

COMPETITIVENESS AND INNOVATION FRAMEWORK PROGRAMME
ICT PSP Fifth Call for proposals 2011 - Pilot Type A

Towards a single European electronic identification and authentication area

ICT PSP call identifier: CIP-ICT-PSP-2011-5
ICT PSP Theme/objective identifier: 4.2

Project acronym: STORK 2.0
Project full title: Secure idenTity acrOss boRders linKed 2.0
Grant agreement no.: 297263

D4.10 Final version of Technical Design

Deliverable Id : D4.10
Deliverable Name : Final version of Technical Design

Status : Final
Dissemination Level : PU

Due date of deliverable : July 31st, 2015

Actual submission date : October 2nd, 2015

Work Package : WP4
Organization name of lead contractor for

this deliverable : MINHAP

Author(s): WP4 core team
Partner(s) contributing : ALL

Abstract: This document describes the final architecture of the systems that compose the common
functionalities of the STORK 2.0 platform. This description is made from various points of view,
conforming to the RUP methodology. The relevant points of view are applied to each of the two
systems: PEPS and Virtual IDP. The deliverable also describes “commodities”, which are software
components discovered to be useful in several places.

Finally detailed software design is provided, describing class diagrams for each module and interface
specification for each package.

Project co-funded by the European Community under the ICT Policy Support Programme

Copyright by the STORK 2.0 Consortium

D4.10 Final Version of Technical Design

History

Version Date Modification reason Modified by

0.0 23/09/2013 D4.3 is used as a template

0.1 14/08/2015 Update with comments
from the first review and
from Enes Özbay. Included
the software design.

John Heppe

0.2 7/09/2015 Inclusion of the
contributions of Multicert,
Tubitak, Advania, ARGE,
UAegean

John Heppe

0.3 24/09/2015 Quality review ATOS

0.4 29/09/2015 Integration of comments
from quality check John Heppe

0.5 02/10/2015 Final quality check ATOS

Final 02/10/2015 Final deliverable

2 | P a g e

D4.10 Final Version of Technical Design

Table of contents

History ... 2

Table of contents ... 3

List of figures ... 6

List of tables .. 8

List of abbreviations ... 11

Executive summary .. 13

1 Introduction ... 14

1.1 Methodology .. 14

2 PEPS Architecture Design .. 16

2.1 System Context ... 16

2.2 Objectives of PEPSes and V-IDPs .. 17

2.3 Use case view and other requirements .. 17

2.3.1 Use case view ... 17

2.3.2 Non Functional requirements (NFR) .. 21

2.3.3 Availability ... 22

2.4 Logical view .. 23

2.4.1 S-PEPS .. 23

2.4.2 C-PEPS .. 63

2.4.3 A-PEPS .. 107

2.4.4 Version Control (PEPS) ... 108

3 V-IDP Architecture design ... 127

3.1 System Context ... 127

3.2 Logical view .. 127

3.2.1 Authentication on behalf of ... 128

4 Commodities .. 147

4.1 eIdentifier encryption (National Identifier Privacy) ... 147

4.1.1 Symmetric encryption.. 147

4.1.2 Asymmetric encryption ... 148

4.1.3 MAC ... 149

4.1.4 Hash ... 149

4.2 Version Control (SPs) .. 149

4.2.1 Sequence diagram VCS .. 150

4.2.2 Description VCS .. 150

4.3 Personal Data comparison (for re-authentication) .. 162

3 | P a g e

D4.10 Final Version of Technical Design

4.3.1 Introduction to the problem .. 162

4.3.2 Double identities – two persons? .. 162

4.3.3 STORK “solution” ... 162

4.3.4 Alternative solutions .. 164

4.3.5 Comparison of the chosen solution with other solutions 165

4.3.6 Software design and package usage examples ... 165

4.3.7 Conclusion.. 167

4.4 Browser Temporary Storage Management .. 167

4.4.1 Introduction to the problem .. 167

4.4.2 Integrity protection of the token ... 169

4.4.3 Generation of the token .. 169

4.4.4 Format of the AOI stored in cookies .. 172

4.4.5 Interpretation of the token ... 174

4.4.6 Maintenance of the token ... 175

4.5 SAML Unpackager .. 175

4.5.1 Introduction ... 175

4.5.2 Presentation of the module ... 176

5 Software design .. 177

5.1 PEPS .. 177

5.1.1 Description ... 177

5.1.2 Package specification ... 177

5.2 PEPS/V-IDP Attribute Aggregation ... 194

5.2.1 Description ... 194

5.2.2 Package specification ... 194

5.3 V-IDP ... 202

5.3.1 Description ... 202

5.3.2 Applications ... 203

5.3.3 Modules ... 203

5.3.4 Package descriptions ... 204

5.4 SAMLEngine .. 211

5.4.1 Description ... 211

5.5 Digital Signatures .. 220

5.5.1 Description ... 220

5.5.2 Packages in OASIS-DSS-API .. 221

5.5.3 Packages in OASIS-DSS module ... 221

5.5.4 Packages in reference SPI implementation using SD-DSS applet 222

5.5.5 Packages in reference SPI implementation using Austrian services 223

5.5.6 Packages in the common SOAP-client module .. 223

4 | P a g e

D4.10 Final Version of Technical Design

5.5.7 Packages in the common STORK-database module .. 223

5.5.8 Packages in the SignAP module ... 224

5.6 Document Transfer Layer (DTL) .. 224

5.6.1 Description ... 224

5.6.2 Packages .. 227

5.6.3 Webservice .. 239

5.6.4 Database .. 239

5.7 Version Control ... 240

5.7.1 Description ... 240

5.7.2 Package specification ... 240

5.8 Anonymity .. 252

5.8.1 Description ... 252

5.8.2 Package specification ... 252

6 References ... 258

5 | P a g e

D4.10 Final Version of Technical Design

List of figures

Figure 1: RUP 4+1 view model .. 15
Figure 2: System Context Diagram .. 16
Figure 3: Use case view of the STORK 2.0 core ... 17
Figure 4: Use case view of the version control ... 19
Figure 5: Anonymity system use cases .. 20
Figure 6: Sequence diagram Prerequisite for SP without SAML capacities 24
Figure 7: Sequence diagram Authentication on behalf of in S-PEPS 28
Figure 8: Signature creation on authentication ... 38
Figure 9: Scheme of signature creation without authentication ... 41
Figure 10: Signature creation with optional authentication ... 42
Figure 11: Diagram of a document with two signatures .. 44
Figure 12: Sequence diagram of document transfer... 45
Figure 13: Sequence diagram sending Anonymity of in S-PEPS ... 56
Figure 14: Sequence diagram Authentication on Behalf of, Part 1, in C-PEPS 64
Figure 15: Sequence diagram Authentication on behalf of in C-PEPS, part 2. 73
Figure 16: Sequence diagram Authentication on behalf of in C-PEPS, part 3. 83
Figure 17: Sequence diagram Anonymity First Node in C-PEPS .. 89
Figure 18: Sequence diagram Anonymity Other Node in C-PEPS 100
Figure 19: Sequence diagram Authentication on Behalf of, Part 1, in A-PEPS 107
Figure 20: Sequence diagram Version Control, in PEPS .. 109
Figure 21: V-IDP System Context Diagram ... 127
Figure 22: V-IDP Sequence Diagram UC-AUB-MP ... 128
Figure 23: V-IDP Sequence Diagram UC-AUB-PM ... 137
Figure 24: Symmetric encryption .. 148
Figure 25: Sequence diagram Version Control, in SP .. 150
Figure 26. AOI exploitation in STORK 2.0 ... 169
Figure 27. Secure AOI format .. 169
Figure 28. AOI creation ... 171
Figure 29. Structure of the AOI stored in the cookie ... 172
Figure 30. AOI processing ... 175
Figure 31. Sequence diagram for consent .. 176
Figure 32. Class diagram for S-PEPS .. 178
Figure 33. Class diagram for C-PEPS .. 183
Figure 34. Class diagram for Specific Module .. 191
Figure 35 – Authentication/SAML engine: Model .. 212
Figure 36 – OpenSAML Class Diagram for XML signature generation purposes 213
Figure 37 – OpenSAML Class Diagram for XML signature verification purposes 215
Figure 38 – KeyStore Management Classes ... 219
Figure 39 – KeyStoreLoader Class.. 219
Figure 40 – KeyStoreConf Class ... 220
Figure 41 Signature request transferred from SP to country DSS 225
Figure 42 Signature response is returned to SP from DSS ... 226
Figure 43 Class diagram for Documentservice ... 227
Figure 44 Class diagram for data .. 229
Figure 45 Class diagram for model .. 231
Figure 46 Class diagram for Utils .. 236
Figure 47 Class diagram for exceptions ... 238
Figure 48 DTL database tables. ... 240

6 | P a g e

D4.10 Final Version of Technical Design

Figure 49 Class diagram for Version Control .. 241
Figure 50. Class diagram for Anonymity .. 252

7 | P a g e

D4.10 Final Version of Technical Design

List of tables

Table 1 – User requirements ... 21
Table 2 – Evolution requirements ... 22
Table 3 – Description sequence for SP without SAML capacities ... 28
Table 4 – Description sequence Authentication on behalf of in S-PEPS 37
Table 5 – Description sequence Create signature in S-PEPS .. 40
Table 6 – Description sequence Create signature with optional authentication in S-PEPS ... 44
Table 7 – Description sequence Anonymity in S-PEPS ... 63
Table 8 –Description sequence Authentication on Behalf of, part 1, in C-PEPS 72
Table 9 –Description sequence Authentication on Behalf of, part 2, in C-PEPS 83
Table 10 –Description sequence Authentication on behalf of, part 3, in C-PEPS 87
Table 11 –Description sequence Anonymity First Node in C-PEPS 99
Table 12 –Description sequence Anonymity First Node in C-PEPS 107
Table 13 –Description sequence Authentication on behalf of (part 1) in A-PEPS 108
Table 14 –Description Version Control in PEPS ... 126
Table 15 –Meaning of the different V-IDPs .. 128
Table 16 – Description sequence Authentication on Behalf of, UC-AUB-MP 137
Table 17 – Description sequence Authentication on Behalf of, UC-AUB-PM 146
Table 18 –Description Version Control in SP .. 161
Table 19 –Similarity examples .. 164
Table 20: Basic AOI format ... 168
Table 21: Data format of the AOI components .. 173
Table 22: Interface of ISPEPSService class of S-PEPS .. 179
Table 23: Class AUSPEPS of S-PEPS .. 179
Table 24: Interface of ISPEPSCountrySelectorService class of S-PEPS 180
Table 25: Class AUSPEPS of S-PEPS .. 180
Table 26: Interface of ISPEPSSAMLService class of S-PEPS .. 181
Table 27: Class AUSPEPSSAML of S-PEPS ... 182
Table 28: Interface of ISPEPSTranslatorService class of S-PEPS ... 182
Table 29: Class AUSPEPSTranslator of S-PEPS .. 182
Table 30: Interface of ICPEPSService class of C-PEPS .. 185
Table 31: Class AUCPEPS of S-PEPS ... 185
Table 32: Interface of ICPEPSCitizenService class of C-PEPS .. 186
Table 33: Class AUCPEPSCitizen of C-PEPS ... 186
Table 34: Interface of ICPEPSSAMLService class of C-PEPS ... 187
Table 35: Class AUCPEPSCitizen of C-PEPS ... 188
Table 36: Interface of ICPEPSTranslatorService class of C-PEPS .. 188
Table 37: Class AUCPEPSCitizen of C-PEPS ... 189
Table 38: Interface of IAttributeListProcessorclass of C-PEPS ... 191
Table 39: Class AUCPEPSCitizen of C-PEPS ... 191
Table 40: Interface of IAUService class of Specific Module ... 193
Table 41: Interface of ITranslatorService class of Specific Module 194
Table 42: Class SpecificPEPS of Specific Module ... 194
Table 43: Class SpecificPEPS of Specific Module ... 197
Table 44: Interface of communication with SAML Engine .. 198
Table 45: Interface AASPEPSIDDiscovery class ... 199
Table 46: Interface AASPEPSAttributeProcessor class .. 200
Table 47: Interface AASPEPSAttributeProviderSelector class .. 201
Table 48: Interface Country Selector class of Anonymity .. 201

8 | P a g e

D4.10 Final Version of Technical Design

Table 49: Interface AASPEPSTranslator class ... 202
Table 50: Applications included in the V-IDP package .. 203
Table 51: The main software modules included in the V-IDP package 204
Table 52: Modules of MOA-SPSS package ... 204
Table 53: Packages providing general functionality ... 206
Table 54: Packages enabling the integrationof STORK 2.0 flows 207
Table 55: Packages supporting the integration of MOA-ID modules 207
Table 56: Packages in web configuration interface of V-IDP .. 208
Table 57: Other packages of the web configuration interface .. 209
Table 58: Common VIDP packages .. 209
Table 59: SPSS API packages ... 210
Table 60: SPSS server packages .. 211
Table 61: SAML Component interfaces .. 218
Table 62: DSS-API packages .. 221
Table 63: DSS module packages .. 222
Table 64: Reference implementation packages integrating SD-DSS 222
Table 65: Reference implementation packages integrating MS services 223
Table 66: Common SOAP-client packages.. 223
Table 67: Packages in common STORK-database module .. 223
Table 68: SignAP packages ... 224
Table 69: Main classes in the Document service package ... 227
Table 70: Methods in the SPDocumentService interface .. 228
Table 71: Methods in the DocumentServiceImpl interface ... 228
Table 72: Methods in the SPDocumentServiceImpl interface .. 229
Table 73: Methods in the DatabaseConnector interface .. 230
Table 74: Methods in the DatabaseConnectorMySQLImpl interface 231
Table 75: Methods in the DatabaseHelper interface .. 231
Table 76: Methods in the DocumentModel interface ... 233
Table 77: Methods in the RequestModel interface .. 234
Table 78: Methods in the TempDocumentModel interface ... 236
Table 79: Methods in the EncryptionHelper interface .. 237
Table 80: Methods in the ExternalDocservice interface .. 237
Table 81: Methods in the Utils interface .. 238
Table 82: Methods in the XmlHelper interface ... 238
Table 83: Classes in the Exceptions interfaces.. 239
Table 84: Interface of InfoGeneration class of Version Control ... 242
Table 85: Interface of PEPSInfoGeneration class of Version Control 242
Table 86: Interface of SPInfoGeneration class of Version Control 243
Table 87: Interface of SamlXMLParser class of Version Control .. 243
Table 88: Interface of MailService class of Version Control .. 243
Table 89: Interface of MasterAccessor class of Version Control .. 244
Table 90: Interface of InfoAccessor class of Version Control ... 246
Table 91: Interface of InfoComparator class of Version Control .. 247
Table 92: Interface of PEPSInfoAccessor class of Version Control 247
Table 93: Interface of SPInfoAccessor class of Version Control ... 249
Table 94: Interface of XMLSign class of Version Control ... 249
Table 95: Interface of XMLValidation class of Version Control ... 250
Table 96: Interface of Updater class of Updater .. 251
Table 97: Interface of PEPSVersionControl class of Updater ... 251
Table 98: Interface of SPVersionControl class of Updater ... 251
Table 99: Interface of Node class of Anonymity ... 253
Table 100: Interface NodeList class of Anonymity .. 253

9 | P a g e

D4.10 Final Version of Technical Design

Table 101: Interface NodeListService class of Anonymity ... 253
Table 102: Interface Package class of Anonymity .. 254
Table 103: Interface InboundPackageHandler class of Anonymity.................................... 255
Table 104: Interface QueueManager class of Anonymity ... 256
Table 105: Interface OutboundPackageHanlder class of Anonymity 257

10 | P a g e

D4.10 Final Version of Technical Design

List of abbreviations

AOI Attribute Object Identifier

AP Attribute Provider

A-PEPS Attribute PEPS (PEPS role for attribute collection in foreign countries)

AQAA Attribute QAA, quality of attribute(s)

AUB Authentication on behalf of

BA Domain-specific attribute

CMS Cryptographic Message Syntax

C-PEPS Citizen PEPS

CRL Certificate Revocation List

CSR Create Signature Request

DTL Document Transfer Layer

e-CODEX e-Justice Communication via Online Data Exchange

eID Electronic Identity

epSOS Smart Open Services for European Patients

EU European Union

HSM Hardware Security Module

IdP Identity Provider

LSP Large Scale Pilot

MS STORK 2.0 Member State

MW MiddleWare

NFR Non Functional Requirement

OASIS DSS OASIS Digital Signature Services

OCSP Online Certificate Status Protocol

PEPPOL Pan-European Public Procurement Online

PEPS Pan European Proxy Server

PO Powers (for digital signature)

PV Powers Validation

QAA Quality Authentication Assurance

SAML Security Assertion Markup Language

SP Service Provider

S-PEPS The PEPS role to attend SP requests

SPI Serial Peripheral Interface

SPOCS Simple Procedures Online for Cross- Border Services

11 | P a g e

D4.10 Final Version of Technical Design

STORK 2.0 Secure idenTity acrOss boRders linKed 2.0

SVN Subversion

VC Version Control

VCF Version Control File

VCP Version Control PEPS

V-IDP Virtual Identity Provider, the system of the decentralized deployment
architecture (formerly referred to as “MW architecture”)

12 | P a g e

D4.10 Final Version of Technical Design

Executive summary

This document describes the final architecture of the systems that compose the common
functionalities of the STORK 2.0 platform. This description is made from various points of
view, each described in a separate subchapter. The relevant points of view are applied to
each of the two models: The centralized deployment model “Pan European Proxy Service
(PEPS)” and the decentralized model (formerly “Virtual Identity Provider, V-IDP”), being the
system represinting the MW architecture.

Each of these systems is described in a separate chapter (2 and 3) subdivided in subchapters,
according to these views. As both systems obey to the same objectives, the majority of
functions and processes are the same. Therefore, the first described system, PEPS, is very
detailed, whereas the description of the second system is much shorter, due to the fact that
most text would be the same.

For each of these systems, all included modules are described: the AUB, PO, BA and PV
business processes, the Signatures, Version Control and Anonymity; each within the roles of
the PEPS (S-PEPS, C-PEPS and A-PEPS). However, for the V-IDP these roles are distinguished
internally, but not expressed in the software architecture design, as, instead of redirections to
different systems, the V-IDP performs internal routing between modules.

A fourth chapter describes “commodities” which are software modules found to be equal in
several different parts of the project, which should be developed by a common team. These
commodities are:

• eIdentifier encryption (National Identifier Privacy), in order to support avoiding that
different files can be matched and user profiles created.

• Version Control (SPs), to support that national PEPSes obtain information from their SPs,
and systems administratoirs are warned when changes have been taken place.

• Personal Data comparison (for re-authentication), which allows Service Providers to
peforma an intelligent verification of the similarity of names (given name and surname),
in order to determine if domain specific attributes may belong to the same person.

• Browser Temporary Storage Management, which allows a better user-experience from
one session to the other one.

• SAML Unpackager, a javascript, which allows the C-PEPSes to show business attributes,
without doing the interpretation. The unpackager can do the translation of the attribute
names, but won’t do any translation of the contents, which can fogure in any language.

The final chapter describes the detailed software design with class diagrams for modules and
interface specifications for each package. The modules correspond to the software modules
in SVN, the common software repository of the project.

The first four chapters are based on the deliverable D4.3 First version of the technical design
with an update due to comments by the reviewers, and to what is really implemented.
Another important input for this document is D4.9 Final Version of the Functional Design,
adapting many specifications.

13 | P a g e

D4.10 Final Version of Technical Design

1 Introduction
D4.10 describes the final architecture of the systems that compose the common
functionalities of the STORK 2.0 platform from various points of view. The relevant points of
view are applied to each of the two models: centralized and decentralized (formerly PEPS and
MW), this last one including the Virtual ID Provider (V-IDP). The document also describes
“commodities” which are software modules found to be equal in several different parts of the
project, which should be developed by a common team. This document forms the basis for
development of these solutions.

This deliverable is based on D4.3 First version of the Technical Design, which was used as a
template for this deliverable, and D4.9 Final version of the Functional Design, which includes
several changes in the functionalities to be built.

D4.10 uses the first version of the Technical Design (D4.3) as a template or draft version, with
minor changes due to comments by the reviewers, the WP4 core group, as well as due to the
real implementation. The major change in this document is the inclusion of the detailed
software design, which describes the different modules, packages and classes in successive
chapters. Another important input for this document is D4.9 Final Version of the Functional
Design, adapting many specifications.

It is important to highlight that D4.10 only describes the common functionalities of the STORK
2.0 Platform. Specific functionalities, organisational and infrastructure aspects are to be
determined, built and implemented by each Member State.

The deliverable is structured as follows: This document describes, after this first Introduction
chapter, the two systems. As both are so similar, first the PEPS is described (Chapter 2) and in
the following chapter (Chapter 3) the differences for the V-IDP are described. This approach is
oriented to share as much as possible, the developments for both systems. The first
subchapter for the PEPS starts with a general context description, zooming in, in the next
subchapter with the use cases and other requirements. After these general overviews, the
description gets to more detail in the next subchapters describing the views which are
considered relevant by the architecture designers. The V-IDP chapter follows a similar
structure, although empty paragraphs are to be understood as the same or very similar to the
PEPS paragraphs, substituting the term PEPS by V-IDP. The last but one chapter (Chapter 4) is
commodities; procedures or processes which have been mentioned along the
documentation, especially the Functional Design, but also pilot documentation, which should
be part of the common developments, but do not fit in the structure of chapter 2 and 3. The
last chapter (Chapter 5) is new, compared to D4.3. It details the technical implementation
with class diagrams for modules and the detailed interface specification for each Java
package.

1.1 Methodology

The deliverable follows a methodology based on the RUP (Rational Unified Process) 4+1 view
model. This model considers five views as normally sufficient to describe a system, the first
one being the use case view. Nevertheless, in different publications, different views are
described for the other four views, although all agree on the most important one: the logical
view.

In this logical view the system is divided in subsystems, and for each subsystem the different
business processes are described.

14 | P a g e

D4.10 Final Version of Technical Design

Figure 1: RUP 4+1 view model

Logical
view

Deployment
view

Data
view

Implementation
view

Use Case
view

Logical
view

Deployment
view

Data
view

Implementation
view

Use Case
view

15 | P a g e

D4.10 Final Version of Technical Design

2 PEPS Architecture Design
2.1 System Context

Figure 2: System Context Diagram

In each instance of a PEPS there are 3 roles: the one that attends to SP requests, the one in
the country which issued the ID that the citizen wants to use, and the third role is in another
country where the user may have domain-specific attributes. Compared with STORK11, this
last role is new.

For each received request, the first one (S-PEPS) forwards this request to his colleague PEPS
or V-IDP, and the second (role of the) PEPS (C-PEPS) resolves the requests received from his
colleague PEPS or V-IDP. If in this request any domain-specific attributes (BA) are included,
the user is prompted to indicate the Attribute Provider (AP), or alternatively the country in
which they can be found. In such latter case, the user is redirected to the A-PEPS of that
country, which will allow him to indicate the APs where to retrieve those attributes. The user
may indicate several countries to his C-PEPS, however the additional country selection is not
supported by the A-PEPS, in order to avoid excessive nesting and making the navigation
clearer to the user.

