology Trends.
Springer International Publishing, Cham, 39–54.

[19] Maciej P Machulak, Eve L Maler, Domenico Catalano, and Aad Van Moorsel. 2010.
User-managed access to web resources. In Proceedings of the 6th ACM workshop
on Digital identity management. ACM, 35–44.

[20] Eve Maler, Maciej Machulak, and Justin Richer. 2017. User-Managed Access
(UMA) 2.0 Grant for OAuth 2.0 Authorization. Kantara Initiative, Draft Recom-
mendation (2017).

[21] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. 2010. Investigating
Web APIs on the World Wide Web. In Web Services (ECOWS), 2010 IEEE 8th
European Conference on. IEEE, 107–114.

[22] Hoai Viet Nguyen, Jan Tolsdorf, and Luigi Lo Iacono. 2017. On the Security Ex-
pressiveness of REST-Based API Definition Languages. In International Conference
on Trust and Privacy in Digital Business. Springer, 215–231.

[23] Cesare Pautasso. 2014. RESTful web services: principles, patterns, emerging
technologies. In Web Services Foundations. Springer, 31–51.

[24] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. 2008. RESTful Web
Services vs. Big Web Services: Making the Right Architectural Decision. In Pro-
ceedings of the 17th international conference on World Wide Web. ACM, 805–814.

[25] Siani Pearson. 2013. Privacy, security and trust in cloud computing. In Privacy
and Security for Cloud Computing. Springer, 3–42.

[26] Fabio Petrillo, Philippe Merle, Naouel Moha, and Yann-Gaël Guéhéneuc. 2016.
Are REST APIs for cloud computing well-designed? An exploratory study. In
International Conference on Service-Oriented Computing. Springer, 157–170.

[27] M. Pezzini and B. J. Lheureux. 2011. Integration Platform as a Service: Moving
Integration to the Cloud. Gartner (2011). http://www.gartner.com/id=1575414

[28] ProgrammableWeb. 2017. ProgrammableWeb - APIs, Mashups and the Web as
Platform. (2017). https://www.programmableweb.com/

[29] Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. 2012. Today’s Top “RESTful”
Services and Why They Are Not RESTful. Springer Berlin Heidelberg, Berlin,
Heidelberg, 354–367.

[30] Carlos Rodríguez, Marcos Baez, Florian Daniel, Fabio Casati, Juan Carlos Tra-
bucco, Luigi Canali, and Gianraffaele Percannella. 2016. REST APIs: a large-scale
analysis of compliance with principles and best practices. In International Con-
ference on Web Engineering. Springer, 21–39.

[31] Ivan Salvadori and Frank Siqueira. 2015. A Maturity Model for Semantic RESTful
Web APIs. InWeb Services (ICWS), 2015 IEEE International Conference on. IEEE,
703–710.

[32] Pierangela Samarati and Sabrina Capitani de Vimercati. 2000. Access control:
Policies, models, and mechanisms. In International School on Foundations of
Security Analysis and Design. Springer, 137–196.

[33] Fred B Schneider. 2003. Least privilege and more [computer security]. IEEE
Security & Privacy 99, 5 (2003), 55–59.

[34] Bojan Suzic. 2016. Securing integration of cloud services in cross-domain dis-
tributed environments. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing. ACM, 398–405.

[35] Bojan Suzic. 2016. User-centered security management of API-based data inte-
gration workflows. In Network Operations and Management Symposium (NOMS),
2016 IEEE/IFIP. IEEE, 1233–1238.

[36] Bojan Suzic. 2017. Structure and authorization management of RESTful APIs:
Accompanying data set for the paper published at ACM SAC 2018. (2017).
http://www.daspsec.org/soap18

[37] Bojan Suzic, Andreas Reiter, and Alexander Marsalek. 2017. Structuring the
Scope: Enabling Adaptive and Multilateral Authorization Management. In Com-
munications and Network Security (CNS), 2017 IEEE Conference on. IEEE.

[38] Wei Tan, Yushun Fan, Ahmed Ghoneim, M Anwar Hossain, and Schahram Dust-
dar. 2016. From the Service-Oriented Architecture to the Web API Economy.
IEEE Internet Computing 20, 4 (2016), 64–68.

[39] Ruben Verborgh, Andreas Harth, Maria Maleshkova, Steffen Stadtmüller, Thomas
Steiner, Mohsen Taheriyan, and Rik Van de Walle. 2014. Survey of semantic
description of REST APIs. In REST: Advanced Research Topics and Practical
Applications. Springer, 69–89.

[40] Hui Wang, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. The Achilles heel of
OAuth: a multi-platform study of OAuth-based authentication. In Proceedings of
the 32nd Annual Conference on Computer Security Applications. ACM, 167–176.

https://apis.guru/openapi-directory//
https://apis.guru/openapi-directory//
https://hueniverse.com/oauth-2-0-and-the-road-to-hell-8eec45921529
https://hueniverse.com/oauth-2-0-and-the-road-to-hell-8eec45921529
http://www.gartner.com/id=1575414
https://www.programmableweb.com/
http://www.daspsec.org/soap18

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivational scenario

	3 Assesment of APIs
	3.1 Data set and methodology
	3.2 API properties
	3.3 Access control in APIs
	3.4 Application of OAuth
	3.5 Scope coverage and similarity
	3.6 Application of HTTP methods in scopes

	4 Discussion
	4.1 Deriving authorization patterns
	4.2 Maturity of current approaches

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