Each PEPS includes the functionalities which are specific to its Member State, which are
typically the interfaces with the local ID providers, domain-specific attribute providers and
mandate providers. On the other hand, the interface with Service providers (SPs) may also be
different from one country to the other one.

The communication between PEPSes and V-IDP and the common functionalities are standard.
This blue part of the above diagram, within the red rectangle is object of description in the
PEPS chapter of this document. The communication between a PEPS and a V-IDP is the same
as between 2 PEPSes. As far as possible V-IDP - V-IDP communication will be avoided, i.e. if
only countries which implement the decentralised model are involved, just one V-IDP will do
the complete job. In such case, instead of the redirection from one PEPS to the other one it
uses routing from one module to another one within the V-IDP. However, mixed scenarios
between centralised and decentralised (PEPS and MW) countries may require, for reasons of

1 STORK1: CIP ICT PSP Pilot A project https://www.eid-stork.eu/

Stork Common
Functionalities

PEPS
PEPS

V-IDP
V-IDP

IDP

IDP/APSP

SP

PEPS

BAP

BAP

BAP
V-IDP

BAP

16 | P a g e

D4.10 Final Version of Technical Design

trust, a V-IDP - V-IDP communication with redirection which will follow the same protocols
and rules as the PEPS-PEPS communication.

2.2 Objectives of PEPSes and V-IDPs

V-IDPs fulfil basically the same objectives as the PEPSes:

• they form anchors of trust which allow to elevate the national circles of trust to European
level and

• they hide country specific things like organisation, available ID providers and national and
domain-specific attribute providers to the outside world and just offer standardised data
through a standardised interface

In this sense, V-IDPs are also described in this chapter, most functions and structures are
common to both approaches. The main difference is that V-IDP follows a distributed
deployment, fully irrelevant for this document.

However, some important differences exist, which are described in chapter 3.

2.3 Use case view and other requirements

2.3.1 Use case view

2.3.1.1 STORK 2.0 core

The following diagram shows the system level use-cases offered by the core of the STORK 2.0
system.

Figure 3: Use case view of the STORK 2.0 core

The functionality of STORK 2.0 is defined by the following processes.

1. Authentication on behalf of and Powers (for digital signatures) is the process2 of
verifying the identity of a particular representative (user), representing another
person. This is achieved by asking for information that proves his identity, as well as
the data about the represented persons and mandate for representation. As a result
of this process, the user is allowed to access privileged data. Usually this process ends
with a fully identified representative (user), represented person and mandate for

2 Please note that, even though these are different business processes, for the PEPS they are exactly
equal.

Citizen
(representative)

SP

(B-)IDP

DSAP

Authentication
on behalf of

Powers

DomainSpecific
Attributes

Powers
Validation

17 | P a g e

D4.10 Final Version of Technical Design

representation. This means that his eIdentifier, and the identifier of the represented
person (eIdentifier or eLPidentifier) is transferred to the SP, and this SP recognises
this represented person as a known customer, partner, patient or whatever
relationship this person may have with the SP, and recognises the powers of
representation of the user.

Note that Authentication on behalf of and Powers may include collecting the user’s
domain-specific attributes. Also note that represented person may also be a natural
person.

2. Domain-specific attributes is the process of verifying the identity of a particular user,
and (possibly) collecting additional domain-specific attributes. Functionally the first
step is equal to the STORK1 process of Authentication; the second step is new, to be
detailed in next paragraph. The standard authentication is achieved by asking for
information that proves his identity.
The second step in the Domain-specific attributes process allows the Service Provider
to obtain, through the STORK 2.0 infrastructure and with the collaboration and
consent of the citizen, domain-specific attributes stored at national domain-specific
attribute provider’s sites, and at foreign sites. This functionality is quite the same as
the domain-specific attribute retrieval described at previous process.
As a result of this process, the user is allowed to access privileged data. Usually this
process ends with a fully identified user, which means that his eIdentifier and any
collection of other personal attributes is transferred to the service provider (SP), and
this SP recognises this user as a known customer, student, partner, or whatever
relationship this person may have with the SP.

3. Powers Validation is the process of verifying that the mandate of a particular user to
represent another person is still valid. This process is designed for SPs which maintain
a database with the representation-powers, and its users often represent several
persons. The process is designed not to include any user-interaction, not even for
consent, as all personal data have already been sent to the SP; however whether or
not consent is to be requested is configurable.
This process is only allowed for SPs in which the user is already authenticated using
the STORK 2.0 authentication process, and within a certain time-frame. This process
is very similar to the AUB process, taking into account that the Single Sign On feature
is used.
As a result of this process, the user is allowed to access privileged data. Usually this
process ends with a fully identified user, which means that his eIdentifier and any
collection of other personal attributes is transferred to the service provider (SP), and
this SP recognises this user as a known customer, student, partner, or whatever
relationship this person may have with the SP.

Just like in STORK1, all these use cases may be used for simple authentication of known users
as well as registration of new users; both for users on behalf of themselves with domain-
specific attributes, as for users on behalf of other users. The difference between
authentication and registration lays in the set of attributes requested by the SP.

These four use cases form the core of STORK 2.0. However, other use cases exist, according to
the following sections and two diagrams.

2.3.1.2 Version Control

STORK1 is not just one system; it is a platform of connected systems, which are
interdependent. The functioning of one system depends directly on the versions of software

18 | P a g e

D4.10 Final Version of Technical Design

and configurations of all other surrounding systems: a change in one of the surrounding
systems may provoke any STORK1 node to behave incorrectly.

Furthermore, inclusion of new systems which should not be totally transparent, like new MS
nodes, requires intervention in production systems in all STORK1-connected SP-nodes.

STORK 2.0 in this sense is exactly the same, although a bit more complex: more processes,
more data. The version control function solves these issues, with the interchange of version
control information in an XML formatted file. As described in “D4.9 First version of the
Functional Design” [13], in STORK 2.0 the version control has two parts: one part located at
the PEPSes and V-IDPs, the other part located at the SPs.

The use case view from the functional design included 2 processes. However, within the
scope of the PEPS, the version control for SPs is irrelevant. Nevertheless, SP version control is
considered important and common software, so this is described in chapter 4.

Figure 4: Use case view of the version control

Please note that Version Control for SPs is described in commodities, as it is not part of the
common cross-border interface.

2.3.1.3 Anonymity

The main goal of the Anonymity layer is to build a system in which trust on delivering is
serialized amongst several people/organizations. That is, all of them should plot together to
break anonymity; just like on traditional paper based methods, where at least the survey data
collector and the processor should collaborate to break anonymity, or on an election, where
all the members of a polling station should plot to guess the content of someone’s ballot. And
even in those scenarios, the participant still can uncover the plot by several means. Thus, the
system can be defined as the solution that provides the user participating on an eSurvey with
the maximum anonymity with the least impact on usability and the ability to be easily
deployed.

The main role of the infrastructure in the anonymity system is to provide the anonymity layer.
This layer will dissociate the moment of the input of the packet into the network and the
moment the packet finally reaches the Service Provider in which, the results will be
considered, making impossible to correlate the participant identity with the output packet of
the network.

PEPS

SP

Colleague PEPS

Version
control PEPS

Administrator

19 | P a g e

D4.10 Final Version of Technical Design

Figure 5: Anonymity system use cases

2.3.1.4 Signatures

STORK 2.0 enhances the Signature-Creation function that has been introduced in STORK1. It
allows for more document formats and gives Service Providers more control over the needed
signature formats and signature qualities, to better suit the business processes. The new
signature functions maintain backward compatibility with STORK1, i.e. continue to use OASIS-
DSS as a proven industry standard. The DSS request is further profiled to support the
additional functions. This profile has taken PEPPOL (the eProcurement LSP) results into
account to support cross-LSP alignment. The document viewer functions are better specified
– resulting from STORK1 experience. A signature-verification function is introduced as a
supporting service.

Given that several MS have signature infrastructure in place, whereas others do not, the
specifications have been drafted so that no assumptions on this infrastructure are made. MS
can continue to use their established components, such as signature-creation modules; other
can use a STORK 2.0 reference implementation. Results of other LSPs, namely PEPPOL have
been taken into account and adopted where suitable.

STORK1 already has the possibility to sign documents, but in limited way. It is only possible to
sign documents combined with an authentication request. Once a session is established there
is no way of issuing another signature request. While the STORK 1 approach has merit for
some business cases (e.g. for signing proof of receipts in eDelivery), it is limiting the potential
of this function, as e.g. signed transactions at the end of a process are not supported.

Three ways of issuing a signature request have been specified:

• Combined with an authentication request (as already in STORK 1)

• As a separate request referring an authenticated session (signing a transaction)

• As a request not linked to an authenticated session (signing arbitrary eDocuments)

The two latter requests in fact embrace the same technical request, the difference is just
from a business process perspective, i.e. whether the SP requesting a signature needs to have
the citizen authenticated.

The overall idea is to delegate the actual signing function to the citizen MS’s infrastructure –
as is done with handling STORK eID. This means, that the signature-request is issued by the SP
and then (via an S-PEPS or V-IDP) routed through the STORK infrastructure to the C-PEPS or V-
IDP.

20 | P a g e

D4.10 Final Version of Technical Design

Further this section extends the signature request to gain more control over the signature
creation process. It allows the SP to request the signature quality and signature format
needed.

2.3.2 Non Functional requirements (NFR)

2.3.2.1 NFR: User Requirements

Name Description

Availability
The system should be designed for high availability, and
implemented that way. Thus an availability of 99,7% is to be
achieved, see also section 2.3.3.4.

Capacity The system should be designed for thousands of transactions
a day.

Reliability Stored data cannot be corrupted by defective code,
concurrent access, or unexpected process termination.

Performance
A response time of 5 seconds is acceptable for each of the
interactions perceived by the user, measured between
clicking and the first part of the reply

Table 1 – User requirements

2.3.2.2 NFR: Evolution Requirements

Name Description

Scalability

The system must be designed to scale well
with

• More countries (we can expect up to
some 30)

• More IdP’s

• More Domain-specific attribute
Providers

• More Business Sectors

Very many SP’s

Flexibility

The system must allow for personalisation in
each of the Member States. This applies of
course to the user interface, but also to
available data, etc.

Portability

The common code should work

• with Tomcat, JBoss, WebLogic and
Glassfish

under Linux (Ubuntu, RedHat) and Windows
20xx server

21 | P a g e

D4.10 Final Version of Technical Design

Reusability
Components of the system must be created
to function and integrate within more than
one environment

Extensibility The system must be prepared to be extended
with other functionalities

Maintainability

Although the project has a limited duration,
an extension should be foreseen, so the code
should obey to normal maintainability
criteria.

Table 2 – Evolution requirements

2.3.3 Availability

2.3.3.1 High Availability deployment

The common software is designed and tested to be deployed in a high-availability
environment, with a load balancer determining, based on IP and session-id, to which node the
request should be sent. Although not any country has deployed this software on more than
two nodes, the software is designed to work perfectly with any number of nodes.

As indicated in the STORK performance analysis, also crypto-hardware (HSM) can increase the
performance drastically, estimated in a factor of 250% in the performance analysis realised by
the STORK project.

2.3.3.2 Cloud deployment

Deployment in “the cloud” would not work however. Several problems would be
encountered, in the first place the session-maintenance is done in one server, and would
break the authentication-process. Sharing the session-information between all nodes in the
cloud would technically not be trivial, and solving the associated data protection problems
would not be so either. Other foreseen problems are:

• The random distribution of transaction logs and application traces, which would make it
nearly impossible to trace a transaction if an error would be found

• The undefined synchronisation of clocks would cause transactions to fail in an undefined
way, as the systems need the clocks to be “synchronised”, with a time difference of less
than 4,5 minutes

• The Single Sign On (and associated Powers Validation) would have serious problems
maintaining all other session-information.

2.3.3.3 Monitoring

In any datacenter the common practice is to use monitoring in order to anticipate any
problems of performance; thus all datacenters where a PEPS is deployed have a monitoring of
basic system functions in place. Normally these products monitor the use of system resources
(CPU, memory, disk usage, net usage, etc). This way the system administrator knows
beforehand when machines are getting overloaded. Sometimes also the availability of
services on a port is monitored.

However, this monitoring is incomplete in the sense that availability of system resources does
not imply automatically that the service is available. Therefore, as a complementary service
the AT team has established a more advanced monitoring which sends http requests to all

22 | P a g e

D4.10 Final Version of Technical Design

PEPSes, and reviews the results. If any service is down, the corresponding administrator is
warned.

A better monitoring has been thought of, which would send valid SAML requests to all PEPSes
and VIDPs and check if at least such request is accepted. Such monitoring service would be a
more reliable source for the fact that the PEPS is fully operational. This service would not be
hard to build under Jmeter with some custom development. But the project has prioritised on
getting the maximum functionality of the central infrastructure and maximum services of the
piltos.

2.3.3.4 Resulting availability

Even though a wide variety of measures are taken to ensure high availability, a full, 100,00%
availability can never be reached. Downtime can be caused by planned maintenance or
incidents. Planned maintenance in a high-availability scenario normally does not cause major
unavailability, as the common practice is to first isolate one node and apply and test the
changes on this node, before reconnecting it to the pool. Immediately afterwards, the other
nodes are disconnected and the changes are applied and tested on these machines. This way
the unavailability is rather to be measured in seconds for each maintenance action, which will
normally less than once each quarter.

Incidents causing downtime might be less frequent, but as they are not foreseeable, may
cause major unavailability. If an incident happens just after working hours, it may cause a
downtime of some 15 hours; if this happens once a year an availability of 99,8% would be the
resulting availability. Reserving some time for other causes, an availability of 99,7% should be
considered as reasonable. In fact in most known professional sites this is considered as the
normal requirement.

2.4 Logical view

The main goal of the logical view is the decomposition of the system into subsystems. This
can be done by component and/or class diagrams, showing the architecturally important
components and their relationships.

The sequence diagrams show the sequence of messages passed between objects using a
vertical timeline.

2.4.1 S-PEPS

2.4.1.1 Authentication on behalf of and Powers

The authentication on behalf of process is initiated when a Service Provider needs to know
the user’s and the represented person’s identity as well as mandate data, and sends an
authentication on behalf of request to the S-PEPS through the citizen’s Web Browser. In the
same way, the S-PEPS will redirect the authentication request (as a SAML AuthnRequest) to
the C-PEPS through the citizen’s Web Browser as well.

In D4.2 Functional Design [13] it was explained that both processes are the same, so they are
described here at a time.

2.4.1.1.1 Country selector implementation

If the SP does not have the ability to generate SAML messages then it can ask for a SAML
AuthRequest to the S-PEPS (Sequence diagram Prerequisite for SP without SAML capacities).
During the STORK1 project it has been decided to recommend the implementation of this
country selector at Service Providers. There are several benefits doing things this way:

• the PEPS can verify that the Service Provider is authorised;,

23 | P a g e

D4.10 Final Version of Technical Design

• its ProviderName is the correct one, thus avoiding C-PEPSes to ask consent to send data
to provider X, when in the end they are sent to provider Y;

• it reduced slightly the load of the PEPS machine;

• it avoids Denial of Service attacks to the PEPS, as requests need to be signed3;

As a summary, this interface is deprecated, i.e. is supported but will disappear in future
versions of STORK.

2.4.1.1.2 Sequence diagram Prerequisite for SP without SAML capacities

Figure 6: Sequence diagram Prerequisite for SP without SAML capacities

2.4.1.1.3 Description

Message sequences
(interactions) Description

1 Handle SP Request Description

The objective of this activity is to check the origin of the request
and decide if the request, in this first step, is accepted or not.

Sequence Diagram

3 If DoS attacks use exactly the same requests, this can be done to the machines, but normally IPSes
will filter equal requests.

24 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Detailed Sequence Diagram

External Actors

• Citizen-Browser: The S-PEPS receive the Request from a SP
through the Citizen-Browser.

Data

INPUT

• SP ID

• SP URL

• Country of origin (in case a PEPS is shared)

• Sector ID

• Application name

Get S U equest

Validate Origin

Handle SP Request

Register Handle SP Request (log)

SP ID SP AUB Request
Validation

Check SP AUB Request

SP’s List

Init Parameters
Log Configuration

QAA Level

25 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• QAA Level requested by the SP

OUTPUT

• SP AUB Request Validation

CONFIG FILES NEEDED

• SP’s list: List of SP’s allowed to communicate with this PEPS

• Init Parameters

Error Communications

• Send HTML KO.1 to the Citizen-Browser.

If a Handle Error succeed.

Actions

• Get SP AUB Request ()

• Register Handle SP AUB Request (SP ID, S-PEPS, “SP AUB
Request”)

• Validate Origin (SP ID, QAA Level).

(If SP ID and QAA Level are missing  Handle Error
SPAUB0101)

o If access control is based on SP’s list:

 Check SP (SP ID, SP List): SP ID in SP’s List.

(If SP ID is not in the list  Handle Error SPAUB0102)

 Else, check SP Domain (SP Request Domain): validate

if the request domain matches the registered SP

Domain.

(If the origin is not correct  Handle Error
SPAUB0103)

o Check number of requests (SP ID): number of requests in

the last period of 60 seconds.

(If this number is greater than or equal to the maximum
number - to avoid DoS  Handle Error SPAUB0104)

2 Generate HTML Description

Generates the HTML that shows the Country Selector form and
gets citizen’s nationality selected.

26 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Sequence Diagram

Detailed Sequence Diagram

External Actors

•

Data

INPUT

• SP ID

• Attributes requested (mandatory/optional), including the
requested mandate data

• QAA Level

OUTPUT

• HTML-country-selector

CONFIG FILES NEEDED

• SP’s list (optional)

Error Communications

• None

Actions

• Present Country Selector (SP ID, QAA Level)

2. Generate HTML

HTML.1

Present Country Selector

Register Present Country Selector (log)

Generate HTML

HTML-country-selectorGenerate HTML

SP’s list

SP ID
QAA Level

27 | P a g e

D4.10 Final Version of Technical Design

Table 3 – Description sequence for SP without SAML capacities

2.4.1.1.4 Sequence diagram AUB

Figure 7: Sequence diagram Authentication on behalf of in S-PEPS

2.4.1.1.5 Description

Message sequences
(interactions) Description

0-1 Handle Citizen’s
Response

Description

Receives Citizen’s reply, add it to the AUB Request and check
AUB request validation (this task includes log activity).

28 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Sequence Diagram

Detailed Sequence Diagram

External Actors

• Citizen-Browser

Data

0. Get Citizen Response

1. Handle Citizen Response

HTML KO.2

[comunicate KO]

Register Handle Citizen Response (log)

Validate Origin

Check number of requests

Check Selected Country

Check contents

Handle Citizen Response

29 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

INPUT

• Citizen’s selected country

• SP ID

• SP Name

• QAA Level

• Mandatory and optional Attributes list, including requested
mandate data

• Redirect URL

OUTPUT

• SP AUB Request Validation

COMMON CONFIG FILES NEEDED

• SP’s list

• SP’s Attributes List

• Log Configuration

Error Communications

• Send HTML KO.2 to the Citizen-Browser.

If a Handle Error succeed.

Actions

• Get Citizen’s Country Selected (Citizen’s Reply)

• Validate Origin (SP ID, QAA Level).

(If SP ID and QAA Level are missing  Handle Error
SPAUB0401)

o If Authentication Type is based on SP’s list:

 Check SP (SP ID, SP List): SP in SP’s List.

(If SP is not in the list  Handle Error SPAUB0402)

 Else, check SP Domain (SP Request Domain, Redirect

SP AUB Request Validation Handle Citizen’s Response

SP’s list

Selected Country

Log Configuration

Mandatory and
optional attributes

QAA Level

SP ID

Redirect URL
SP’s Attributes list

log

SP Name

30 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

URL): validate if the request domain and Redirect

URL matches the registered SP Domain.

(If the request domain or Redirection URL is not correct
 Handle Error SPAUB0403)

o Check number of requests (SP ID, 60): number of

requests in the last period of 60 seconds.

(If this number is greater than or equal to the maximum
number - to avoid DoS  Handle Error SPAUB0404)

o Check Selected Country (SelectedCountry)

(If selected country is not a valid country  Handle Error
SPAUB0405)

o Check contents (Mandatory and optional Attributes list).

(If any Mandatory or optional Attribute isn’t in SP’s

Attributes List  Handle Error SPAUB0406)

o Register Handle Citizen Response (Citizen, S-PEPS,

“Select Country”)

2 Map and Forward
AUB Request

Normalise data and send AUB request to colleague PEPS

This task includes some internal activities to normalise all the
received data, log activity and send to Colleague PEPS/V-IDP.

2.1 Normalise data

2.2 Get SAML Authentication Request

2.1 Normalise data Description

Normalise all received data, mapping the MS values to STORK
nomenclature.

Sequence Diagram

2.1. Normalise Data

31 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• Attribute list with values

OUTPUT

• Attribute names and data values in STORK nomenclature.

CONFIG FILES NEEDED

• Mapping Attributes: Map between STORK names/values and
MS names/values for the attributes (text values are not
included)

• Mapping values: as far as values are included in the
requested attributes, some may need a semantic
translation. This would apply on the legal form of the
company in the question “Is this person a legal
representative of {“Daimler Benz”, ”Stuttgart”, AG, ….}

2.2 Send SAML
Authentication
Request

Description

Send AUB Request to Colleague PEPS/V-IDP.

Sequence Diagram

Detailed Sequence Diagram

Send SAML Authentication Request

Register Send SAML Authentication Request (log)

Send SAML Authentication Request

STORK AttributesNormalise Data

Mapping Attributes

Attributes list

2.2. Send SAML Authentication Request

32 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• SAML Authentication Request

OUTPUT

• SAML Authentication Request

CONFIG FILES NEEDED

• Log Configuration

Actions

• Register Send SAML Authentication Request (S-PEPS, C-
PEPS, “Map and Forward AUB Request”)

3 Process AUB
Request

Description

The request is processed in the Colleague PEPS/V-IDP. The
authentication on behalf of is performed with the user and the
security token created.

Sequence Diagram

4 Handle AUB
Request

Description

S-PEPS receives SAML AuthenticationResponse through the
Citizen-Browser issued by Colleague PEPS/V-IDP.

S-PEPS validates SAML AuthenticationResponse signature.

Sequence Diagram

SAML
Authentication Request Send SAML Authentication

Request
SAML

Authentication Request

Log Configuration

log

3 . Process AUB Request

HTML KO . 3
[comunicate KO]

- Check Signature { }

Send SAML Authentication Response

4 . Handle AUB Request

33 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Detailed Sequence Diagram

External Actors

• Citizen-Browser: The S-PEPS receives the SAML AUB
Response from a Colleague C-PEPS/V-IDP through the
Citizen-Browser.

Data

Normalisation of data is the changing of attribute names and
values according to the STORK standard to any national standard.
This includes translation of common values to national values in
the case of attributes defined on an enumerated domain, like the
legal form of a legal person, the study one has finalized, etc.

INPUT

• SAML Response

OUTPUT

Validate Request Format

Validate Origin

Check SAML Conditions

Get SAML AuthenticationResponse

Handle SAML AuthenticationResponse

Register Handle SAML AuthenticationResponse (log)

SAML Response Normalise Data

Mapping Attributes

SAML Response

Log Configuration

34 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• SAML Response

CONFIG FILES NEEDED

• Mapping attributes

• Log Configuration

• Mapping of values

Error Communications

• Send HTML KO.3 to the Citizen-Browser.

If a Handle Error succeed.

Actions

• Receive SAML AuthenticationResponse ()

• Register Handle SAML AuthenticationResponse (C-PEPS, S-
PEPS, “Check Signature”)

• Validate Response Format (SAML)

(If the format is not correct  Handle Error SPAUB2201)

• Validate Origin (Colleague PEPS/V-IDP): Validate Colleague
PEPS/ V-IDP Signature.

(If the origin is not correct  Handle Error SPAUB2202)

• Check SAML Conditions (notBefore, notAfter, etc.)

(If conditions are not fulfilled  Handle Error SPAUB2203)

5 Map, Sign and
forward reply

Description

Maps, generates the SAML token, signs and sends it to SP.

Sequence Diagram

35 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Detailed Sequence Diagram

Map Attributes

Generate SAML Token

Sign AUB Response

Send SAML AuthenticationResponse

Map , sign and forward reply

Register Map , sign and forward reply (log)

External Actors

• SP

Data

INPUT

• SAML AuthenticationResponse

• Requesting colleague PEPS

OUTPUT

• SAML AuthenticationResponse.

CONFIG FILES NEEDED

• Mapping Attributes: Map between STORK names/values and
MS values for the attributes (text values are not included)

SAML
AuthenticationResponseMap, sign and forward reply

Mapping Attributes

SAML
AuthenticationResponse

Requesting colleague

Log Configuration

log

36 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• Log Configuration

Error Communications

• None.

Actions

• Map STORK values to MS values (STORK Values, MS Values)

• Generate SAML Response (Colleague SAML Request)

• Sign SAML Authentication Response (SAML)

• Send SAML Authentication Response ()

• Register Map, sign and forward reply (S-PEPS, C-PEPS, “Map,
sign an forward reply”)

Note that, when mapping attributes coming from A-PEPSes, the
original value must be retained, in order to maintain the
correctness of signatures, and thus allow SPs to store the
message as an evidence chain.

Table 4 – Description sequence Authentication on behalf of in S-PEPS

2.4.1.2 Domain-specific attributes (BA)

The Domain-specific attributes process, similar to the Authentication on Behalf of, is initiated
when a Service Provider needs to know the user’s identity, and sends a Domain-specific
attributes request to the S-PEPS through the citizen’s Web Browser. In the same way, the S-
PEPS will redirect the request (as a SAML AuthnRequest) to the C-PEPS through the citizen’s
Web Browser as well.

Regarding the country selector, for Powers the same applies as for Authentication on behalf
of.

2.4.1.2.1 Sequence diagram BA

Same as 2.4.1.1.4.

2.4.1.2.2 Description

Same as 2.4.1.1.5.

2.4.1.3 Signature Creation on Authentication

In this case, the signature creation process takes place during the SAML authentication
request. The OASIS-DSS signature request is embedded in a STORK2
<stork:RequestedAttribute> Element. This section describes the signature creation workflow,
for authentication request specific details refer to the STORK 1 interface specification [1], the
Authentication on Behalf (AUB) specification in this document, respectively.

37 | P a g e

D4.10 Final Version of Technical Design

2.4.1.3.1 Sequence Diagram

Figure 8: Signature creation on authentication

Figure 8 limits itself to the PEPS-PEPS scenario. For middleware-scenarios, the same sequence
diagram applies. Depending on the case, either the SP-request is sent to a V-IDP (instead of
an S-PEPS), or finally processed by the V-IDP (instead of C-PEPS).

2.4.1.3.2 Description

Message sequences
(interactions) Description

1 Redirect to S-
PEPS

Description

The SP issues an authentication request which contains an
http://www.stork.gov.eu/1.0/signedDoc attribute and sends it to
the S-PEPS (or V-IDP) through the citizen’s browser. For details on
the authentication request, refer to the the STORK 1 Interface
Specifications [1].

 External Actors

• Citizen-Browser: The Citizen Browser redirects the
Authentication request from the SP to the S-PEPS (or V-IDP).

 Sequence Diagram

Data

INPUT

OUTPUT

• SAML authentication request with signedDoc attribute
attached

2 Redirect to C-
PEPS

Description

The S-PEPS decides if it can handle the request on its own (not
shown in the sequence diagram) or redirects the request through
the citizen’s browser to the C-PEPS.

38 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 External Actors

• Citizen-Browser: The Citizen Browser redirects the
Authentication request from the S-PEPS to the C-PEPS/V-
IDP@PEPS.

 Sequence Diagram

Data

INPUT

• SAML authentication request

OUTPUT

• SAML authentication request (redirected to C-PEPS/V-
IDP@PEPS)

3 Create signature Description

The C-PEPS (or V-IDP) initiates the document signature. The
signature creation process may vary in different MS, depending on
the used eId technology (signature-creation may take place at the
C-PEPS/V-IDP, or get delegated to a signature service.

The C-PEPS finally attaches a
http://www.stork.gov.eu/1.0/signedDoc to the response which
contains the signed data.

 External Actors

• The C-PEPS may use external devices or services to issue the
MS specific signature.

 Sequence Diagram

Data

INPUT

• SAML authentication request

OUTPUT

• Issued signature (from signature service)

4 Return results Description

The C-PEPS returns the results to the calling instance (citizen’s

39 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

browser)

 External Actors

• The citizen’s browser receives the results of the
authentication/signature request.

 Sequence Diagram

Data

INPUT

• Issued signature

OUTPUT

• SAML authentication response with signedDoc-Response
Attribute attached

Table 5 – Description sequence Create signature in S-PEPS

2.4.1.4 Signature Creation with optional Authentication

The former described signature creation method (section 2.4.1.3) requires the SP to issue a
SAML authentication request to invoke the signature creation workflows. For business cases
where digital signatures are not required during the authentication phase or no authenticated
session is required at all, this method is not practicable. Hence, a further signature creation
workflow is specified (tightly aligned with the former workflow), which directly uses an HTTP
POST enabled OASIS-DSS interface without embedding the request in the SAML request. For a
detailed specification on the OASIS-DSS profile refer to [12] and its STORK profile in D4.4 [15].

2.4.1.4.1 OASIS-DSS HTTP POST Transport Binding

To support both a signature request during an authenticated session and as part of non-
authenticated sessions, the OASIS “HTTP POST Transport Binding” as specified in section 6.1
of the document [10] is used.

The “TLS Security Binding” with “TLS X.509 Server Authentication” MUST be used (section
6.3.1 of the same document [10])

This transport binding has been chosen, as OASIS-DSS HTTP POST matches with the SAML
HTTP POST binding already used by STORK, but it also supports issuing the signature-creation
request from non-authenticated sessions.

2.4.1.4.2 STORK 2.0 Integration

As illustrated in Figure 9 the S-PEPS and C-PEPS interfaces get extended to support OASIS-DSS
requests. It is required to use the profile specified in section deliverable D4.4 [15] which
basically adds optional parameters and is compatible with the OASIS-DSS-core protocol [10].

40 | P a g e

D4.10 Final Version of Technical Design

Figure 9: Scheme of signature creation without authentication

The SP sends an OASIS-DSS request to the corresponding S-PEPS interface (or V-IDP), which
then decides to redirect the request to the C-PEPS which is aware of the MS specific signature
solution. (again, decentralised scenarios can be constructed by, depending on the case,
replacing the S-PEPS or the C-PEPS by a V-IDP):

• Authenticated sessions: If an authenticated session is available on the SP and signature
issuer checking is enabled, the SP checks the issuer of the signature and provides the
storkID.

• Unauthenticated session: The workflow for signatures in unauthenticated sessions is the
same as for authenticated session, except that the SP cannot request binding the issuer of
the signature to an authenticated session.

An option “strong identity binding” is introduced that allows SPs better control on whether
the same user that authenticated actually signs the document later on. This is done to
support high-value services that want to avoid session high-jacking or substitution attacks.
The overall process is that the SP may include the “storkID” it got during authentication. The
citizen MS infrastructure (C-PEPS or V-IDP) than confirms if the token used to sign
corresponds to the storkID. This in many cases can easily be done, as the identifier used to
create the storkID is anyhow kept in the certificate (e.g., in Spanish DNIe or Belgian BELPIC),
or a reference is given (e.g., identity link in Austria).

Note: While establishing “strong identity binding” can easily be done in several cases, it may
not be possible in others or may need re-authentication of the citizen which lowers usability.
SPs shall decide based on the risk associated, if the SPs authenticated browser session is
sufficient to assume that he same user signs, or if using “strong identity binding” through the
STORK infrastructure is advisable. To allow a further granularity, an “EnforceIdentityBinding”
attribute is used. If set, the STORK infrastructure shall not return signed data, if identity
cannot be ensured. If not set by the SP, the signed document is returned, the SP may decide
in backend processes depending on the actual risk upon the identity binding result (success,
fail, or incomplete).

C-PEPS S-PEPS

SP

SignatureSW
MS specific

eID

OASIS
-DSS

OASIS
-DSS

41 | P a g e

D4.10 Final Version of Technical Design

2.4.1.4.3 Sequence Diagram

Figure 10: Signature creation with optional authentication

2.4.1.4.4 Description

Message sequences
(interactions) Description

1 Generate OASIS-
DSS signature
request

Description

The SP issues an OASIS-DSS signature request. The request is sent
to the S-PEPS through the citizen’s browser.

 External Actors

• Citizen-Browser: The Citizen Browser redirects the request
from the SP to the S-PEPS.

 Sequence Diagram

Data

INPUT

OUTPUT

• OASIS-DSS signature request

2 Redirect to C-
PEPS

Description

The S-PEPS decides if it can handle the request on its own (not
shown in the sequence diagram) or redirects the request through
the citizen’s browser to the C-PEPS/V-IDP@PEPS.

42 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 External Actors

• Citizen-Browser: The Citizen Browser redirects the OASIS-DSS
request from the S-PEPS to the C-PEPS/V-IDP@PEPS.

 Sequence Diagram

Data

INPUT

• OASIS-DSS signature request

OUTPUT

• OASIS-DSS signature request (redirected)

3 Create signature Description

The C-PEPS (or V-IDP) initiates the document signature. The
signature creation process may vary in different MS, depending on
the used eId technology (signature-creation may take place at the
C-PEPS/V-IDP@PEPS, or get delegated to a signature service.

The C-PEPS generates an OASIS-DSS signature response according
to the specification.

 External Actors

• The C-PEPS forwards the signature request to the signature
service which issues the signature.

 Sequence Diagram

Data

INPUT

• OASIS-DSS signature request

OUTPUT

• Issued signature (from signature service)

4 Return results Description

The C-PEPS returns the results to the calling instance (citizen’s
browser, SP).

 External Actors

43 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• The citizen’s browser receives the results of the
authentication/signature request.

 Sequence Diagram

Data

INPUT

• Issued signature

OUTPUT

• OASIS-DSS response

Table 6 – Description sequence Create signature with optional authentication in S-PEPS

2.4.1.5 Document transfer

Document transfer is the process which allows Service Providers to request the user to sign a
certain document, redirecting him/her to his national signature creation portal. After creating
the signed document, this is returned to the SP. This function supports multiple signatures on
one document.

Figure 11: Diagram of a document with two signatures

44 | P a g e

D4.10 Final Version of Technical Design

2.4.1.5.1 Sequence diagram of Document Transfer

Figure 12: Sequence diagram of document transfer

45 | P a g e

D4.10 Final Version of Technical Design

2.4.1.5.2 Detailed description of Document Transfer

Message sequences
(interactions) Description

1 DSR-ACT-1

Create signature

Description

A presumption for this process is that the service provider has a
document which needs to be digitally signed by one or more
persons. Where and how this document was created is out of
scope for this process. Also the legal preparation of the document
text is out of scope, such as clauses on that the document that is
digitally signed. The document needs to be prepared and set up for
digital signature.

The interaction starts with the user accessing the SP. It is assumed
that user has already successfully signed in SP’s private area. The
service provider must provide all parameters required for signing
the document, such as needed information on the signers.

 External Actors

• Citizen-Browser: The Citizen Browser interacts with SP

Sequence Diagram

Data

INPUT

• User’s country

OUTPUT

• Create Signature Request (CSR) containing OASIS-DSS
signature request

COMMON CONFIG FILES NEEDED

• Country profiles

Actions

• Validate user’s access rights to SP services / authorization
• Gather user’s information
• Perform user’s country selection

46 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• Prepare document to be signed
• Gather optional information

2 DSR-ACT-2

Process
signature
request

Description

SP initiates document signing, activates document pre-processing
for signing, creates CSR and redirects user to S-PEPS.

Forward Create-Signature-Request (CSR) to S-PEPS (always
requesting the signature of one signatory only) and redirect user to
the S-PEPS.

The DSR does not contain the payload. Instead, the payload is given
by a reference (DocumentURL).

External Actors

• Citizen-Browser: The Citizen Browser interacts with SP and
S-PEPS

Sequence Diagram

Data

INPUT

• Citizen’s selected country (the signature fields option)
• The document to be signed
• SP ID
• SP Name
• Redirect URL (SP)

OUTPUT

• CSR containing OASIS-DSS signature request
• Processed document to be signed

COMMON CONFIG FILES NEEDED

• Version control file (signature fields per MS)

47 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• SP’s list
• Log configuration

Actions

• Process the document for signing
If the document has been signed before, the document has
been prepared for signing therefore steps 1 – 3 below be
skipped.
Using the STORK SP-extensions/Adapters the document must
be prepared for signing.

1) Convert the document to the right document format.

Structured text should be converted to PDF and simple
form to text or XML forms. A detailed specification is given
as the STORK Viewer Specification.

2) Save the document using the document unique identifier
(d-ui) as the document name.

3) Based on how many signers will sign the document and the
origin of the signers, the document must be prepared for
signing by creating empty signing boxes for signers from
countries where the signing software requires pre
generated signing boxes.

• Embed current signer information in CSR using the STORK-
profile of OASIS-DSS.

• Upload processed document to S-PEPS and generate
DocumentURL and DocUID, according to the OASIS DSS STORK
extension profile.

• Prepare redirection to C-PEPS.
• Prepare DSR and embed DocUID, DocumentURL.
• Validate origin (SP ID)

(If SP ID missing  Handle Error SPDTR0401).
• Check number of requests (SP ID, 60): number of requests in

last period of 60 seconds
(If this number is greater than or equal to the maximum
number, to avoid DoS  Handle Error SPDTR0404).

3 DSR-ACT-3

Redirect user

Description

The user is being redirected from S-PEPS to C-PEPS to sign the
document at MS signature service. The signature service can by
MS-specific operating national eID tokens and signature software.
CSR can contain the request for the signature of one signatory only.

External Actors

• Citizen-Browser: The Citizen Browser interacts with S-PEPS and
C-PEPS

48 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Sequence Diagram

Data

INPUT

• Create Signature Request (CSR)

Actions

• Redirect user to C-PEPS according to previously selected
country

4 DSR-ACT-4

Process DSR

Description

Take/parse request and store the payload (i.e. the document to be
signed) in the cache; create an URI pointing to the payload.

The user is redirected to C-PEPS. C-PEPS processes CSR, retrieves
document to be signed, performs processing if necessary and
forwards the user to the MS-specific signature service

External Actors

• Citizen-Browser: The Citizen Browser interacts with S-PEPS and
C-PEPS

• Signature service – the Member State specific service the user
is being redirected to

Sequence Diagram

Data

INPUT

• Create Signature Request (CSR)
• Document to be signed / DocumentURL

49 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

OUTPUT

• Create Signature Request (CSR)
• Temporary URI to store the document

CONFIG FILES NEEDED

• Log configuration
• Signature service

Actions

• The data from CSR is extracted.
• Create a “complicated” URI to the cached document.
• Retrieve document from S-PEPS

(If the document cannot be retrieved  Handle Error
SPDTR0503).

• The document on the S-PEPS is removed after successful
retrieval is performed.

• The document is stored into temporary storage using the
Document ID and C-PEPS specific temporary URI.

• DSR is updated with the DocumentURL using new temporary
location.

5 DSR-ACT-5

Initiate signing

Description

Redirect user to the MS signature service to perform document
signing.

External Actors

• Citizen-Browser: The Citizen Browser is being forwarded to
signature service.

• Signature service – the Member State specific service the user
is being redirected to.

Sequence Diagram

Data

INPUT

• Create Signature Request (CSR)

OUTPUT

• Create Signature Request (CSR)

50 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

CONFIG FILES NEEDED

• Log configuration
• Signature service

Actions

• Prepare and perform redirection of the user to Member
State specific signature service.

6 DSR-ACT-6

Perform signing

Description

User signs document using signature service. Optionally, user is
able to select the method/application to sign the document with.

External Actors

• Citizen-Browser: The Citizen Browser interacts with signature
service

Sequence Diagram

Data

INPUT

• Create Signature Request (CSR)
• Document (DocumentURL)

OUTPUT

• Create Signature Response (CSR)

CONFIG FILES NEEDED

• Log configuration
• Signature service

Actions

• The CSR is processed
• Signature Service retrieves document from C-PEPS and its

temporary storage using DocumentURL parameter
(If the document cannot be retrieved  Handle Error
SPDTR0503).

• After the fetching is successfully done, the document is deleted

51 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

at C-PEPS(If the document cannot be deleted  Handle Error
SPDTR0505).

• Signature service processes document, if necessary.
• The document is displayed to the user (cf. STORK Viewer

Specification).
• The user signs the document using signature service’s facilities

and requested signature level. For example if the DSR contains
request for NCP signature the signer can sign the document
with NCP, NCP+ or QCP certificates. If the DSR request QCP the
user can only sign the document using QCP certificate stored
on secure signature device.

7 DSR-ACT-7

Return to S-PEPS

Description

After the document is successfully signed, the document is sent to
C-PEPS. The user is redirected to S-PEPS through C-PEPS.

External Actors

• Citizen-Browser: The Citizen Browser interacts with signature
service

Sequence Diagram

Data

INPUT

• Create Signature Response (CSR)
• Signed Document

OUTPUT

• Create Signature Response (CSR)

CONFIG FILES NEEDED

• Log configuration
• Signature service

Actions

• Proving that the user has signed the document, the document
is being sent to C-PEPS
(If the document cannot be uploaded  Handle Error
SPDTR0504)

52 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• The document is stored into temporary storage on C-PEPS,
• Create a “complicated” URI to the cached document
• The payload document is deleted from the signing app

(If the document cannot be deleted  Handle Error
SPDTR0505).

• The user is redirected back to C-PEPS.
• C-PEPS updates Create Signature Response with the actual

DocumentURL and status, according to STORK OASIS DSS
Profile

• C-PEPS redirects the user to S-PEPS.
8 DSR-ACT-8

Process the
signing response

Description

The user is sent back to S-PEPS, which processes the Create
Signature Response, fetches the signed document using the URL
and redirects user to SP.

External Actors

• Citizen-Browser: The Citizen Browser interacts S-PEPS and SP

Sequence Diagram

Data

INPUT

• Create Signature Response (CSR)
• Signed Document

OUTPUT

• Create Signature Response (CSR)

CONFIG FILES NEEDED

• Log configuration
• SP’s list

Actions

• The document is fetched from C-PEPS using the DocumentURL

53 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

contained in Document Signing Response
(If the document cannot be retrieved  Handle Error
SPDTR0503).

• The document is stored into temporary storage at S-PEPS.
• Create a “complicated” URI to the cached document.
• The payload document is deleted from the C-PEPS

(If the document cannot be deleted  Handle Error
SPDTR0505).

• The DSR is being updated and the user redirected to SP.
9 DSR-ACT-9

Receive and
process signed
document

Description

The user is redirected to SP. SP receives the signed document. After
the document is processed by SP, and optionally validated, user is
able to consume other services from SP.

External Actors

• Citizen-Browser: The Citizen Browser interacts SP

Sequence Diagram

Data

INPUT

• Create Signature Response (CSR)
• Signed Document

CONFIG FILES NEEDED

• Log configuration
• PEPS configuration file
• SP’s list

Actions

• User performs the redirection to SP.
• S-PEPS uploads the document to SP using Document ID and

RedirectURL from CSR
(If the document cannot be uploaded  Handle Error
SPDTR0504).

• The document is removed from the S-PEPS temporary storage
after it is successfully sent to SP

54 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

(If the document cannot be deleted  Handle Error
SPDTR0505).

• SP processes the DSR.
• SP processes the signed document
• SP optionally verifies the signed document

(If the document cannot be verified  Handle Error
SPDTR0506).

Table 5 – Description sequence document transfer

2.4.1.6 Anonymity

The anonymity is initiated when the user sends his eSurvey, filled in, to the S-PEPS. Please
note that, on the contrary of the rest of the STORK 2.0 infrastructure, anyone can send
surveys; no mutual trust relation needs to exist. The S-PEPS forwards the request to his
colleague PEPSes and V-IDPs, and awaits the results.

55 | P a g e

D4.10 Final Version of Technical Design

2.4.1.6.1 Sequence diagram

Figure 13: Sequence diagram sending Anonymity of in S-PEPS

Please note that steps 1-11 are previous to the anonymity, and are only include in the
diagram for contextual understanding. The description doesn’t describe them, as they are out
of scope.

2.4.1.6.2 Description

Message
sequences
(interactions)

Description

12 Send
participation
copies

The client sends the participation packets into the network using an
HTTPS POST method.

Sequence Diagram

56 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions)

Description

External Actors
• Citizen
• SP

Data
INPUT

• Layer-ciphered participation copies.
OUTPUT

•

Error Communications
•

Actions
• Citizen’s client sends the packets to the SP

13 Sign
participation
copies with SP
certificate

The SP acts as a proxy to the network, it signs each participation using the
classic SAML STORK profile.

Sequence Diagram

External Actors
• SP

Data
INPUT

• Layer-ciphered participation copies.
OUTPUT

• Signed layer-ciphered participation copies.

Error Communications
•

Actions
• The SP signs the layer-ciphered packages.

14 Send signed
participation
copies

The SP bounces the signed participations to the S-PEPS using an HTTPS
POST method.

Sequence Diagram

57 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions)

Description

External Actors
• SP
• S-PEPS

Data
INPUT

•
OUTPUT

• Signed layer-ciphered participation copies.

Error Communications
•

Actions
• SP bounces the packets to the S-PEPS.

15 Verify SP
identity (check
signature) and
authorisation

The S-PEPS verifies the SP signature to authenticate the source of the
ciphered packets.
It will also act as a proxy to the network, thus the previous steps (16 and
17) are repeated for the S-PEPS.

Sequence Diagram

External Actors
• S-PEPS

Data
INPUT

• Signed and layer-ciphered packets
OUTPUT

•

Error Communications
•

Actions
• S-PEPS verifies the signature from the SP.

16 Sign
participation
copies with S-
PEPS

S-PEPS signs the participations using its certificate and the classic SAML
STORK profile.

Sequence Diagram

58 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions)

Description

certificate

External Actors
• S-PEPS

Data
INPUT

• Layer-ciphered participation copies.
OUTPUT

•

Error Communications
•

Actions
• S-PEPS receives the layer-ciphered participation copies and signs

them.

17 Send signed
participation
copies (each
one to its
starting node)

The S-PEPS bounces the signed participations to each first node on each
path using an HTTPS POST method.

Sequence Diagram

External Actors
• S-PEPS
• Each starting node on calculated paths

Data
INPUT

•
OUTPUT

• Signed participations

Error Communications
•

Actions
• The S-PEPS bounces the signed participations to each first node

in the path.

18 Return
participation
reception

Simultaneously the node returns back the Participation Reception Secure
Acknowledgement (PRSA). This will be returned as a response to the
HTTPS POST method used by the S-PEPS.

59 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions)

Description

secure
acknowledge
ment

Sequence Diagram

External Actors
• S-PEPS
• Each starting node on calculated paths

Data
INPUT

• Layer-ciphered packet
OUTPUT

• Secure ACK

Error Communications
•

Actions
• The node returns the participation reception secure

acknowledgement.

19 Return all
participation
reception
secure
acknowledge
ments

The S-PEPS will concentrate all the PRSA and will send back to the SP as a
response to the HTTPS POST method used in step 17.

Sequence Diagram

External Actors
• Each starting node on calculated paths
• S-PEPS

Data
INPUT

•
OUTPUT

• All participation reception secure acknowledgements

Error Communications
•

Actions
• S-PEPS receives all the secure ACKs and bounces back to the SP.

60 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions)

Description

20 Return all
participation
reception
secure
acknowledge
ments

The SP does the same as the S-PEPS and bounces back the PRSA to the
citizen’s client as a response to the HTTPS POST method used in step 15.
The citizen’s client checks the challenges match the expected ones.

Sequence Diagram

External Actors
• S-PEPS
• SP

Data
INPUT

•
OUTPUT

• All participation reception secure acknowledgements

Error Communications
•

Actions
• The SP receives all the secure ACKs and bounces it to the client.

21 Send signed
participation
(when delay
time is
consumed)

The last node in the path sends the signed participation to the SP as a
final step.

Sequence Diagram

External Actors
• Last node in each path
• SP

Data
INPUT

• Signed participation
OUTPUT

•

61 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions)

Description

Error Communications
•

Actions
• Last node in the path sends the signed participation to the SP.

22 Return
participation
reception
secure
acknowledge
ment

The participation is also ciphered for the SP as if it was a node thus; the
SP deciphers the RC4 key with its RSA private key and the participation
contents with the RC4 key. The last layer of ciphering includes the survey
results themselves.

Sequence Diagram

External Actors
• Last node in the path
• Penultimate node in the path

Data
INPUT

•
OUTPUT

•

Error Communications
•

Actions
• The SP acts also as the end-point of the paths so the package is

also ciphered to it. It deciphers the participation and send back
the secure ACK.

23 Check validity
and unicity of
participation
authorisation
token

The SP checks the validity (check the token’s signature) and unicity (check
no other results with the same token have been counted in) of the
results.

Sequence Diagram

External Actors
• SP

62 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions)

Description

Data
INPUT

• The deciphered participation
OUTPUT

•

Error Communications
•

Actions
• The SP checks the validity and unicity of this given result set

24 Tally
participation

Finally the SP tallies the participation to be part of the general survey
results.

Sequence Diagram

External Actors

• SP

Data
INPUT

• Plain participation
OUTPUT

•

Error Communications
•

Actions
• The SP counts the participation to be part of the general results.

Table 7 – Description sequence Anonymity in S-PEPS

2.4.2 C-PEPS

The C-PEPS is the PEPS in the role of verification of citizen’s credentials and obtaining
additional data, e.g. from the represented person and mandates. This role is also composed
of three business processes:

Authentication on behalf of

Powers (for digital signature)

Domain-specific attributes

However, in the functional design it was found out that first two processes are the same in a
PEPS, so both are described in one section.

63 | P a g e

D4.10 Final Version of Technical Design

A consecutive section describes the powers validation process.

2.4.2.1 Authentication on behalf of and Powers

The authentication on behalf of process is initiated when a Service Provider needs to know
the user’s and the represented person’s identity as well as mandate data, and sends an
authentication on behalf of request to the S-PEPS through the citizen’s Web Browser, which
the S-PEPS will redirect to the C-PEPS through the citizen’s Web Browser as well. As far as
additional (business) attributes are requested from foreign countries, these are requested
from the A-PEPS.

2.4.2.1.1 Sequence diagram AUB, part 1

Authentication on Behalf of : C-PEPS

END PAGE FORM PAGE

Citizen BrowserS-PEPS C-PEPS MS SpecificCommon

SAML AuthnRequest

Handle Colleague Request

Check AUB Request

Identify source attributes

HTML KO.1 [comunicate KO]

Generate Data type consent

HTML 1

Get Citizen Response 1

Handle Citizen Response 1

HTML KO.2 [comunicate KO]

Create AUB Request

AUB Request

{ MS Authentication on Behalf of }

Handle AUB Response

AUB Response

HTML KO.2 [comunicate KO]

opt

opt [more-business-attributes]

opt [any-national-business-attributes-to-be-requested]

HTML 2

Generate Multiple AP Selectoropt [previous-visit-data-stored]

Get Citizen Response 2

A-PEPS Specific

Common

Figure 14: Sequence diagram Authentication on Behalf of, Part 1, in C-PEPS

2.4.2.1.2 Description AUB, part 1

Message
sequences
(interactions) Description

1 Handle
Colleague
Request

Description

Handles request of colleague PEPS or V-IDP

This task includes some internal activities to validate the request
received and prepare the next steps towards the user authentication.

1.1 Check Authentication Request

1.2 Identify source attributes

64 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

 External Actors

• Citizen-Browser: The C-PEPS/V-IDP receives the Request from a
colleague PEPS or V-IDP through the Citizen-Browser.

 Sequence Diagram

 Error Communications

• Send HTML KO.1 to the Citizen-Browser.

(If an error succeeds a Handle Error function manages this error).

1.
1

Check
authentication
request

Description

The objective of this activity is to register the request, check the origin
of the request and decide if the request, in this first step, is accepted or
not.

Sequence Diagram

 Detailed Sequence Diagram

 Data

HTML KO.1
[comunicate KO]

SAML AuthenticationQuery

Handle Colleague Request

Check Stork AUB Request

Get Request (SAML Authentication Request)

Validate Origin

Identify kind of Request

Check SAML Conditions

Validate Request Format

Register SAML Authentication Request (log)

Check Stork AUB Request

65 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

INPUT

• SAML Authentication Request

OUTPUT

• ID request

• Requested QAA Level

• Colleague PEPS data

• SP name

CONFIG FILES NEEDED

• colleague_peps_list: List of PEPS and V-IDP colleagues that form
STORK 2.0

 Actions

• Get Request (SAML Authentication Request): Captures any Request
from Citizens browser send to the C-PEPS.

• Register Request (SAML Authentication Request): Log the SAML
request received.

• Validate Request Format (SAML)

(If the format is not correct  Handle Error CPAUB0101)

• Validate Origin (Colleague PEPS): Validate Colleague PEPS
Signature. This data is available in the colleague peps list file.

(If the origin is not correct  Handle Error CPAUB0102)

• Identify kind of Request: Extract Request and identify kind of
Request (Authentication Request, AttributeQuery, etc). In this
activity we analyse the Authentication Request case.

• Check SAML Conditions (notBefore, notAfter, etc.)

(If conditions are not met  Handle Error CPAUB0103)

1.
2

Identify
source
attributes

Description

This activity checks the validity of the request in terms of contents.

 Sequence Diagram

SAML Authentication

Request Colleage PEPS data
Requested QAA Level

SP name

ID request

Check Stork AUB Request

colleague _ peps _ list

log

66 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

 Detailed Sequence Diagram

 Data

INPUT

• SAML AuthenticationQuery

• Requested QAA Level

OUTPUT

• Mandatory requested attributes in MS Attribute nomenclature

• Optional attributes in MS Attribute nomenclature

CONFIG FILES NEEDED

• init_parameters (initial C-PEPS parameters)

• map_stork_ms_attributes (STORK attributes mapped to MS
attributes)

 Actions

• Validate requested QAA Level: Compare requested QAA Level with
the C-PEPS max QAA Level.

Identify source attributes

Extract Mandatory/Optional Attributes

Map attributes

Identify original attributes from derived data

Identify source for each attribute

Validate requested QAA Level

Identify source attributes

SAML AuthenticationQuery

Optional attribute list

Mandatory attribute listIdentify source attributes

init_parameters

Requested QAA Level

map_stork_ms_AT

Mapping Attributes

67 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

(If max level is lower than requested  Handle Error CPAUB0104)

• Extract mandatory/optional attributes: Identify the mandatory
attributes.

• Map attributes: Transform and derive national requested attributes
in STORK requested attributes. This transformation may include the
translation of values included in the request.

• Identify original attributes from derived data: This attributes will be
added to the attributes to be requested to the national IDPs, APS.
This attributes may be also mandatory or optional. They inherit this
characteristic from the derived data.

• Identify source for each attribute: For each MS attribute obtained,
the national source that can disclosure this data is identified:

o available

o not available

(If there is “not source available” for a mandatory attribute 
Handle Error CPAUB0105)

2 Generate Data
type consent
(optional)

Description

• This task includes some internal activities to generate the page in
which the user is requested to give his consent to the transfer of his
data (types).

It is optional, only it is executed if the ask-data-type-consent is set to
YES in the init_parameters config file.

 External Actors

• Citizen-Browser: Receives a generated HTML

 Sequence Diagram

 Detailed Sequence Diagram

HTML.1

Generate Data type consent
[ask-data-type-consent]opt

68 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

 Data

INPUT

• Requested attributes (mandatory / optional) in C-PEPS’s native
language

OUTPUT

• HTML.1

CONFIG FILES NEEDED

• init_parameters

 Error Communications

• None

 Actions

• Evaluate ask-data-type-consent from init parameters file.

• Present header (SP name)

• Data type consent: Present attribute list (requested attributes:
mandatory and optional) and gets citizen’s consent.

Mandatory attributes cannot be deselected.

• Present disclaimers

3 Handle Citizen
Response.1
(optional)

Description

Receives citizen’s reply.

Present disclaimers

Data type consent

Present Header

Generate Data type consent

HTML.1

Optional attribute list

Mandatory attribute list
HTML.1Generate Data type consent

init_parameters

69 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

 Sequence Diagram

Get Citizen Response 1

Handle Citizen Response 1

HTML KO.2 [comunicate KO]

opt [ask-data-type-consent]

 External Actors

• Citizen

 Data

INPUT

• Citizen reply

OUTPUT

• Consented attribute list (mandatory and optional)

CONFIG FILES NEEDED

• None

 Actions

• Register citizen reply (log citizen’s consent)

• Check citizen reply format (If the response is malformed  Handle
Error CPAUB0301)

• Check consents (If the consent is not given for a mandatory
attribute  Handle Error CPAUB0302)

 Error Communications

• Send HTML KO.2 to the Citizen-Browser.

(If a Handle Error succeed).

4 Create AU
Request

Description

Create an AUB Request and send it to the “MS Authentication”.

 Sequence Diagram

 Data

Handle Response.1Citizen response Consented attribute list

Create AUB Request
AUB Request

AUB Request Create AUB Request Consented attribute list
Requested QAA Level

70 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

INPUT

• Consented attribute list (mandatory and optional)

• Requested QAA Level

OUTPUT

• Authentication Request

CONFIG FILES NEEDED

• init_parameters: (localization of the MS Authentication Module)

 Actions

• Create Authentication Request

• Send Authentication Request to MS Authentication Module

5 MS
Authenticatio
n

Description

Select and Perform Authentication in the IDP/NAP.

Receive an Authentication Request and return an Authentication
Response.

 Sequence Diagram

 Data

INPUT

• AUB Request

o Consented Attribute list

o Requested QAA Level

OUTPUT

• AU Response

o Authentication (yes/no)

o Value Attribute list

CONFIG FILES NEEDED

• None

MS Authentication { }
AUB Response

AUB Request

MS Authentication AUB Response AUB Request

71 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

 Actions

Is MS specific.

Authentication on behalf of is a country specific process. Within this
process, some of the requested attributes may be collected.

6 Handle AUB
Response

Description

Handles an authentication response.

 Sequence Diagram

 Data

INPUT

• AUB Response

OUTPUT

• Authentication (yes/no)

• Value attribute list

o Filled attribute list: attributes with found values

o Empty attribute list: attributes without values

CONFIG FILES NEEDED

• None

 Actions

• Check AUB Request

(If the authentication fails Handle Error CPAUB0601)

• More attributes?: Evaluate if all attributes needed are available or
if more attributes should be requested to MS Attribute Supply.

(Also evaluate if some attributes has to be introduced by the user
and verified)

 Error Communications

• Send HTML KO.3 to the Citizen-Browser.

(If a Handle Error succeed).

Table 8 –Description sequence Authentication on Behalf of, part 1, in C-PEPS

AUB Response
Handle AUB Response

HTML KO . 3 [comunicate KO]

Value attribute list Handle AUB Response AUB Response Authentication

72 | P a g e

D4.10 Final Version of Technical Design

2.4.2.1.3 Sequence diagram AUB, part 2

Figure 15: Sequence diagram Authentication on behalf of in C-PEPS, part 2.

73 | P a g e

D4.10 Final Version of Technical Design

2.4.2.1.4 Description AUB, part 2

Message sequences
(interactions) Description

7 Select APs from
previous
interactions
(optional)

Description

This task includes activities to check whether data regarding the APs
of requested attributes are available from previous interactions of
the user with STORK, and extracts them if there are any data
available.

It is executed only if domain-specific attributes are requested and
data from previous interactions with STORK is available.

Sequence Diagram

Detailed Sequence Diagram

Data

INPUT

• Mandatory domain-specific attribute list

• Optional domain-specific attribute list

OUTPUT

• List of Attribute|AP pairs from previous interactions

CONFIG FILES NEEDED

• None

Actions

• Check data availability: Checks whether data from previous
visits are available. External actors (like user’s browser) might

74 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

be involved in this task, e.g. if the data is stored as cookie in the
user’s browser it is transparently sent to C-PEPS.

• Extract data: Extracts the data if available

• Select APs: If available in the data, select APs for the requested
attributes and generate a list of Attribute|AP pairs from
previous interactions

8 Generate AP
selection form

Description

• This task includes some internal activities to generate a page in
which the user is prompted with:

a) a list of pre-selected APs for the attributes that have been
retrieved in previous interactions with STORK, and should
also be allowed to select other APs for these attributes if he
wishes so. If the list generated at point a) is empty, the user
will select APs as at point b).

b) select APs for the attributes that have not been retrieved in
previous interactions with STORK .

 External Actors

• Citizen-Browser: Receives a generated HTML

 Sequence Diagram

 Detailed Sequence Diagram

 Data

75 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

INPUT

• List of Attribute|AP pairs from previous interactions (if
available)

• Mandatory domain-specific attribute list in C-PEPS’s native
language

• Optional domain-specific attribute list in C-PEPS’s native
language

OUTPUT

• HTML.1

CONFIG FILES NEEDED

• List of Attribute Providers in the Country

• List of Countries

 Actions

• Present header (SP name)

• AP Selection: Present attributes list (requested attributes:
mandatory and optional) with a listbox next to each attribute
for the selection of AP. The listbox lists the Attribute Providers
in the country, an option “AP in another country” and an option
“Do not retrieve”. An option (either AP or “Other Country” is
preselected if information about the attribute is available from
previous interactions.

An AP should be provided for each mandatory attribute.

• Present disclaimers

9 Handle Citizen
Response 1

Description

Receives and handles citizen’s reply.

 Sequence Diagram

 External Actors

• Citizen

 Data

INPUT

• Citizen response

76 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

OUTPUT

• List of mandatory Attribute|AP pairs in country

• List of optional Attribute|AP pairs in country

• List of mandatory Attribute|Country pairs

• List of optional Attribute|Country pairs

CONFIG FILES NEEDED

• List of Attribute Providers in the Country

• List of Countries

 Actions

• Register citizen reply (log citizen’s selection)

• Check citizen reply format (If the response is malformed 
Handle Error CPAUB0201)

• Check selection (If an AP is not selected for a mandatory
attribute  Handle Error CPAU0202)

 Error Communications

• Send HTML KO.1 to the Citizen-Browser.

(If a Handle Error succeed).

1
0

MS Attribute
Supply

Description

Retrieve attribute values from attribute providers.

 Sequence Diagram

 Data

INPUT

• List of mandatory Attribute|AP pairs in country

• List of optional Attribute|AP pairs in country

• Requested QAA Level

OUTPUT

• Value attribute list

77 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

CONFIG FILES NEEDED

• None

 Actions

Is MS Specific

If re-authentication takes place at an AP, the AP should also include
in the AT Response the name, surname, and date of birth of the user.

If values for a mandatory attribute not found  Handle Error
CPAUB0301

1
1

Generate ask
more attributes
in country form

Description

The objective of this activity is to generate a form asking the user if
any more additional attributes will be requested in the country

External Actors

• Citizen-Browser: Receives a generated HTML

Sequence diagram

Detailed Sequence Diagram

78 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• None

OUTPUT

• HTML. 2

CONFIG FILES NEEDED

• None

Actions

• Present header (SP name)

• Ask More Attributes: Present a selection for asking more
attributes

• Present disclaimers

1
2

Handle Citizen
Response 2

Description

Receives and handles citizen’s reply.

External Actors

• Citizen

Sequence Diagram

Data

INPUT

• Citizen Response

OUTPUT

• More attributes in the country (boolean)

CONFIG FILES NEEDED

• None

79 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Actions

• Register citizen reply (log citizen’s selection)

• Check citizen reply format (If the response is malformed 
Handle Error CPAUB0501)

Error Communications

• Send HTML KO.3 to the Citizen-Browser.

(If a Handle Error succeed).

1
3

Create & Send
SAML Attribute
Request
(optional)

Description

Creates and sends an attribute request to a colleague PEPS/V-IDP.
This task is only executed if there are domain-specific attributes in
another country.

External Actors
• Citizen-Browser: The C-PEPS sends the SAML AttributeRequest

to a colleague C-PEPS/V-IDP through the Citizen-Browser.

Sequence Diagram

Detailed Sequence Diagram

80 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• Mandatory Attribute|Country list

• Optional Attribute|Country list

OUTPUT

• SAML AttributeRequest

CONFIG FILES NEEDED

• Log Configuration

Actions

• Create SAML AttributeRequest

• Sign SAML AttributeRequest

• Register Create, Sign and Send Attribute Request

1
4

Handle SAML
AttributeRespons
e (optional)

Description

C-PEPS receives SAML AttributeResponse issued by Colleague
PEPS/V-IDP. This task is executed only if there are domain-specific
attributes in another country.

External Actors
• Citizen-Browser: The C-PEPS receives the SAML

AttributeResponse from a colleague C-PEPS/V-IDP through the
Citizen-Browser.

Sequence Diagram

81 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Detailed Sequence Diagram

Data

INPUT

• SAML AttributeResponse

OUTPUT

• Value attribute list

CONFIG FILES NEEDED

• Log Configuration

Actions

• Receive SAML AttributeResponse

• Register Handle SAML AttributeResponse (log)

• Validate Response Fomat (SAML)

 (If the format is not correct  Handle Error CPAUB0701)

• Validate Origin: Validate Colleague PEPS/ V-IDP Signature.

(If the origin is not correct  Handle Error CPAUB0702)

• Check SAML Conditions (notBefore, notAfter, etc.)

(If conditions are not fulfilled  Handle Error CPAUB0703)

1
5

Normalise data Description

Normalises all received data (from MS Authentication, MS AT Supply
and) mapping the MS names/values to STORK nomenclature.

82 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Sequence Diagram

Data

INPUT

• Attribute list (names and data values in MS nomenclature)

OUTPUT

• Attribute list (names and data values in STORK nomenclature)

CONFIG FILES NEEDED

• Attribute mapping

Actions

Some parts may be MS Specific

Table 9 –Description sequence Authentication on Behalf of, part 2, in C-PEPS

2.4.2.1.5 Sequence diagram AUB, part 3

Process A P PS Response

ata (in MS format)

{ Normalise data }

Derive Attributes

Generate reply, sign

Generate HTML Data value consent
Generate and insert SAML Authentication Responses:
 1) Consent given
 2) Consent not given

opt [ask-data-value-consent]

SAML Auth Response

SAML Auth Response

[comunicate OK]

[comunicate KO]

[no-ask-data-value-consent]
Generate and send SAML Authentication Response

[comunicate OK or KO]

SAML Auth Response

Figure 16: Sequence diagram Authentication on behalf of in C-PEPS, part 3.

83 | P a g e

D4.10 Final Version of Technical Design

2.4.2.1.6 Description AUB, part 3

Message sequences
(interactions) Description

20 Derive
attributes

Description

Derived attribute data is constructed

 Sequence Diagram

 External Actors

• None

 Data

INPUT

• Attributes and values: Date of Birth, Age threshold (s), eIdentifier

OUTPUT

• Derived data: Age, IsAgeOver <threshold>, eIdentifier

CONFIG FILES NEEDED

• none

 Actions

• Derive age

• Compare with threshold (age)

• Creates the eIdentifier

21 Generate
HTML Data
value consent
(optional)

Description

• This task includes some internal activities to generate the page in
which the user is requested to give his consent to the transfer of
his data types and values in the C-PEPS native language except for
derive data.

This step is optional, only it is executed if the ask-data-value-consent
is set to YES in the init_parameters config file.

If the Citizen gives data-value-consent, a SAML Authentication
Response is sent to the SP, if the data-value-consent is not given
another SAML Authentication Response (Error) is sent.

 Sequence Diagram

Derive attributes

84 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 Detailed Sequence Diagram

 Data

INPUT

• Attributes list in MS nomenclature

OUTPUT

• HTML.6

CONFIG FILES NEEDED

• init_parameters

 Actions

• Present destination (SP name)

• Present attribute list (requested attributes) with values

• Present disclaimers

22 Generate and
Send SAML
Authenticatio
n Response

Description

Generates the SAML token, and signs it.

It is optional, only it is executed if the ask-data-value-consent is set to
NO in the init_parameters config file.

 Sequence Diagram

 Detailed Sequence Diagram

SAML AuthenticationResponse
[comunicate OK or KO]

Generate and Send SAML
AuthenticationResponse

[no ask-data-value-consent]

Present disclaimers

Data value consent

Present Header

Generate Data
value Consent

HTML6 .

Generate and Insert
SAML AUB Response

Generate and Insert
SAML AUB Response Error

Attribute list HTML . 6 Generate Data value consent

init _ parameters

85 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 External Actors

• S-PEPS, S-V-IDP

 Data

INPUT

• ID request

• Colleague PEPS data

• Attribute list

• Attribute list (consented)

OUTPUT

• SAML AuthenticationResponse

CONFIG FILES NEEDED

• colleague_peps_list

 Actions

• Generate SAML Response ID

• Generate SAML Conditions (NotBefore, etc)

• Generate Issuer

• Generate Subject

• Generate AuthenticationResponse (attribute assertions can be
included)

Issuer

AttributeResponse

Sign reply

Response ID

SAML AuthenticationResponse

Conditions

Subject

Register SAML
AuthenticationResponse (log)

SAML AuthenticationResponse

ID request

Generate Reply, Sign and forward

colleague_peps_list

log

Attribute list

Authentication

Colleage PEPS data

86 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• Generate PEPS Signature

• Send SAML Authentication Response

Table 10 –Description sequence Authentication on behalf of, part 3, in C-PEPS

2.4.2.2 Domain-specific attributes

The Domain-specific attributes process, similar to the Authentication on Behalf of, is initiated
when a Service Provider needs to know the user’s identity, and sends a Domain-specific
attributes request to the S-PEPS through the citizen’s Web Browser. In the same way, the S-
PEPS will redirect the request (as a SAML AuthnRequest) to the C-PEPS through the citizen’s
Web Browser as well.

The authentication process begins when the S-PEPS sends a SAML AuthRequest to the C-PEPS
(Sequence diagram BA).

2.4.2.2.1 Sequence diagram BA, part 1

Same as 2.4.2.1.1, however the MS specific authentication function is different from the one
in that section. In this process only the user is authenticated, no data are retrieved from any
represented person (as there is not any), nor of any mandate.

2.4.2.2.2 Description BA, part 1

Same as 2.4.2.1.2.

2.4.2.2.3 Sequence diagram BA, part 2

Same as 2.4.2.1.3.

2.4.2.2.4 Description BA, part 2

Same as 2.4.2.1.4.

2.4.2.2.5 Sequence diagram BA, part 3

Same as 2.4.2.1.5.

2.4.2.2.6 Description BA, part 3

Same as 2.4.2.1.6.

2.4.2.3 Powers Validation

The Powers Validation process, similar to the Authentication on Behalf of, is initiated when a
Service Provider needs to know the user’s identity, and sends a Powers Validation request to
the S-PEPS through the citizen’s Web Browser. In the same way, the S-PEPS will redirect the
request (as a SAML AuthnRequest) to the C-PEPS through the citizen’s Web Browser as well.

The authentication process begins when the S-PEPS sends a SAML AuthRequest to the C-PEPS
(Sequence diagram PV).

2.4.2.3.1 Sequence diagram BA, part 1

Same as 2.4.2.1.1, however the MS specific authentication function is different from the one
in that section. In this process only the user is authenticated, no data are retrieved from any
represented person (as there is not any), nor of any mandate.

87 | P a g e

D4.10 Final Version of Technical Design

2.4.2.3.2 Description BA, part 1

Same as 2.4.2.1.2.

2.4.2.3.3 Sequence diagram BA, part 2

Same as 2.4.2.1.3.

2.4.2.3.4 Description BA, part 2

Same as 2.4.2.1.4.

2.4.2.3.5 Sequence diagram BA, part 3

Same as 2.4.2.1.5.

2.4.2.3.6 Description BA, part 3

Same as 2.4.2.1.6.

2.4.2.4 Anonymity – First node

The Anonymity-First node is initiated for each copy of the eSurvey received by the S-PEPS
when it sends this copy to the first node mentioned in the copy.

88 | P a g e

D4.10 Final Version of Technical Design

2.4.2.4.1 Sequence diagram Anonymity First Node

* This node entity will represent the first one on each path.
** This node entity will represent any other node on each path.

Figure 17: Sequence diagram Anonymity First Node in C-PEPS

2.4.2.4.2 Description

Message sequences
(interactions) Description

1 Securely check
first node in

For each node that will serve as first node in a given path, the client
checks if it is up and can use it. This is done by sending a special

89 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

path health packet with a ciphered challenge, this challenge can only be
deciphered by the target node. If the node is up and the software is
running correctly, it will be able to return the challenge in plain text.
This packet is sent using an HTTPS POST method.

Sequence Diagram

External Actors

• Citizen
• SP
• S-PEPS
• Each first node in each path

Data
INPUT

• Dummy packet with a challenge
OUTPUT

•

Error Communications
• Invalid secure ping

Actions
• Citizen’s client calculates a packet with a challenge for each of

the first node on each path.
• Next, it delivers each packet to the SP.
• The SP signs the packet and bounces the packet to the S-PEPS.
• The S-PEPS signs the packet and bounces to the destination

node.

2 Node is alive
(secure ACK is
returned)

If the node has been able to send back the plain challenge, the client
will count it; otherwise, the client will choose a new first node for this
path in a random way.

Sequence Diagram

External Actors

• Citizen
• SP
• S-PEPS
• Each first node in each path

90 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data
INPUT

•
OUTPUT

• Secure ACK deciphered

Error Communications
•

Actions
• The node deciphers the packet, signs the challenge and sends

the result back to the S-PEPS.
• The result is bounced back to the SP, and then backs to the

citizen.

3 Verify SP
identity (check
signature) and
authorisation

The S-PEPS verifies the SP signature to authenticate the source of the
ciphered packets.
It will also act as a proxy to the network, thus the previous steps (16
and 17) are repeated for the S-PEPS.

Sequence Diagram

External Actors

• S-PEPS

Data
INPUT

• Signed and layer-ciphered packets
OUTPUT

•

Error Communications
•

Actions
• S-PEPS verifies the signature from the SP.

4 Sign
participation
copies with S-
PEPS certificate

S-PEPS signs the participations using its certificate and the classic
SAML STORK profile.

Sequence Diagram

91 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

External Actors
• S-PEPS

Data
INPUT

• Layer-ciphered participation copies.
OUTPUT

•

Error Communications
•

Actions
• S-PEPS receives the layer-ciphered participation copies and

signs them.

5 Send signed
participation
copies (each
one to its
starting node)

The S-PEPS bounces the signed participations to each first node on
each path using an HTTPS POST method.

Sequence Diagram

External Actors
• S-PEPS
• Each starting node on calculated paths

Data
INPUT

•
OUTPUT

• Signed participations

Error Communications
•

Actions
• The S-PEPS bounces the signed participations to each first

node in the path.

6

Verify S-PEPS
identity (check
signature) and
authorisation

Each first node on each path verifies the S-PEPS signature and also
that the certificate used is trusted.

Sequence Diagram

92 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

External Actors
• Each starting node on calculated paths

Data
INPUT

• Layer-ciphered and signed packet
OUTPUT

•

Error Communications
•

Actions
• The node verifies the S-PEPS identity and authorisation (by

checking the signature.

7 Unwrap
participation
layer

Each first node on each path unwraps the layer of the packet
addressed to it. To achieve this, it will decipher an RC4 key using its
RSA private key and will use this RC4 key to decipher the upper most
layer of the packet.
In this layer, the challenge must send back and has to wait for the next
node, the time to wait and the URL of the next node are present.

Sequence Diagram

External Actors

• Each starting node on calculated paths

Data
INPUT

• Layer-ciphered and signed packet
OUTPUT

•

Error Communications
•

Actions
• Each starting node on calculated paths unwraps the upper-

most participation layer to access the information addressed
to it.

8 Sign and queue
participation

The node signs the participation and queue for the indicated time.

Sequence Diagram

93 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

External Actors
• Each starting node on calculated paths

Data
INPUT

• Layer-ciphered packet
OUTPUT

• Layer-ciphered and signed packet

Error Communications
•

Actions
• Each starting node on calculated paths sign and queue the

packet.

9 Return
participation
reception
secure
acknowledgem
ent

Simultaneously the node returns the Participation Reception Secure
Acknowledgement (PRSA). This will be returned as a response to the
HTTPS POST method used by the S-PEPS.

Sequence Diagram

External Actors

• S-PEPS
• Each starting node on calculated paths

Data
INPUT

• Layer-ciphered packet
OUTPUT

• Secure ACK

Error Communications
•

Actions
• The node returns the participation reception secure

acknowledgement.

10 Send signed
participation
(when delay
time has
passed)

When the delay time has passed, the node sends the signed
participation to the next node in the path.

Sequence Diagram

94 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

External Actors
• Each starting node on calculated paths
• Second node in the path

Data
INPUT

• Layer-ciphered participation
OUTPUT

• Layer-ciphered signed participation

Error Communications
•

Actions
• Each starting node on calculated paths send the signed

participation when the indicated delay time has passed.

11

Verify node
identity (check
signature) and
authorisation

The node verifies the prior node signature and also that the certificate
used is trusted.

Sequence Diagram

External Actors

•

Data
INPUT

• Layer-ciphered and signed participation
OUTPUT

•

Error Communications
•

Actions
• The node verifies the signature produced by the previous

node and checks its trust.

12 Unwrap
participation
layer

The node unwraps the upper most layer of the participation by
deciphering a RC4 key using its RSA private key. This RC4 key will be
used to decipher the upper most layer of the participation.
In this layer, the challenge must be sent back, the challenge has to
wait for the next node, the time to wait and the URL of the next node
are present.

95 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Sequence Diagram

External Actors

• Node

Data
INPUT

• Layer-ciphered participation
OUTPUT

•

Error Communications
•

Actions
• The node unwraps the upper-most layer of the participation

getting the information that is addressed to it.

13 Sign and queue
participation

The node signs the participation using the classic SAML STORK profile
and, when the time sends to the next node in the path using an HTTPS
POST method.

Sequence Diagram

External Actors

• Node

Data
INPUT

• Layer-ciphered participation
OUTPUT

• Layer-ciphered and signed participation

Error Communications
•

Actions
• The node performs a signature over the package and stores it

for the time that is indicated in the information it has
obtained.

96 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

14 Return
participation
reception
secure
acknowledgem
ent

The node sends back the PRSA to the sender node as a response to
the HTTPS POST method initiated at step 27. The sender node checks
that the challenge matches the expected one.

Sequence Diagram

External Actors

• Node

Data
INPUT

•
OUTPUT

• The secure ACK obtained in the deciphering step

Error Communications
•

Actions
• The node sends back the secure ACK obtained when it has

deciphered the participations.

15 Send signed
participation
(when delay
time is
consumed)

From that point, the participation will follow the client’s calculated
path within the network. Steps 15 to 24 are repeated for each node in
the path.

16 Return
participation
reception
secure
acknowledgem
ent

17 Verify node
identity (check
signature) and
authorisation

18 Unwrap
participation
layer

19 Sign and queue
participation

97 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

20 Send signed
participation
(when delay
time is
consumed)

21 Verify node
identity (check
signature) and
authorisation

22 Unwrap
participation
layer

23 Sign and queue
participation

24 Return
participation
reception
secure
acknowledgem
ent

Sequence Diagram

External Actors

• Nodes

Data
INPUT

• Layer-ciphered (signed) participation
OUTPUT

• Layer-ciphered (signed) participation

Error Communications
•

98 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Actions
• For each one of the remaining nodes, steps 27 to 32 are

repeated in a loop until the last node in the path is reached.

25 Send signed
participation
(when delay
time is
consumed)

The last node in the path sends the signed participation to the SP as a
final step.

Sequence Diagram

External Actors

• Last node in each path
• SP

Data
INPUT

• Signed participation
OUTPUT

•

Error Communications
•

Actions
• Last node in the path sends the signed participation to the SP.

Table 11 –Description sequence Anonymity First Node in C-PEPS

2.4.2.5 Anonymity – Other node

The Other node function receives the eSurvey and simply returns it after the requested delay
has passed.

99 | P a g e

D4.10 Final Version of Technical Design

2.4.2.5.1 Sequence diagram

* This node entity will represent the first one on each path
** This node entity will represent any other node on each path.

Figure 18: Sequence diagram Anonymity Other Node in C-PEPS

2.4.2.5.2 Description

Message sequences
(interactions) Description

1 Verify S-PEPS
identity
(check
signature)

Each other node on each path verifies the S-PEPS signature and also
that the certificate used is trusted.

Sequence Diagram

100 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

and
authorisation

External Actors

• Each starting node on calculated paths

Data
INPUT

• Layer-ciphered and signed packet
OUTPUT

•

Error Communications
•

Actions
• The node verifies the S-PEPS identity and authorisation (by

checking the signature.

2 Unwrap
participation
layer

Each other node on each path unwraps the layer of the packet sent
to it. To achieve this it will decipher an RC4 key using its RSA private
key and will use this RC4 key to decipher the upper most layer of the
packet.
In this layer, the challenge must be sent back, and has to wait for the
next node, the time to wait and the URL of the next node are
present.

Sequence Diagram

External Actors

• Each starting node on calculated paths

Data
INPUT

• Layer-ciphered and signed packet
OUTPUT

•

Error Communications
•

Actions
• Each starting node on calculated paths unwraps the upper-

most participation layer to access the information addressed
to it.

101 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

3

Sign and
queue
participation

The node signs the participation and queue for the indicated time.

Sequence Diagram

External Actors

• Each starting node on calculated paths

Data
INPUT

• Layer-ciphered packet
OUTPUT

• Layer-ciphered and signed packet

Error Communications
•

Actions
• Each starting node on calculated paths sign and queue the

packet.

4 Send signed
participation
(when delay
time has
passed)

When the delay time has passed the node sends the signed
participation to the next node in the path.

Sequence Diagram

External Actors

• Each starting node on calculated paths
• Second node in the path

Data
INPUT

• Layer-ciphered participation
OUTPUT

• Layer-ciphered signed participation

Error Communications
•

Actions
• Each starting node on calculated paths send the signed

participation when the indicated delay time is consumed.

5 Verify node
identity

The node verifies the prior node signature and also that the
certificate used is trusted.

102 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

(check
signature)
and
authorisation

Sequence Diagram

External Actors

•

Data
INPUT

• Layer-ciphered and signed participation
OUTPUT

•

Error Communications
•

Actions
• The node verifies the signature produced by the previous

node and checks its trust.

6 Unwrap
participation
layer

The node unwraps the upper layer of the participation by
deciphering a RC4 key using its RSA private key. This RC4 key will be
used to decipher the upper layer of the participation.
In this layer, the challenge must be sent back, and has to wait for the
next node, the time to wait and the URL of the next node are
present.

Sequence Diagram

External Actors

• Node

Data
INPUT

• Layer-ciphered participation
OUTPUT

•

Error Communications
•

103 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Actions
• The node unwraps the upper-most layer of the participation

getting the information that is addressed to it.

7 Sign and
queue
participation

The node signs the participation using the classic SAML STORK
profile and, when the time sends to the next node in the path using
an HTTPS POST method.

Sequence Diagram

External Actors

• Node

Data
INPUT

• Layer-ciphered participation
OUTPUT

• Layer-ciphered and signed participation

Error Communications
•

Actions
• The node performs a signature over the package and stores

it for the time that is indicated in the information it has
obtained.

8 Return
participation
reception
secure
acknowledge
ment

The node sends back the PRSA to the sender node as a response to
the HTTPS POST method initiated at step 27. The sender node checks
that the challenge matches the expected one.

Sequence Diagram

External Actors

• Node

Data
INPUT

•
OUTPUT

• The secure ACK obtained in the deciphering step

104 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Error Communications
•

Actions
• The node sends back the secure ACK obtained when it has

deciphered the participations.

9 Send signed
participation
(when delay
time is
consumed)

From that point, the participation will follow the client’s calculated
path within the network. Steps 9 to 18 are repeated by each node in
the path interacting with the next node in the same path. The
description of these actions has the same step description as the
previous actions given that they are equivalent.

10 Return
participation
reception
secure
acknowledge
ment

11 Verify node
identity
(check
signature)
and
authorisation

12 Unwrap
participation
layer

13 Sign and
queue
participation

14 Send signed
participation
(when delay
time is
consumed)

15 Verify node
identity
(check
signature)
and
authorisation

16 Unwrap
participation
layer

17 Sign and
queue
participation

105 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

18 Return
participation
reception
secure
acknowledge
ment

Sequence Diagram

External Actors

• Nodes

Data
INPUT

• Layer-ciphered (signed) participation
OUTPUT

• Layer-ciphered (signed) participation

Error Communications
•

Actions
• For each one of the remaining nodes, steps 27 to 32 are

repeated in a loop until the last node in the path is reached.

19 Send signed
participation
(when delay
time is
consumed)

The last node in the path sends the signed participation to the SP as
a final step.

Sequence Diagram

106 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

External Actors
• Last node in each path
• SP

Data
INPUT

• Signed participation
OUTPUT

•

Error Communications
•

Actions
• Last node in the path sends the signed participation to the

SP.

Table 12 –Description sequence Anonymity First Node in C-PEPS

2.4.3 A-PEPS

2.4.3.1 Authentication on behalf of, Powers (for digital signature) and Domain-
specific attributes

The authentication on behalf of process is carried out using the citizen’s Web Browser as a
gateway for every message that needs to be exchanged between two STORK entities.
Thereby, the request a SP has to send to the S-PEPS will be performed through the citizen’s
Web Browser. In the same way, the S-PEPS will redirect (if needed) the authentication
request (as a SAML AuthnRequest) to the C-PEPS through the citizen’s Web Browser as well,
which on its turn may forward the request to the A-PEPS.

The Powers (for Digital Signature) and Domain-specific attributes are – within the A-PEPS,
exactly the same as Authentication on behalf of.

The authentication process begins when the C-PEPS sends a SAML AuthRequest to the A-PEPS
(Sequence diagram AUB).

Handle Citi en Response

HTM KO. [comunicate KO]

Create AU Request

AU Request

{ MS Authentication on Behalf of }

Handle AUB Response

AUB Response

HTML KO.2 [comunicate KO]

opt [more-business-attributes]

opt [any-national-business-attributes-to-be-requested]

HTML 2

Generate Multiple AP Selectoropt [previous-visit-data-stored]

Get Citizen Response 2

Figure 19: Sequence diagram Authentication on Behalf of, Part 1, in A-PEPS

2.4.3.1.1 Description AUB, part 1

Message sequences (interactions)

1 Handle AUB
Response

Description

Handles an authentication response.

 Sequence Diagram

107 | P a g e

D4.10 Final Version of Technical Design

 Data

INPUT

• AUB Response

OUTPUT

• Authentication (yes/no)

• Value attribute list

o Filled attribute list: attributes with found values

o Empty attribute list: attributes without values

CONFIG FILES NEEDED

• None

 Actions

• Check AUB Request

(If the authentication not success  Handle Error CPAUB0601)

• More attributes?: Evaluate if all attributes needed are available
or if more attributes should be requested to MS Attribute
Supply.

(Also evaluate if some attributes have to be introduced by the
user and verified)

 Error Communications

• Send HTML KO.3 to the Citizen-Browser.

(If a Handle Error succeed).

Table 13 –Description sequence Authentication on behalf of (part 1) in A-PEPS

2.4.3.1.2 Sequence diagram AUB, part 2

Same as 2.4.2.1.3

2.4.3.1.3 Description part 2

Same as 2.4.2.1.4

2.4.4 Version Control (PEPS)

The version control verifies the software and configuration versions of PEPS colleagues and
publishes the results to its colleagues and the national service providers.

AUB Response
Handle AUB Response

HTML KO . 3 [comunicate KO]

Value attribute list Handle AUB Response AUB Response Authentication

108 | P a g e

D4.10 Final Version of Technical Design

The version control process is carried out under the standard facility that launches processes
periodically, like Task Manager in Windows or cron under Unix. If any changes are found in its
colleague’s or SP configurations, an alert is sent to the administrator(s), in order to inform
him/her that some compatibility tests should be performed.

In any case the version control files are generated, which allow on one hand corresponding
service providers to be informed of relevant changes and adapt their country selector, and on
the other hand allows colleagues to inform their administrators in order to execute relevant
tests.

2.4.4.1 Sequence diagram VCP

PEPS Colleague PEPS Service Provider European Comm. Administrator

Loop

Loop

Request Version Control File

Version Control File

Request Master File

Master File

Validate Signature

Extract relevant data
Compare with old data

Check if new certificate

Store Certificate

Setup anonymity

Request Version Control File

Version Control File
Validate Signature

Extract relevant data
Compare with old data

Check if new certificate

Store Certificate

Publish version control files

Email - any mail event is existed

Update country selector

Figure 20: Sequence diagram Version Control, in PEPS

109 | P a g e

D4.10 Final Version of Technical Design

2.4.4.2 Description VCP

Message sequences
(interactions) Description

1 VCP-ACT-1 Description

The PEPS/V-IDP sends scheduled request for Master File to
European Commission. The link to each version control file is
stored in the Master File stored at
http://ec.europa.eu/STORK/PEPS-Master.xml, the exact location
is still to be determined. The master file is signed by the European
Commission.

If a master file is in place, European Commission responds with
the master file (PEPS-Master.xml) which contains all countries
version control file links. It also contains countries id and name. If
the master file is not in place the results in an error.

The PEPS/V-IDP validates the signature of the master file. In case
the signature is invalid the PEPS/V-IDP sends an error message to
the PEPS/V-IDP Administrator and obtains countries version
control file links from Peps.xml.

 External Actors

PEPS/V-IDP job scheduled

 Action 1

Function Validate Master file

Request master file

If file is available

Get file

Validate signature

Save file to memory

Gets PEPS trusted list from master file.

Else

Return error

Send error to Administrator

Write to error log

Gets PEPS trusted list from Peps.xml.

Data

INPUT

Master file path(ex: http://ec.europa.eu/STORK/PEPS-
Master.xml.)

OUTPUT

Lisf of trusted PEPS Version Control File paths.

110 | P a g e

http://ec.europa.eu/STORK/PEPS-Master.xml

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Success/error (VCP_ERR_1 / VCP_ERR_2)

CONFIG FILES NEEDED

No config file needed

2 VCP-ACT-2 Description

The PEPS/V-IDP sends a request for configuration to a colleague
PEPS. The configuration is stored in the Version Control File (VCF)
stored at the location indicated in the masterfile, normally
https://xxx.xxx.xx/PEPS/XX-info.xml. The version control file is
signed by the Colleague PEPS/V-IDP (XX-info.xml where XX is the
country code of the colleague PEPS. i.e Spain: ES-info.xml).

If a version control file is in place, the colleague PEPS/V-IDP
responds with the version control file (ES-info.xml) which contains
configuration settings and all needed certificates. It also contains
the configuration settings and certificate for its colleague PEPS to
act as an anonymity node and all the certificates and settings for
its subordinate non authoritative nodes. If the version control file
is not in place the request for configuration results in an error.

The PEPS/V-IDP validates the signature and format of the version
control file. In case the signature is invalid the PEPS/V-IDP sends
an error message to the PEPS/V-IDP Administrator and stops the
process for current PEPS/VIDP’s version control file.

 Sequence Diagram

 Detail Sequence Diagram

111 | P a g e

https://xxx.xxx.xx/PEPS/XX-info.xml

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 Action 1

Function Validate PEPS Version control file

Request version control file

If file is available

Get file

Validate signature

Save file to memory

Else

Return error

Send error to Administrator

Write to error log

Data

INPUT

Version control file path (ex: https://xxx.xxxx.xx/PEPS/XX-
info.xml)

OUTPUT

Success/error (VCP_ERR_3 / VCP_ERR_4)

CONFIG FILES NEEDED

No config file needed

3 VCP-ACT-3 Description

If this is the first time a version control file is fetched from the
Colleague PEPS/V-IDP and the signature and format are correct
and trusted, the PEPS stores the Version control file and the
process continues directly to VCP-ACT-5.

If this is not the first time the version control file is fetched and
the signature and format of the file are correct and trusted the
PEPS/V-IDP stores the version control file adding _new to the file
name. The PEPS/V-IDP reads the previous version control file and
the _new version control file; extracts relevant data from the files
and compares the new data to the data in the previous version
control file.

If there is no change in the data, the PEPS/V-IDP deletes the
previous version control file and removes “_new” from the name
of the new version control file (the new file is renamed).

If there is any change in the data the PEPS/V-IDP adds change
information to email that will be sent to the PEPS/V-IDP
Administrator.

If the change in data includes no new certificates, the process
continues with VCP-ACT-5.

112 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 Sequence Diagram

 Detail Sequence Diagram

 External Actors

• No external actors

 Action 1

Function check for previous version control file
for colleague PEPS

If no previous file is available

Go to step VCP-ACT-5

Else

Store the version control file as XX-info.xml_new

Data

INPUT

Previous version control file

OUTPUT

XX-info.xml_new / Go to step VCP-ACT-5

CONFIG FILES NEEDED

113 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

No config files needed

Action 2

Compare data

Store the version control file as XX-info.xml_new

Parse the file XX-info.xml_new into variables

Read the old version control file XX-info.xml

Parse the file XX-info.xml into variables

Compare all data from XX-info.xml_new with the
data in XX-info.xml

If any change in data

Add information about changes to email that will be
sent to administrator

Delete XX-info.xml

Rename XX-info.xml_new to XX-info.xml

 If no new certificates

 Go to step VCP-ACT-5

Else

Retrieve the name of old certificate file from the old
version control file Delete XX-info.xml (the old version
control file)

Rename XX-info.xml_new to XX-info.xml

Go to step VCP-ACT-4

Data

INPUT

Previous version control files

OUTPUT

New version of colleague PEPS version control file

CONFIG FILES NEEDED

No config files needed

4 VCP-ACT-4 Description

If the change in data includes any new certificate, the PEPS/V-IDP
checks and removes any out dated certificate before it stores all
new certificates.

114 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Sequence Diagram

External Actors

• No external actor

Action

Function check for out-dated certificates

Look for old certificate

If old certificate is found

Delete old certificate

Store new certificate

Data

INPUT

Name of the old certificate file from old version control file
New Certificates retrieved in previous step

OUTPUT

Success / Error (VCP_ERR_6, VCP_ERR_7)

CONFIG FILES NEEDED

No config files needed

5 VCP-ACT-5 Description
The PEPS/V-IDP determines if it has the anonymity layer software
installed and configured. If so, it determines the version of the
software and configuration files

Sequence Diagram

Action 1

Determine if Anonymity is installed

 If Anonymity is installed

115 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Determine version of the Anonymity software

Determine version of configuration files

Data

INPUT

Software installation status

OUTPUT

True (and Anonymity software version) / False

CONFIG FILES NEEDED

No config files needed

__

Action 2

Function update PEPS Anonymity Data

 if PEPS is not anonymity node:

 if PEPS was an anonymity node:

 Mark the node for deletion.

 Mark all of this node's subordinate non-
authoritative nodes for deletion.

 end

 Insert or update node certificate on the certificate store

 Insert or update node settings on the database

 for each subordinate non-authoritative node:

 Insert or update node certificate on the
certificate-store

 Insert or update node settings on the database

 for each subordinate non-authoritative node that is on
the database but is no longer on the Control Version File:

 Delete node certificate from the certificate store

 Delete node settings from the database

Data

INPUT

 PEPS node settings

 PEPS node certificate

 List of subordinate non-authoritative nodes with:

 Node certificate

116 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 Non-authoritative node settings

 Status

OUTPUT

 CONFIG FILES NEEDED

 Anonymity config file

__

Action 3

Function clean node database

 for each node marked for deletion whose exclusion
period has expired:

 Delete node certificate from the certificate store

 Delete node settings from the database

Data

INPUT

Database

OUTPUT

CONFIG FILES NEEDED

Anonymity config file

__

Action 4

Function update own control version file

 if own anonymity certificate or settings change, own
Control Version File must be updated.

 if subordinate non-authoritative node list changes
(additions,
 deletions, setting or certificate changes), own Control
Version
 File must be updated.

Data

INPUT

New settings / certificates

OUTPUT

New version control file

CONFIG FILES NEEDED

117 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Anonymity config file

6 VCP-ACT-6 Description

The PEPS/V-IDP sends scheduled request for configuration to a
service provider (SP). The configuration is stored in Version
Control File (VCF) stored at https://xxx.xxx.xx/PEPS/XX-XXX-
info.xml. The version control file is signed by the service provider
(XX-info.xml were XX is the country code of the service provider
and XXX is unique service provider code. For example for Arion
bank in Iceland IS-AB1-info.xml).

If version control file is in place, the service provider responds
with the version control file (xx-xxx-info.xml) file which contains
configuration settings and all needed certificates.

If version control file is not in place the request for configuration
results in error.

The PEPS/V-IDP validates the signature and format of the version
control file. In case the signature is invalid the PEPS/V-IDP sends
an error message to the PEPS/V-IDP Administrator and stops the
process for current SP’s version control file.

Sequence Diagram

Detail Sequence Diagram

118 | P a g e

https://xxx.xxx.xx/PEPS/XX-XXX-info.xml
https://xxx.xxx.xx/PEPS/XX-XXX-info.xml

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

External Actors

• PEPS/V-IDP scheduled job

Action 1

Function Obtain SP list
Data

INPUT

Peps.xml path.

OUTPUT

Success/error (VCP_ERR_8 / VCP_ERR_9)

CONFIG FILES NEEDED

List of trusted SP

__

Action 2

Function Validate SP Version control file

Request version control file

If file is available

Get file

Validate signature

Save file to memory

Else

Return error

Add information about error to email that will be sent to
AdministratorWrite to error log

Data

INPUT

Version control file path (ex: https://xxx.xxx.xx/PEPS/XX-XXX-
info.xml.)

OUTPUT

Success/error (VCP_ERR_3 / VCP_ERR_4)

CONFIG FILES NEEDED

No config file needed

7 VCP-ACT-7 Description

If this is the first time a version control file is fetched from the SP
and the signature and format are correct and trusted, the PEPS
stores the Version control file and the process continues directly

119 | P a g e

https://xxx.xxx.xx/PEPS/XX-XXX-info.xml
https://xxx.xxx.xx/PEPS/XX-XXX-info.xml

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

to VCP-ACT-10.

If this is not the first time the version control file is fetched and
the signature and format of the file is correct and trusted the
PEPS/V-IDP stores the version control file adding _new to the file
name. The PEPS/V-IDP reads the previous version control file and
the _new version control file; extracts relevant data from the files
and compares the new data to the data in the previous version
control file.

If there is no change in the data, the PEPS/V-IDP deletes the
previous version control file and removes “_new” from the name
of the new version control file (the new file is renamed).

If there is any change in the data the PEPS/V-IDP sends an email
to the PEPS/V-IDP Administrator.

If the change in data does not include new certificates, the
process continues with VCP-ACT-9.

 Sequence Diagram

 External Actors

No external actors

 Action 1

Function check for previous version control file for SP

If no previous file is available

Go to step VCP-ACT-9

Else

Store the version control file as XX-XXX-info.xml_new

Data

INPUT

Previous version control file

OUTPUT

XX-XXX-info.xml_new / Go to step VCP-ACT-9

CONFIG FILES NEEDED

No config files needed

120 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Action 2

Compare data

Store the version control file as XX-XXX-info.xml_new

Parse the file XX-XXX-info.xml_new into variables

Read the old version control file XX-XXX-info.xml

Parse the file XX-XXX-info.xml into variables

Compare all data from XX-XXX-info.xml_new with the
data in XX-XXX-info.xml

If any change in data

Add information about changes to email that will be
sent to administrator

Delete XX-XXX-info.xml

Rename XX-XXX-info.xml_new to XX-info.xml

 If no new certificates

 Go to step VCP-ACT-9

 Else

Retrieve the name of old certificate file from the old
version control file. Delete XX-XXX-info.xml (the old
version control file)

Rename XX-XXX-info.xml_new to XX-XXX-info.xml

Go to step VCP-ACT-8

Data

INPUT

Previous version control files

OUTPUT

New version of SP version control files

CONFIG FILES NEEDED

No config files needed

8 VCP-ACT-8 Description

If the change in data includes any new certificate, the PEPS/V-IDP
checks and removes any out dated certificate before it stores all
new certificates.

121 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 Sequence Diagram

 External Actors

No external actor

 Action

Function check for out-dated certificates

Look for old certificate

If old certificate is found

Delete old certificate

Store new certificate

Data

INPUT

Name of the old certificate file from old version control file
New Certificates retrieved in previous step

OUTPUT

Success / Error (VCP_ERR_6, VCP_ERR_7)

CONFIG FILES NEEDED

No config files needed

9 VCP-ACT-9 Description

The PEPS/V-IDP checks if any mail event exists, the PEPS/V-IDP
prepares a table formatted email. Then the PEPS/V-IDP sends this
email to Administrator.

 Sequence Diagram

 External Actors

No external actor

 Action

Function check for email event

If mail event is existed

Prepare table formatted email

Send email to Administrator

Data

122 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

INPUT

Mail events(certificate changes, VCF data changes, any error..)

OUTPUT

Success / Error (VCP_ERR_6, VCP_ERR_7)

CONFIG FILES NEEDED

10 VCP-ACT-10 Description

The PEPS/V-IDP determines if new version control files are
needed based on if there has been a change in configuration files
which are referred in the Version Control File and Colleague PEPS
version control files. The PEPS/V-IDP has two type version control
files which one of them is for Colleague PEPS and the other is for
SPs in own country.

 Sequence Diagram

 External Actors

No external actors

 Action 1

Store Current Version Control File values

Read current Version Control File

Parse current Version Control File

Put values into variables

Data

INPUT

Own version control file from local storage

OUTPUT

Variables containing the Version Control File values

CONFIG FILES NEEDED

Own Version Control File

123 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Action2

Determine if certificates have changed

Read newest Certificate files from certificate storage

Compare new certificates with certificates in VCF

If own certificates have changed

Update corresponding variable value

Data

INPUT

Own Certificates stored in local certificate storage

OUTPUT

Updated value’s for variables containing VCF certificates

CONFIG FILES NEEDED

No config files needed

Action 3

Determine if configuration files have changed

Read configuration files and compare if data has changed

 If data in configuration files has changed

 Update corresponding variable value

Data

INPUT

Configuration files containing info for the VCF

OUTPUT

Updated variable values

CONFIG FILES NEEDED

Configuration files containing VCF info

Action 4

Update information from Colleague PEPS’es/V-IDP’s

Loop for all colleague PEPS/V-IDP VCF files

 Read from file storage colleague PEPS/V-IDP VCF file

 Compare values in Colleague PEPS/V-IDP VCF file
 with values in own VCF file

 If data has changed

Update corresponding variable value

124 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

End loop

Data

INPUT

Colleague PEPS VCF files
OUTPUT

Updated variable values

CONFIG FILES NEEDED

Colleague PEPS VCF files

 Action 5

Build new Version Control files

Use stored variables to build new VCFs

 Delete old Version control files

 Store new Version control files(PEPS VCF and SPs VCF)

Data

INPUT

Stored variables
OUTPUT

New version control files(PEPS VCF and SPs VCF)

CONFIG FILES NEEDED

No config files needed

11 VCP-ACT-11 Description

Based on the new PEPS VCF file, country selector is updated.

 Sequence Diagram

 External Actors

No external actors

 Action 1

Update country selector

Read current Version Control File

Parse country selector values into variables

Read the country selector

Update the country selector

Remove old country selector

125 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Save new Country selector

Data

INPUT

Own version control file from local storage

OUTPUT

New country selector

CONFIG FILES NEEDED

Own PEPS Version Control File

Table 14 –Description Version Control in PEPS

126 | P a g e

D4.10 Final Version of Technical Design

3 V-IDP Architecture design

V-IDPs fulfil basically the same objectives as the PEPSs, but for the decentralised model
(formerly “MW countries”):

• they form anchors of trust which allow to elevate the national circles of trust to European
level and;

• they hide country specific things like organisation, available ID providers and national and
domain-specific attribute providers to the outside world and just offer standardised data;

In this sense, V-IDPs are also described in this chapter although most functions and structures
are common to both approaches. The main difference is that it is a distributed approach (no
central instance, but each SP operating a V-IDP), fully irrelevant for this document.

3.1 System Context

Figure 21: V-IDP System Context Diagram

3.2 Logical view

The main goal of the logical view is the decomposition of the system into subsystems. This
can be done by component and/or class diagrams, showing the architecturally important
components and their relationships. The sequence diagrams show the sequence of messages
passed between objects using a vertical timeline.

Name Description

V-IDP@SP V-IDP@SP represents the V-IDP on the
service provider side (comparable to S-PEPS).

Stork Common
Functionalities

PEPS PEPS
PEPS PEPS

V - IDP V - IDP

V - IDP V - IDP

MWDE
MWAT

SP

IDP/AP

SP IDP/AP

SP

SP

127 | P a g e

D4.10 Final Version of Technical Design

V-IDP@PEPS V-IDP@PEPS represents the V-IDP on the
PEPS side.

Table Cell 7 Table Cell 8

Table 15 –Meaning of the different V-IDPs

The following sequence diagrams are similar to the diagrams in section 2.4, but are slightly
modified and replicated here to maintain the document’s clarity. The main difference is that –
depending on the case – either the S-PEPS or the C-PEPS is represented by a V-IDP.

3.2.1 Authentication on behalf of

For description refer to section 2.4. Please note that for the V-IDP the Powers (for digital
signature) process is the same as the Authentication on behalf of process.

3.2.1.1 Sequence Diagram Authentication on behalf of, mixed-model: UC-AUB-MP

Figure 22: V-IDP Sequence Diagram UC-AUB-MP

128 | P a g e

D4.10 Final Version of Technical Design

3.2.1.2 Description

Message sequences
(interactions) Description

0-1 Handle Citizen’s
Response

Description

Receives Citizen’s reply, adds it to the AUB Request and checks
AUB request validation (this task includes log activity).

Sequence Diagram

Detailed Sequence Diagram

External Actors

• Citizen-Browser

0. Get Citizen Response

1. Handle Citizen Response

HTML KO.2

[comunicate KO]

Register Handle Citizen Response (log)

Validate Origin

Check number of requests

Check Selected Country

Check contents

Handle Citizen Response

129 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• Citizen’s selected country

• SP ID

• SP Name

• QAA Level

• Mandatory and optional Attributes list
includes the SP representation/mandate requirements

• Redirect URL

OUTPUT

• SP AUB Request Validation

COMMON CONFIG FILES NEEDED

• SP’s list

• SP’s Attributes List

• Log Configuration

Error Communications

• Send HTML KO.2 to the Citizen-Browser.

If a Handle Error succeed.

Actions

• Get Citizen’s Country Selected (Citizen’s Reply)

• Validate Origin (SP ID, QAA Level).

(If SP ID and QAA Level are missing  Handle Error
SPAUB0401)

o If Authentication Type is based on SP’s list:

 Check SP (SP ID, SP List): SP in SP’s List.

(If SP is not in the list  Handle Error SPAUB0402)

SP AUB Request Validation Handle Citizen’s Response

SP’s list

Selected Country

Log Configuration

Mandatory and
optional attributes

QAA Level

SP ID

Redirect URL
SP’s Attributes list

log

SP Name

130 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 Else, check SP Domain (SP Request Domain, Redirect

URL): validate if the request domain and Redirect

URL matches the registered SP Domain.

(If the request domain or Redirection URL is not correct
 Handle Error SPAUB0403)

o Check number of requests (SP ID, 60): number of

requests in the last period of 60 seconds.

(If this number is greater than or equal to the maximum
number - to avoid DoS  Handle Error SPAUB0404)

o Check Selected Country (SelectedCountry)

(If selected country is not a valid country  Handle Error
SPAUB0405)

o Check contents (Mandatory and optional Attributes list).

(If any Mandatory or optional Attribute isn’t in SP’s

Attributes List  Handle Error SPAUB0406)

o Register Handle Citizen Response (Citizen, S-PEPS,

“Select Country”)

2 Map and Forward
AUB Request

Normalise data and send AUB request to colleague V-IDP@PEPS

This task includes some internal activities to normalise all the
received data, log activity and send to Colleague V-IDP@PEPS.

2.1 Normalise data

2.2 Get SAML Authentication Request

2.1 Normalise data Description

Normalise all received data, mapping of the MS values to STORK
nomenclature. For AUB this, for instance, includes mapping of
the SP requesting a MS-specific definition of powers to the
STORK taxonomy of mandates/representations.

Sequence Diagram

2.1. Normalise Data

131 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• Attribute list with values

OUTPUT

• Attribute names and data values in STORK nomenclature.

CONFIG FILES NEEDED

• Mapping Attributes: Map between STORK names/values and
MS names/values for the attributes (text values are not
included)

2.2 Send SAML
Authentication
Request

Description

Send AUB Request to Colleague V-IDP@PEPS.

Sequence Diagram

Detailed Sequence Diagram

Send SAML Authentication Request

Register Send SAML Authentication Request (log)

Send SAML Authentication Request

STORK AttributesNormalise Data

Mapping Attributes

Attributes list

2.2. Send SAML Authentication Request

132 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• SAML Authentication Request

OUTPUT

• SAML Authentication Request

CONFIG FILES NEEDED

• Log Configuration

Actions

• Register Send SAML Authentication Request (S-PEPS, V-
IDP@PEPS, “Map and Forward AUB Request”)

3 Process AUB
Request

Description

The request is processed in the Colleague V-IDP@PEPS. The
authentication on behalf of is performed with the user and the
security token created. This is MS specific.

Sequence Diagram

4 Handle AUB
Request

Description

S-PEPS receives SAML AuthenticationResponse through the
Citizen-Browser issued by Colleague V-IDP@PEPS.

S-PEPS validates SAML AuthenticationResponse signature.

Sequence Diagram

SAML
Authentication Request Send SAML Authentication

Request
SAML

Authentication Request

Log Configuration

log

3 . Process AUB Request

HTML KO . 3
[comunicate KO]

- Check Signature { }

Send SAML Authentication Response

4 . Handle AUB Request

133 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Detailed Sequence Diagram

External Actors

• Citizen-Browser: The S-PEPS receives the SAML AUB
Response from a Colleague V-IDP@PEPS through the
Citizen-Browser.

Data

INPUT

• SAML Response

OUTPUT

• SAML Response

CONFIG FILES NEEDED

• Mapping attributes

• Log Configuration

Validate Request Format

Validate Origin

Check SAML Conditions

Get SAML AuthenticationResponse

Handle SAML AuthenticationResponse

Register Handle SAML AuthenticationResponse (log)

SAML Response Normalise Data

Mapping Attributes

SAML Response

Log Configuration

134 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Error Communications

• Send HTML KO.3 to the Citizen-Browser.

If a Handle Error succeed.

Actions

• Receive SAML AuthenticationResponse ()

• Register Handle SAML AuthenticationResponse (V-
IDP@PEPS, S-PEPS, “Check Signature”)

• Validate Response Format (SAML)

(If the format is not correct  Handle Error SPAUB2201)

• Validate Origin (Colleague V-IDP@PEPS): Validate Colleague
V-IDP@PEPS Signature.

(If the origin is not correct  Handle Error SPAUB2202)

• Check SAML Conditions (notBefore, notAfter, etc.)

(If conditions are not fulfilled  Handle Error SPAUB2203)

5 Map, Sign and
forward reply

Description

Maps, generates the SAML token, signs and sends it to SP.

Sequence Diagram

135 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Detailed Sequence Diagram

Map Attributes

Generate SAML Token

Sign AUB Response

Send SAML AuthenticationResponse

Map , sign and forward reply

Register Map , sign and forward reply (log)

External Actors

• SP

Data

INPUT

• SAML AuthenticationResponse

• Requesting colleague PEPS

OUTPUT

• SAML AuthenticationResponse.

CONFIG FILES NEEDED

• Mapping Attributes: Map between STORK names/values and
MS values for the attributes (text values are not included)

SAML
AuthenticationResponseMap, sign and forward reply

Mapping Attributes

SAML
AuthenticationResponse

Requesting colleague

Log Configuration

log

136 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

• Log Configuration

Error Communications

• None.

Actions

• Map STORK values to MS values (STORK Values, MS Values),
e.g. STORK mandate/representation values to a MS specific
mandate schema. The original source mandate also gets
delivered to the SP for its auditing acceptability.

• Generate SAML Response (Colleague SAML Request)

• Sign SAML Authentication Response (SAML)

• Send SAML Authentication Response ()

• Register Map, sign and forward reply (S-PEPS, V-IDP@PEPS,
“Map, sign an forward reply”)

Table 16 – Description sequence Authentication on Behalf of, UC-AUB-MP

3.2.1.3 Sequence Diagram Authentication on behalf of, mixed-model: UC-AUB-PM

Citizen Browser V-IDP@SPSP

0.Get Citizen Response (SAML AUB Request)

C-PEPS

1. Handle Citizen Response

[communicate KO]
HTML KO.2

2. Normalise data

- Check SP AUB request

- Map and forware AUB
request

3. Send SAML Authentication Request

[communicate KO]
HTML KO.3

- Check signature

- Map, sign and forward
reply

4. Process AUB Request

5. Send SAML Authentication Response

6. Handle AUB Request

7. Map, sign and forward reply

8. Send SAML response

Figure 23: V-IDP Sequence Diagram UC-AUB-PM

137 | P a g e

D4.10 Final Version of Technical Design

Please note that the V-IDP@PEPS is included with the C-PEPS. It behaves on both sides as a
PEPS. Its function is to concentrate the requests, achieving that changes (new SPs) in a MW
country do not affect any PEPS. As it does not contribute functionally, for ease of reading this
component is omitted.

3.2.1.4 Description

Message sequences
(interactions) Description

0-1 Handle Citizen’s
Response

Description

Receives Citizen’s reply, adds it to the AUB Request and checks AUB
request validation (this task includes log activity).

Sequence Diagram

Detailed Sequence Diagram

External Actors

• Citizen-Browser

0. Get Citizen Response

1. Handle Citizen Response

HTML KO.2

[comunicate KO]

Register Handle Citizen Response (log)

Validate Origin

Check number of requests

Check Selected Country

Check contents

Handle Citizen Response

138 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• Citizen’s selected country

• SP ID

• SP Name

• QAA Level

• Mandatory and optional Attributes list
includes the SP representation/mandate requirements

• Redirect URL

OUTPUT

• SP AUB Request Validation

COMMON CONFIG FILES NEEDED

• SP’s list

• SP’s Attributes List

• Log Configuration

Error Communications

• Send HTML KO.2 to the Citizen-Browser.

If a Handle Error succeed.

Actions

• Get Citizen’s Country Selected (Citizen’s Reply)

• Validate Origin (SP ID, QAA Level).

(If SP ID and QAA Level are missing  Handle Error
SPAUB0401)

o If Authentication Type is based on SP’s list:

 Check SP (SP ID, SP List): SP in SP’s List.

(If SP is not in the list  Handle Error SPAUB0402)

SP AUB Request Validation Handle Citizen’s Response

SP’s list

Selected Country

Log Configuration

Mandatory and
optional attributes

QAA Level

SP ID

Redirect URL
SP’s Attributes list

log

SP Name

139 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

 Else, check SP Domain (SP Request Domain, Redirect

URL): validate if the request domain and Redirect URL

matches the registered SP Domain.

(If the request domain or Redirection URL is not correct 
Handle Error SPAUB0403)

o Check number of requests (SP ID, 60): number of requests

in the last period of 60 seconds.

(If this number is greater than or equal to the maximum
number - to avoid DoS  Handle Error SPAUB0404)

o Check Selected Country (SelectedCountry)

(If selected country is not a valid country  Handle Error
SPAUB0405)

o Check contents (Mandatory and optional Attributes list).

(If any Mandatory or optional Attribute is not in SP’s

Attributes List  Handle Error SPAUB0406)

o Register Handle Citizen Response (Citizen, V-IDP@SP,

“Select Country”)

2 Map and
Forward AUB
Request

Normalise data and send AUB request to colleague C-PEPS

This task includes some internal activities to normalise all the
received data, log activity and send to Colleague C-PEPS.

2.1 Normalise data

2.2 Get SAML Authentication Request

2.1 Normalise data Description

Normalise all received data, mapping the MS values to STORK
nomenclature. For AUB this for instance includes mapping of the SP
requesting a MS-specific definition of powers to the STORK
taxonomy of mandates/representations.

Sequence Diagram

2.1. Normalise Data

140 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• Attribute list with values

OUTPUT

• Attribute names and data values in STORK nomenclature.

CONFIG FILES NEEDED

• Mapping Attributes: Map STORK names/values to MS
names/values for the attributes (text values are not included)

3 Send SAML
Authentication
Request

Description

Send AUB Request to Colleague C-PEPS.

Sequence Diagram

Detailed Sequence Diagram

Send SAML Authentication Request

Register Send SAML Authentication Request (log)

Send SAML Authentication Request

STORK AttributesNormalise Data

Mapping Attributes

Attributes list

2.2. Send SAML Authentication Request

141 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Data

INPUT

• SAML Authentication Request

OUTPUT

• SAML Authentication Request

CONFIG FILES NEEDED

• Log Configuration

Actions

• Register Send SAML Authentication Request (V-IDP@SP, C-
PEPS, “Map and Forward AUB Request”)

4 Process AUB
Request

Description

The request is processed in the Colleague C-PEPS. The
authentication on behalf of is performed with the user and the
security token created. This is MS specific.

Sequence Diagram

5 Send SAML
Authentication
Response

Description

Redirects the Response to the V-IDP@SP.

Sequence Diagram

6 Handle AUB
Request

Description

V-IDP@SP receives SAML AuthenticationResponse through the
Citizen-Browser issued by Colleague C-PEPS.

V-IDP@SP validates SAML AuthenticationResponse signature.

Sequence Diagram

SAML
Authentication Request Send SAML Authentication

Request
SAML

Authentication Request

Log Configuration

log

4 . Process AUB Request

142 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Detailed Sequence Diagram

External Actors

• Citizen-Browser: The V-IDP@SP receives the SAML AUB
Response from a Colleague C-PEPS through the Citizen-
Browser.

Data

INPUT

• SAML Response

Validate Request Format

Validate Origin

Check SAML Conditions

Get SAML AuthenticationResponse

Handle SAML AuthenticationResponse

Register Handle SAML AuthenticationResponse (log)

HTML KO . 3
[comunicate KO]

- Check Signature { }

Send SAML Authentication Response

6 . Handle AUB Request

SAML Response Normalise Data

Mapping Attributes

SAML Response

Log Configuration

143 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

OUTPUT

• SAML Response

CONFIG FILES NEEDED

• Mapping attributes

• Log Configuration

Error Communications

• Send HTML KO.3 to the Citizen-Browser.

If a Handle Error succeed.

Actions

• Receive SAML AuthenticationResponse ()

• Register Handle SAML AuthenticationResponse (C-PEPS, V-
IDP@SP “Check Signature”)

• Validate Response Format (SAML)

(If the format is not correct  Handle Error SPAUB2201)

• Validate Origin (Colleague C-PEPS): Validate Colleague C-PEPS
Signature.

(If the origin is not correct  Handle Error SPAUB2202)

• Check SAML Conditions (notBefore, notAfter, etc.)

(If conditions are not fulfilled  Handle Error SPAUB2203)

7 Map, Sign and
forward reply

Description

Maps, generates the SAML token, signs and sends it to SP.

Sequence Diagram

144 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Detailed Sequence Diagram

Map Attributes

Generate SAML Token

Sign AUB Response

Send SAML AuthenticationResponse

Map , sign and forward reply

Register Map , sign and forward reply (log)

External Actors

• SP

Data

INPUT

• SAML AuthenticationResponse

• Requesting colleague PEPS

OUTPUT

• SAML AuthenticationResponse.

CONFIG FILES NEEDED

• Mapping Attributes: Map STORK names/values to MS values
for the attributes (text values are not included)

• Log Configuration

SAML
AuthenticationResponseMap, sign and forward reply

Mapping Attributes

SAML
AuthenticationResponse

Requesting colleague

Log Configuration

log

145 | P a g e

D4.10 Final Version of Technical Design

Message sequences
(interactions) Description

Error Communications

• None.

Actions

• Map STORK values to MS values (STORK Values, MS Values) ,
e.g. STORK mandate/representation values to a MS specific
mandate schema. The original source mandate also gets
delivered to the SP for its auditing acceptability.

• Generate SAML Response (Colleague SAML Request)

• Sign SAML Authentication Response (SAML)

• Send SAML Authentication Response ()

• Register Map, sign and forward reply (V-IDP@SP, C-PEPS,
“Map, sign an forward reply”)

Table 17 – Description sequence Authentication on Behalf of, UC-AUB-PM

3.2.1.5 Authentication on behalf of, middleware-model: UC-AUB-MM

In the pure middleware model, SP-requests are handled by the V-IDP@SP internally by
routing it to its SPware. There is no difference to STORK 1. Given that just one country
applying the decentralized deployment model (formerly referred to as “MW”) is in STORK 2.0
and, thus the “on behalf” scenario between two such countries can not be piloted, no
addotional description is needed here.

However, the pure solution will be developed, and as far as possible it will be tested.

146 | P a g e

D4.10 Final Version of Technical Design

4 Commodities

Commodities are processes, functions or other components which have arisen during the
discussions in the project, and are (partially) described in earlier documents, especially in
D4.9 Final version of the Functional Design [13], but do not fit into the common
functionalities of the core processes. Some of them do not even fit in the central STORK
structure (PEPS and V-IDP); but they will be designed for the Service Providers. Their
appearance in this document is motivated by the fact that many (nearly all) service providers
will need to use such functions, so common development and test will reduce the efforts
spent on these issues.

4.1 eIdentifier encryption (National Identifier Privacy)

The common objectives for a global functioning of eIdentifier encryption are described in the
functional design. The only pending issue to be described is the implementation. The
following sections describe the four standard algorithms to be implemented.

4.1.1 Symmetric encryption

A probably secure pseudo-random permutation based on Feistel networks (symmetric
encryption) was proposed by Luby, Michael, Rackoff, and Charles (see [3]). The security of this
construction is proved provided its round function is a pseudorandom function. In practice,
AES-128 is probably an easy choice as round function.

This construction is based on several linked encryptions, each with an independent key – the
number of keys depends on the length of the input message and the encryption algorithm.
That implies, for instance, 64 AES-128 encryptions for a 128 bytes message4. It is advised to
keep the unique root identifier under 64 bytes to limit the number of keys to 16.

Figure 24 below shows the algorithm that is described below:

First, suppose that the message is shorter or equal to 256 bits.

1. The message is padded to 256 bits– any padding may be used

2. The message is split in two parts of 128 bits

3. Each F function represents one AES-128 encryption with a different key

4. The result is two 128 bits buffers that we concatenate to get the pseudo-random
result

Let’s call the function described above F256.

If the message is longer than 256 bits, but shorter or equal to 512 bits:

1. The message is padded to 512 bits

2. The message is split in two parts of 256 bits

3. Each F function represents the whole function F256 described in the previous step
(aimed at a 256 bits message). {k1…k4} represent here four sets of 4 AES-128 keys
used in the previous steps.

Let’s call the function described above F512.

The AES encryption scheme should be used in ECB mode, with no padding.

4 (#bytes/16)2 encryptions

147 | P a g e

D4.10 Final Version of Technical Design

A function F1024 can be used by combining four functions F512; a function F2048 can be used by
combining four functions F1024, etc. Different keys have to be used for every AES-128
encryption.

x2

Fk1XOR

message

x1

x3

Fk2
x4 XOR x5

Fk3XOR x7

Fk4XOR x9

x6

x4

x6

x10

Pseudo-random

x8

Figure 24: Symmetric encryption

4.1.2 Asymmetric encryption

PKCS#1 v2.1 (RSAES-OAEP) is a proven and easy to implement solution.

The problematic part in using RSAES-OAEP in this context is that RSA-OAEP is probabilistic:
the message is scrambled with pseudo-random padding derived from a random seed before
being RSA-encrypted. This would obviously void the reproducibility of the solution; a solution
is needed where the padding is identical for each identical message5. Two solutions are
possible:

1. As a (different) pseudo-random padding is needed for each different message, a
function of the temporary unique root identifier could be used as the encryption

5 This is called “deterministic public key encryption scheme” (see [6] for references)

148 | P a g e

D4.10 Final Version of Technical Design

seed, which will be different for (almost6) every root identifier. For example, the
following data can be used as a seed:

• the 512 first bits of the reversible ID; this is a real pseudo-random number;

• a 512 bits hash of the temporary unique root identifier, encrypted with the
above symmetric algorithm; this solution has the advantage of reducing the
maximum number of keys (16);

• a MAC of temporary unique root identifier; this solution has the advantage of
requiring only one key;

2. Firstly the temporary unique root identifier can be extended with a MAC of itself, and
then the result can be encrypted using a standard construction from deterministic
public key encryption. Attaching the MAC essentially makes the encrypted message
“unpredictable”. Concretely, m=[temporary unique root identifier||MAC(GURI,SK)]
can be taken for some symmetric secret key stored by the PEPS, and then encrypt the
message as follows. First the encryption seed is calculated as H(PK||m), and then the
RSAES-OAEP encryption of m is calculated using the previous seed. This has the
disadvantage of resulting in longer identifiers, but it is a more standard construction
(see [7] for an in-depth analysis); the padding is, in this case, usually a hash of the
public key concatenated with the message: H(PK||m)

The key length must be at least 130 bytes7 longer than the message to encrypt. By using a
4096 bits key, a root identifier of 382 bytes can be encrypted (potentially even a bit more if it
is compressed somehow before encryption).

Please note that using 2048 bits keys – which is considered nowadays as a minimal – would
lead to a 342 bytes identifier, which is much longer than the allowed length of a STORK
identifier. Therefore, this solution cannot be used inside STORK.

4.1.3 MAC

A proben secure MAC algorithm should be used, e.g. HMAC with a good cryptographic hash
function, against which there is no known attack that improves on a birthday attack.

Furthermore, adding the public key used for encryption into the MAC [8] would be a good
solution in order to have a different padding when the key pair is migrated to a stronger one:
MAC(SK, PK||m).

4.1.4 Hash

SHA-256 or SHA-512, depending on the desired length, are good candidates for the usages
envisioned in this document.

4.2 Version Control (SPs)

The version control verifies the software and configuration versions of its PEPS / V-IDP and
publishes the results to the national PEPS/V-IDP service providers.

The version control process is carried out under the standard facility to the launch of
processes periodically, like Task Manager in Windows or cron under Unix. If any changes are
found in its PEPS’ configurations, an alert is sent to the administrator(s), in order to inform
him that some compatibility tests should be performed.

6 As it is only a seed for an encryption, there is no problem if it there are some collisions

7 The exact value is 2 * (hLen + 1) where hLen is the length (in bytes) of the hash function used in the
algorithm

149 | P a g e

D4.10 Final Version of Technical Design

In any case the version control files are generated, which allow on one hand, national Service
providers to be informed of relevant changes and adapt their country selector, and on the
other hand, allows the colleagues to inform their administrators to execute relevant tests.

4.2.1 Sequence diagram VCS

Figure 25: Sequence diagram Version Control, in SP

4.2.2 Description VCS

Message
sequences
(interactions) Description

1 VCP-ACT-1 Description

The SP sends scheduled request for configuration to a S-PEPS/V-IDP.
The configuration is stored in Version Control File (VCF) stored at
https://xxx.xxx.xx/PEPS/SPs-XX-info.xml. The version control file is
signed by the S-PEPS/V-IDP
(SPs-XX-info.xml were XX is the country code of the S-PEPS/V-IDP. For
example for Spain SPs-ES-info.xml).
If version control file is in place, the PEPS/V-IDP responds with the
version control file (SPs-xx-info.xml) file which contains configuration
settings and all needed certificates, also the
configuration settings and certificate for this S-PEPS/V-IDP to act
as an anonymity node and all the certificates and settings for its
subordinate non-authoritative nodes.

If the version control file is not in place the request for configuration
results in error.

The SP validates the signature and format of the version control file. In

150 | P a g e

https://xxx.xxx.xx/PEPS/SPs-XX-info.xml

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

case the signature and format are invalid the SP sends error message to
the SP Administrator and stops the process.

 Sequence Diagram

 Detail Sequence Diagram

 External Actors

• SP job scheduler

 Action 1

Function Validate URI to PEPS/V-IDP Version control file

Data

INPUT

URI to PEPS/V-IDP Version control file

OUTPUT

151 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

Success/error (VCP_ERR_1 / VCP_ERR_2)

CONFIG FILES NEEDED

No config file needed

Action 2

Function Validate PEPS Version control file

Request version control file

If file is available

Get file

Validate signature

Save file to memory

Else

Return error

Send error to Administrator

Write to error log

Data

INPUT

Version control file path (ex: https://xxx.xxx.xx/PEPS/SPs-XX-
info.xml.)

OUTPUT

Success/error (VCP_ERR_3 / VCP_ERR_4)

CONFIG FILES NEEDED

No config file needed

2 VCP-ACT-2 Description

If this is the first time a version control file is fetched from the PEPS/V-
IDP and the signature and format are correct and trusted, the SP stores
the Version control file and the process continues directly to VCP-ACT-4.

If this is not the first time the version control file is fetched and the
signature and format of the file is correct and trusted, the SP stores the
version control file adding _new to the file name. The SP reads the
previous version control file and the _new version control file; extracts
relevant data from the files and compares the new data to the data in
the previous version control file.

If there is no change in the data, the SP deletes the previous version
control file and removes “_new” from the name of the new version
control file (the new file is renamed).

If there is any change in the data, change information are added to

152 | P a g e

https://xxx.xxx.xx/PEPS/SPs-XX-info.xml
https://xxx.xxx.xx/PEPS/SPs-XX-info.xml

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

email that will be sent to the SP Administrator.

If the change in data includes no new certificates, the process continues
with VCP-ACT-4.

 Sequence Diagram

 Detail Sequence Diagram

 External Actors

• No external actors

 Action 1

Function check for previous version control file
for PEPS

If no previous file is available

Go to step VCP-ACT-4

Else

Store the version control file as SPs-XX-info.xml_new

Data

INPUT

Previous version control file

153 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

OUTPUT

SPs-XX-info.xml_new / Go to step VCP-ACT-4

CONFIG FILES NEEDED

No config files needed

Action 2

Compare data

Store the version control file as SPs-XX-info.xml_new

Parse the file SPs-XX-info.xml_new into variables

Read the old version control file SPs-XX-info.xml

Parse the file SPs-XX-info.xml into variables

Compare all data from SPs-XX-info.xml_new with the
data in SPs-XX-info.xml

If any change in data

Add information about changes to email that will be sent to
administrator

Delete SPs-XX-info.xml

Rename SPs-XX-info.xml_new to SPs-XX-info.xml

 If no new certificates

 Go to step VCP-ACT-4

 Else

Retrieve the name of old certificate file from the old version
control file

Delete SPs-XX-info.xml (the old version control file)

Rename SPs-XX-info.xml_new to SPs-XX-info.xml

Go to step VCP-ACT-3

Data

INPUT

Previous version control files

OUTPUT

New version of PEPS version control file

CONFIG FILES NEEDED

No config files needed

154 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

3 VCP-ACT-3 Description

If the change in data includes any new certificate, the SP checks and
removes any out dated certificate before it stores all new certificates.

 Sequence Diagram

 External Actors

• No external actor

 Action

Function check for out-dated certificates

Look for old certificate

If old certificate is found

Delete old certificate

Store new certificate

Data

INPUT

Name of the old certificate file from old version control file
New Certificates retrieved in previous step

OUTPUT

Success / Error (VCP_ERR_6, VCP_ERR_7)

CONFIG FILES NEEDED

No config files needed

4 VCP-ACT-4 Description
The SP determines if it has the anonymity layer software installed and
configured. If so, it determines the version of the software and
configuration files.

155 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

 Sequence Diagram

 Action 1

Determine if Anonymity is installed

 If Anonymity is installed

 Determine version of the Anonymity software

 Determine version of configuration files

Data

INPUT

Software installation status

OUTPUT

True (and Anonymity software version) / False

CONFIG FILES NEEDED

No config files needed

Action 2

Function update PEPS Anonymity Data

 if SP is not anonymity node:

 if SP was an anonymity node:

 Mark the node for deletion.

 Mark all of this node's subordinate non-
 authoritative nodes for deletion.

 end

156 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

 Insert or update node certificate on the certificate store

 Insert or update node settings on the database

 for each subordinate non-authoritative node:

 Insert or update node certificate on the
 certificate store

 Insert or update node settings on the database

 for each subordinate non-authoritative node that is on the
 database but is no longer on the Control Version File:

 Delete node certificate from the certificate store

 Delete node settings from the database

Data

INPUT

 SP node settings

 SP node certificate

 List of subordinate non-authoritative nodes with:

 Node certificate

 Non-authoritative node settings

 Status

 OUTPUT

 CONFIG FILES NEEDED

 Anonymity config file

Action 3

 Function clean node database

 for each node marked for deletion whose exclusion
 period has expired:

 Delete node certificate from the certificate store

 Delete node settings from the database

Data

INPUT

Database

157 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

OUTPUT

CONFIG FILES NEEDED

Anonymity config file

Action 4

Function update own control version file

 if own anonymity certificate or settings change, own
 Control Version File must be updated.

 if subordinate non-authoritative node list changes (additions,
 deletions, setting or certificate changes), own Control Version
 File must be updated.

Data

INPUT

New settings / certificates

Database

OUTPUT

New version control file

CONFIG FILES NEEDED

Anonymity config file

5 VCP-ACT-5 Description

The SP determines if new version control file is needed based on if there
has been a change in configuration files which are referred in the
Version Control.

 Sequence Diagram

 External Actors

No external actors

 Action 1

158 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

Store Current Version Control File values

Read current Version Control File

Parse current Version Control File

Put values into variables

Data

INPUT

Own version control file from local storage

OUTPUT

Variables containing the Version Control File values

CONFIG FILES NEEDED

Own Version Control File

Action2

Determine if certificates have changed

Read newest certificate files from certificate storage

Compare new certificates with certificates in VCF

If own certificates have changed

Update corresponding variable value

Data

INPUT

Own certificates stored in local certificate storage

OUTPUT

Updated value’s for variables containing VCF certificates

CONFIG FILES NEEDED

No config files needed

Action 3

Determine if configuration files have changed

Read configuration files and compare if data has changed

 If data in configuration files has changed

 Update corresponding variable value

Data

INPUT

159 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

Configuration files containing info for the VCF

OUTPUT

Updated variable values

CONFIG FILES NEEDED

Configuration files containing VCF info

Action 4

Build new Version Control file

Use stored variables to build new VCF

 Delete old Version control file

 Store new Version control file

Data

INPUT

Stored variables
OUTPUT

New version control file

CONFIG FILES NEEDED

No config files needed

6 VCP-ACT-6 Description

Based on the new VCF file, country selector is updated.

 Sequence Diagram

 External Actors

No external actors

160 | P a g e

D4.10 Final Version of Technical Design

Message
sequences
(interactions) Description

 Action 1

Update country selector

Read current Version Control File

Parse country selector values into variables

Read the country selector

Update the country selector

Remove old country selector

Save new Country selector

Data

INPUT

Own version control file from local storage

OUTPUT

New country selector

CONFIG FILES NEEDED

Own Version Control File

7 VCP-ACT-7 Description

The SP checks if any mail event is existed, the SP prepares a table
formatted email. Then the SP sends this email to Administrator.

 Sequence Diagram

 External Actors

No external actor

 Action

Function check for email event

If mail event is existed

Prepare table formatted email

Send email to administrator

Data

INPUT

Mail events(certificate changes, VCF data changes, any error..)

OUTPUT

Success / Error (VCP_ERR_6, VCP_ERR_7)

CONFIG FILES NEEDED

Table 18 –Description Version Control in SP

161 | P a g e

D4.10 Final Version of Technical Design

4.3 Personal Data comparison (for re-authentication)

4.3.1 Introduction to the problem

Sometimes people can be authenticated in foreign countries with their home-country eID.
This would be the ideal situation: the university where someone studies should store his data
under his foreign citizen number.

For such cases, the C-PEPS, when requesting domain-specific attributes from an A-PEPS,
includes the citizen’s eIdentifier in the request, to allow the national Attribute Providers to
retrieve the citizen’s data from the database. In order to allow such attribute providers to
reverse look-up these data based on his real data, instead of his citizen number, his
givenName, surname and dateOfBirth are also included in the request. The AP should apply
complementary mechanisms to verify that this person is the one he/she says.

4.3.1.1 Re-authentication

However, in many systems user’s data are not stored under any citizen number; instead a
student-number, employee-number or any other <role>-number is used, especially in
countries where citizen numbers have not culture, like The Netherlands, Greece and
Germany. Such <role> number’s were frequently also used as a user-id, and corresponding
accounts were usually protected with passwords.

In such cases, when attending a request from a SP, the AP solving this request will not be able
to retrieve any data related to the foreign citizen number, so it will have to authenticate the
user again with the authentication method of the AP, typically username / password
schemes.

Such re-authentication not only applies to foreign citizens; it may be required also for
national ones.

4.3.1.2 Consequences for QAA and AQAA

If re-authentication has taken place, the quality of the second authentication limits the QAA
to be assigned to these attributes: that can never be superior to the quality of the used
credential. So in the typical case of username / password, if complemented with normal
measures for serious use, these credentials are QAA 2.

This new QAA would be a maximum for the attribute AQAA, on which other criteria for
attribute issuing, as defined by the STORK 2.0 Legal and Trust Analysis, should be applied.

4.3.2 Double identities – two persons?

The eIdentifier is guaranteed, by the government which issued it, to be traceable to one and
only one person. If the Attribute provider did not use the citizen’s eIdentifier to retrieve his
data, the other mechanism may include the possibility that 2 different persons collaborate to
assign one person’s attributes to the other person.

The AP has no way to observe if one or two persons are present at the terminal and how they
interact with their systems and the central STORK nodes.

4.3.3 STORK “solution”

In the paper world the receptor of the data (the university degree or whatsoever) normally
verifies that the person to whom the document was issued is the same as the one he has in
front, at least that the data included in the document are the same as the data of the
person’s identification. Such document would only be accepted if name and surname are the
same, or at least sufficiently similar.

162 | P a g e

D4.10 Final Version of Technical Design

4.3.3.1 Conceptual solution

What is done in the paper world may also be done in the electronic world; in some points
better, in other worse. The basic idea of the solution is that, in case re-authentication has
taken place, the AP returns, together with the requested domain-specific attributes, some
personal data of the person to whom they were issued. The receptor may compare this set of
personal data with the ones received from his national authority.

This set includes givenName and surname, very common in the paper world, and improves
the possibility of fraud by adding the dateOfBirth.

4.3.3.2 Names comparison

Where date comparison is simple, names comparison is not. Comparing John Smith with John
Smith seems straightforward, but there are several problems.

4.3.3.2.1 National cultures

In the first place, an official givenName is often substituted by the commonly used other
name. Well known in the English speaking world is that Robert is often called Bob, less known
is the same in the Dutch speaking world with Johannes being Jan, Hans or John, or in the
Spanish world José vs. Pepe, and Greek Stylianos vs. Stelios.

For surnames also limitations exist, especially (though not limited to) people getting married
in many countries may assume the surname of their partner.

Such national cultural substitutions cannot be qualified as similar by any machine.

4.3.3.2.2 Accents and diacritics

All keyboards in Europe allow typing the basic letters A-Z. On many of those keyboards there
are facilities to type special characters, accented vowels (á, è, ô, etc.). But few of them
support stranger special characters like ñ, ß, ð.

When a citizen has relations with foreign institutions, i.e. goes to some foreign office and is
registered there, the employees at this foreign institution will do their best to copy this
citizen’s data, sometimes applying evident transposition rules, eliminating accents and
diacritics; sometimes asking the citizen what to write instead of such weird letters. In this last
case the citizen would indicate that in DE and AT “ß” is equivalent to “ss”.

4.3.3.2.3 Transposition tables

In STORK 2.0 a pragmatic approach is presented, which is not universal, but gives an
indication of similarity of names; based on the similarity the receiver of the data may decide
to accept or to reject the associated business data.

The solution would use transposition tables in order to establish the most probable
substitution of the special letter to the standard 26 letter set, thus “stripping” the accents and
diacritics from those letters, and substituting ð by d.

Applying this mechanism to both data sets, “comparable” results can be found.

This module would indicate the grade of similarity between the sets.

4.3.3.2.4 Examples

If the examples in the first column would be compared with the second column, the similarity
would be indicated in the third column.

163 | P a g e

D4.10 Final Version of Technical Design

Name in one set Name in another set Similarity Comment

Gómez Gomez 100%

Piñuela Pinuela 100%

Müller Mueller 85% In German speaking
world, ü and ue are
equal. For this
example it has been
assumed that the
transposition table
indicates that ü
should be translated
with u. The idea
behind this is that
these tables can’t
take into account
that Spanish
equivalent is
different from
German equivalent

Žužek Zuzek 100%

Smith Smit 80% This is probably a
“false positive”;
Smith is English, Smit
is Dutch

Alenka Alicia 33%

Sigurður Siggi 38% This is probably a
“false negative”

Stylianos Stelios 50-66%

Table 19 –Similarity examples

4.3.4 Alternative solutions

In the first place the best way to solve this issue is avoiding it by storing user’s data under his
eIdentifier. However, although this solution is being used since STORK got live, in 2010, we
cannot expect all “legacy data”, which is some 99,9% of the domain-specific attributes in
several countries, and 99,9% of domain-specific attributes of foreigners in all countries.

Any other solution would not solve the issues mentioned in section 4.3.3.2.1, and even then,
this would be limited to countries with a persistent eIdentifier (not GR).

4.3.4.1 Language Sensitive Transposition tables

An alternative for the simple transposition table would be to include the language to use with
transposition. This way any transposition would have 2 results: the simple one and the
language-sensitive one. When comparing one name with another name, the best result of 4
comparisons should be taken into account.

164 | P a g e

D4.10 Final Version of Technical Design

4.3.4.2 Multiple Transposition tables

A transposition table with multiple translatable values (ü to u as well as ue), but without
limitation of the number of possible transpositions, could increase the probability of reaching
100% similarity.

This sounds very good, but it also means that the number of false positives will increase.

4.3.5 Comparison of the chosen solution with other solutions

4.3.5.1 False positives

A false positive is in this context the acceptance of data as belonging to one person when in
reality the data belong to two persons. Of course this does not depend on the module for
determining the similarity itself, but on the requirements of the one who accepts them or
not.

But it is this module which will implement the guidelines for similarity, and report just a
number, on which the receptor of the data will base his decision, mostly in an automated
way, to accept the domain-specific attributes.

Thus false positives may increase the possibility of fraud.

4.3.5.2 False negatives

A false negative is in this context the rejection of data as belonging to one person when in
reality they do. Of course this does not depend on the module for determining the similarity
itself, it also depends on the requirements of the one who accepts them or not.

But this module will implement the guidelines for similarity, and report just a number, on
which the receptor of the data will base his decision, mostly in an automated way, to accept
the domain-specific attributes.

False negatives will usually be rejected by automated processes in order to be treated by
human beings, therefore false negatives just cause more work.

4.3.5.3 Complexity

The proposed solution is, within the scope of STORK, the simplest solution.

The “Multiple transposition tables” solution seems not much more difficult, but has a
disadvantage of major amount of false positives.

The “Language Sensitive Transposition” is definitely more complex than the proposed
solution.

4.3.6 Software design and package usage examples

The software has been implemented as Java package. The basic aim of the package is to
estimate how similar are two names, for example when assessing whether the two names
belong to the same person. The similarity is a value between 0 and 1, calculated based on the
Jaro–Winkler distance8. The names are transformed by transliteration rules from UTF-8 to
latin, according to the Machine readable travel documents specification published by

8 See Wiki page http://en.wikipedia.org/wiki/Jaro-Winkler_distance for details.

165 | P a g e

http://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler/_distance

D4.10 Final Version of Technical Design

International Civil Aviation Organization9, before similarity comparision. Greek transliteration
is based on ELOT 743 standard10.

Identical names have a similarity value of 1.0.

The package supports latin, cyrilic and greek alphabet. Serbian, Macedonian, Ukrainian and
Bulgarian cyrilic exceptions are supported.

4.3.6.1 Usage examples

Below are presented simple usage examples. Class NameTransform can be used to transform
the names to the transliterated strings. The transform could be set to a specific country
variation, as in example to Belorussia's.

The JaroWinklerSimilarity calculates the similarity between two strings according to their
distance. Country specific similarity can be instantiated by creating a coresponding country
specific JaroWinklerSimilarity object. The examples below are provided for various names in
different languages together with note on transliteration or comaprission results in the code
comments.

 import eu.stork.namesimilarity.JaroWinklerSimilarity;
 import eu.stork.namesimilarity.NameTransform;

 public class Example {
 public static void main(String[] args) throws Exception{

 // Use default transliteration
 NameTransform nt = new NameTransform();
 // prints "Alenka Zuzek"
 System.out.println(nt.transform("Alenka Žužek"));

 // Invoke Belorussia transliteration variation
 NameTransform ntBY = new NameTransform("BY");
 // prints "Siarhei Aliakseevich Rutenka"
 System.out.println(ntBY.transform("Сяргей Аляксеевіч Рутэнка"));

 // Check default similarity
 JaroWinklerSimilarity jwsDefaults = new JaroWinklerSimilarity();
 // prints true
 System.out.println(jwsDefaults.isSimilar("Alenka Žužek","Alenka Zuzek"));
 // prints true
 System.out.println(jwsDefaults.isSimilar("Владимир Јовановиќ","Vladimir Jovanovik"));
 // MK has a specif fallbacks, invoke specific country transliteration
 JaroWinklerSimilarity jwsMK = new JaroWinklerSimilarity("MK");
 System.out.println(jwsMK.isSimilar("Владимир Јовановиќ","Vladimir Jovanovik"));
 // prints true
 System.out.println(jwsMK.isSimilar("Владимир Јовановиќ","Vladimir Jovanovikj"));

 // Belorussian example

9 See Civilian Aviation Organization transliteration specification document for details,
http://www.icao.int/publications/Documents/9303_p3_v1_cons_en.pdf

10 See ELOT 743 transliteration standard specification for details,
http://sete.gr/files/Media/Egkyklioi/040707Latin-Greek.pdf

166 | P a g e

D4.10 Final Version of Technical Design

 JaroWinklerSimilarity jwsBY = new JaroWinklerSimilarity("BY");
 // prints false, country code can be specified per call (г in name
 // Сяргей is usually transliterated to g but in Belorussia's case
 // to h)
 System.out.println(jwsBY.isSimilar("Сяргей Аляксеевіч Рутэнка","Siargei Aliakseevich
Rutenka"));

 // Greek examples
 JaroWinklerSimilarity jwsGR = new JaroWinklerSimilarity("GR");
 // All prints are true
 System.out.println(jwsGR.isSimilar("Αριστοτέλης Ωνάσης","Aristotelis Onasis"));
 System.out.println(jwsGR.isSimilar("Σταύρος Σπύρος Νιάρχος","Stavros Spyros Niarchos"));
 System.out.println(jwsGR.isSimilar("Ευγενία Λιβανού","Evgenia Livanou"));
 System.out.println(jwsGR.isSimilar("Γεώργιος Παπαδόπουλος","Georgios Papadopoulos"));
 System.out.println(jwsGR.isSimilar("Δημήτριος Ιωαννίδης","Dimitrios Ioannidis"));
 System.out.println(jwsGR.isSimilar("Σπυρίδων Μαρκεζίνης","Spyridon Markezinis"));
 System.out.println(jwsGR.isSimilar("Νικόλαος Γεωργαλής","Nikolaos Georgalis"));
 System.out.println(jwsGR.isSimilar("Παναγιώτης Γιαννάκης","Panagiotis Giannakis"));
 System.out.println(jwsGR.isSimilar("Γιώργος Βασιλακόπουλος","Giorgos Vasilakopoulos"));
 System.out.println(jwsGR.isSimilar("Πλάτων","Platon"));
 System.out.println(jwsGR.isSimilar("Άριστοτέλης","Aristotelis"));
 System.out.println(jwsGR.isSimilar("Sōkrátis","Σωκράτης"));
 }
 }

4.3.7 Conclusion

In case citizen’s data are not stored under his foreign eIdentifier, probably a re-authentication
should take place. Such re-authentications opens the door to authentication of two different
persons, allowing the second person the first one to use his domain-specific attributes in his
own benefit. For such cases, the receptor of the data should verify that the domain-specific
attributes issued for one person correspond to the principal.

In the majority of givenNames and surnames the correspondence is 100%, except for typing
errors. For a minority of European citizens (estimated between 10 and 20%) a tool will try to
map special characters to “normal” characters, using a simple transposition table like already
mentioned Civilian Aviation Organization transliteration specification in Section 4.3.6.

The proposed tool offers a transposition of special letters to normal letters, to be used by
receptors of domain-specific attributes.

4.4 Browser Temporary Storage Management

The improvement of user-friendliness (“Attribute Aggregation”) is achieved using the
browser’s temporary storage, often also referred to as “cookies”.

4.4.1 Introduction to the problem

The scope of using the “cookies” is to improve the user friendliness when exploiting the
STORK 2.0 infrastructure for authentication and attribute retrieval. The number of
interactions between the STORK 2.0 infrastructure and the user in which the user is asked to
select the country and/or the authority for a given attribute could occur very often and thus
would require a significant time spent by the user in selecting and re-selecting several times
the same country/authority.

167 | P a g e

D4.10 Final Version of Technical Design

To avoid this inconvenience it is necessary that the location information (e.g. of a country or
of an authority) obtained in an authentication session completed successfully are memorized
in the temporary storage of the user’s browser so that it can be re-used in one or more
successive authentication sessions.

The location information is contained in a structure called Attribute Object Identifier (AOI) –
further referred also as token - which will be saved in the user’s browser. The Attribute
Object Identifier contains several data items:
• C-PEPS identifier (CC): is a code uniquely identifying the citizen’s PEPS in the STORK 2.0

infrastructure

• Citizen’s electronic identifier (CEID): is a local identifier which allows C-PEPS to uniquely
identify a citizen. The subject identifier might be different from the eIdentifier attribute
defined in STORK 2.0.

• Attribute identifier (Adata): is a field which allows identifying an attribute. It could a
simple attribute name or a more complex string identifying an attribute.

• A-PEPS identifier (AC): is a code uniquely identifying the A-PEPS in the STORK 2.0

• Attribute Provider Identifier (AP): contains a string uniquely identifying on A-PEPS the
Attribute Authority that can return the value for an attribute identifier through the above
“Attribute Identifier”

• Additional information (AVALUEPTR): is a field allowing the Attribute Authority to
reference the attribute, so that it can be retrieved faster in successive interactions. The
value is not fixed, each Attribute Authority is free to choose/implement the value of this
field, which could be for example a pointer towards a central storage of public data.

CC CEID Adata AC AP AVALUEPTR

Table 20: Basic AOI format

An example AOI is given below, where “IT” is the C-PEPS identifier, “RSSMRA01” is the subject
identifier, “masterDegree” is an attribute identifier, “UK” is the A-PEPS identifier, “Kent
University” is the Attribute Provider Identifer and the Additional Information is left empty :

Two phases involving AOI management are distinguished:

Phase 1: AOI creation. In this phase the citizen selects the C-PEPS where he will be
authenticated, and selects also the A-PEPSes from where the (foreign) attributes will be
retrieved. The C-PEPS creates the AOI, the AOI is stored in the user’s browser. This phase will
be further detailed in Section 4.4.3 (Generation of the token).

Phase 2: AOI usage. In this phase, the AOI previously created and stored in the user’s browser
in phase 1 is processed by the C-PEPS, by A-PEPSes and (depending on AP) possibly also by
APes to retrieve attribute faster and in a transparent manner. This phase will be further
detailed in Section 4.4.5 (Interpretation of the token).

The exploitation of the AOIs in STORK 2.0 is shown (at a high level view) in Figure 26.

Note: In STORK 2.0, AOIs are created/processed by C-PEPS, A-PEPS and (possibly) by AP.

168 | P a g e

D4.10 Final Version of Technical Design

Figure 26. AOI exploitation in STORK 2.0

4.4.2 Integrity protection of the token

To guarantee the integrity and authentication of the AOI stored in the cookies, STORK 2.0
proposes to associate to each of them a Message Authentication Code (MAC). In the
implementation it is proposed to use HMAC SHA 256 for the calculation of the MAC.
Moreover, to protect from attacks aimed to extend the original message by appending new
data, a field containing the length of the entire AOI (including the MAC) is added to the AOI
format.

To guarantee confidentiality when transferring the AOI, it is possible to associate the attribute
“Secure” to the AOI cookies so that they are transported only over HTTPS connections.

Thus, the format of the secured AOI is shown below:

CC CEID Adata L AC AP AVALUEPTR MAC(AOI,

KC-PEPS)

Figure 27. Secure AOI format

Where L is the length in bytes of the AOI (name + value) and the value of the MAC(AOI, KC-

PEPS) (calculated with a symmetric key KC-PEPS) is encoded in Base 64.

4.4.3 Generation of the token

In STORK 2.0 the AOI will be implemented in form of cookies to be stored in the user’s
browser.

The cookies can be read and processed only by the application that generated them. Thus, in
the first place it should be decided which component in STORK 2.0 infrastructure is in charge
with generating the AOI (or the token).

In brief, the main approach for AOI generation/reading in STORK 2.0 is described below:

1. C-PEPS stores/retrieves in its cookie the AP identification of national attributes;

Name (key) Value

169 | P a g e

D4.10 Final Version of Technical Design

2. C-PEPS stores/retrieves in its cookie the country-code of foreign attributes;

3. A-PEPS stores/ retrieves in its cookie the AP-identification of attributes to be
retrieved in its country;

4. A-PEPS may store/retrieve in its cookie the country codes for foreign attributes, if
the user had nested countries;

5. AP may store/retrieve user's identification from the cookie, if different from the
(foreign) eIdentifier;

The SAML token in all requests from C-PEPS and A-PEPS will include the citizen's eIdentifier.

The generation of the AOI is shown in Figure 28.

170 | P a g e

D4.10 Final Version of Technical Design

Figure 28. AOI creation

After authentication (Step 2), the C-PEPS creates a list of national attribute providers for the
attributes requested (Step 3 inFigure 29). On selection, the C-PEPS constructs the AOI (Step 4)

171 | P a g e

D4.10 Final Version of Technical Design

which is sent to the user’s browser upon redirect to national APs and retrieval of national
attributes (Step 5).

Next, the C-PEPS creates a list containing attribute identifiers whose values are to be
retrieved from foreign countries (Step 6 in Figure 28). For each missing attribute, the user can
specify the (foreign) countries where the attributes can be obtained (Step 7) and
consequently towards which A-PEPS the attribute query will be sent by the C-PEPS (Step 8).

After A-PEPS selection, the user is redirected on A-PEPS where he will select the national APs
(Step 9). For each national attribute, the corresponding AOI is created and sent to user’s
browser on redirect to the AP (Step 11). The national attributes are retrieved by the A-PEPS
using Member State specific procedure. If other additional attributes need to be retrieved
from foreign countries, the A-PEPS creates a list containing attribute identifiers whose values
are to be retrieved from foreign countries. For each missing attribute, the user can specify the
(foreign) countries where the attributes can be obtained, as it was performed on C-PEPS.
After the selection of A-PEPS, the AOI containing the foreign country identifier is created by
A-PEPS as above and is sent to user’s browser upon redirecting to the foreign A-PEPS.

Note: To allow selection of foreign attributes provided by foreign APs on C-PEPS, a variation
of the previous protocol might be done: the A-PEPS transfers the names of the foreign APs
towards C-PEPS inside a SAML message. In particular, the attribute values together with the
fields of the AOI containing the AP and (if available) the AVALUEPTR (named also “partial
AOI”) might be returned by the C-PEPS to A-PEPS. The C-PEPS constructs the complete AOI
and it sends it to the user agent (on redirect or when sending out the response).

This case is particularly useful in those cases in which we have one attribute that can be
retrieved from more than one AP (in the same country) or one attribute that can be retrieved
from several countries (as the user might skip some A-PEPS interactions).

4.4.4 Format of the AOI stored in cookies

The cookies are identified uniquely by a name, and for this reason it is necessary to split the
AOI in two parts: one is the name (or the key) and the other one is the value.

In our approach the name of the cookie (or the key) is composed of a triple (C-PEPS identifier,
Subject Identifier, Attribute identifier), while the rest of the other fields (i.e. A-PEPS identifier,
Attribute Provider Identifier, Additional information) are part of the value of the cookie.

When implementing the AOI in the cookie, the format of the actual AOI format is completed
with a separator, named “S” in Figure 29 :

CC S CEID S Adata L S AC S AP S AVALUEPTR S MAC(AOI, KC-PEPS)

Figure 29. Structure of the AOI stored in the cookie

An indication of the values and lengths of the fields in the AOI are given below:

Name Meaning Name Format Length (bytes) Example

CC Citizen’s
country (C-
PEPS)

alpha-2 string
ISO3166-1
(uppercase)

 2 IT

Name (key) Value

172 | P a g e

D4.10 Final Version of Technical Design

S Separator Note: it must
be a character
that does not
appear in any
citizen’s
national
identifier of
any country, in
Adata, or in
AVALUEPTR.

1 “-“

CEID Citizen’s
national
identifier

Member State
specific

Member State
specific.

Max length: 100

LVRMRA89S19C722L

Adata Attribute
identifier
(name)

Attribute
names defined
in STORK 2.0

30

Max length:
maximum length
defined for STORK
attributes

title

L Length of
the AOI

4 hexadecimal
digits

2 005f

AC Foreign
attribute
country (A-
PEPS)

alpha-2 string
ISO3166-1
(uppercase)

2 UK

AP Attribute
provider
identifier
(name)

Member State
specific

Max length:100 University of Kent

AVALUEP
TR

Other
information

AP specific Max length: 200 345hfjhg6999dds

MAC HMAC-
SHA256
hash
calculated
on
(name+valu
e), encoded
in Base64
on 44 ASCII
characters

44 ASCII
characters

44 7RbJC3PhylFQn62ZfklaLC1tj
n+pRKSfCOMndnkIaoE=

Table 21: Data format of the AOI components

173 | P a g e

D4.10 Final Version of Technical Design

Note:

Since the values of “CC”, “AC”, “L” and “MAC” are of fixed length, four separators could be
actually removed from the AOI structure, thus in case of stringent length constraints (see the
next section on “Cookie length”) the cookie containing the AOI may be reduced by removing
the separators mentioned.

Cookie length

According to the indication on number and size limits in Internet Explorer
(http://support.microsoft.com/kb/306070) , for one domain name, each cookie is limited to
4,096 bytes. This total can exist as one name-value cookie pair of 4 kilobytes (KB) or as up to
20 name-value cookie pairs that total 4 KB.

In STORK 2.0, besides the cookie storing the AOI, there is another cookie used by Java for
session management, which is about 30-40 bytes in length. Thus, the cookie storing the AOI
can be at most 4096 – 40 = 4056 bytes in length.

4.4.5 Interpretation of the token

After authentication, the user should select the attributes to be retrieved from national
providers. Since AOI have been created in previous interactions with STORK and stored in
cookies in the user’s browser, the C-PEPS will read the cookie created in the previous
interactions (Step 3 in Figure 30). Thus, the national APs will appear preselected in the user’s
browser.

If additional attributes are to be retrieved from foreign countries, the user agent contains
AOIs (token) associating the attributes identified by attribute names/identifier and the
country from which those attributes can be retrieved. Such AOIs are processed by the C-PEPS
(Step 4 in Figure 30). The countries read from the AOI will be thus appeared preselected in
the user’s browser. By using the triple (CC, CEID, Adata) the C-PEPS selects among the cookies
stored in the browser the one containing the correct AOI. It extracts the AC containing the A-
PEPS identifier.

On A-PEPS, the national AP is also preselected if they have been stored in the AOI in previous
interactions with STORK (Step 6 in Figure 30).

174 | P a g e

http://support.microsoft.com/kb/306070

D4.10 Final Version of Technical Design

Figure 30. AOI processing

4.4.6 Maintenance of the token

If the cookies are lost, a user is forced to reselect countries and the Attribute providers
providing the attributes required by services he wants to access. It might be helpful to
investigate a “temporary browser storage backup service” aimed to save or backup the
cookies at one time in the cloud or on an external support (NOT in the STORK platform, to
avoid data protection issues) so that they can be easily restored if necessary.

4.5 SAML Unpackager

4.5.1 Introduction

The objective of the SAML unpackager is to read part of the SAML assertion to extract
attributes types and values in user language to ask his consent. The SAML unpackager module
will be included in the generate data type consent page to dynamically present the list of
requested attributes and domain-specific attributes. For each attribute, the SAML unpackager
module should extract from the SAML assertion:

• the name,

• the value,

175 | P a g e

D4.10 Final Version of Technical Design

• if the attribute is mandatory or not.

Figure 31. Sequence diagram for consent

4.5.2 Presentation of the module

The SAML unpackager module will use JavaScript to allow citizen browser side SAML
decryption.

The SAML unpackager module will be called after data type consent page loading if the user
clicks the corresponding button, and will present the citizen a waiting message during the
SAML assertion treatment.

Actions:

• Validate SAML assertion

• Extract attributes types, values and required level (mandatory or not)

Data:

• Input :

o SAML request

• Output :

o In case of success : list of attributes, with, for each element :
 name (String)
 value (String)
 Mandatory (Boolean)

o In case of failure : error code corresponding to :
 Invalid SAML assertion
 Invalid signature
 Error on attribute

Please note that common attribute names are in English language, and attribute values
(mostly strings) may be in any European language. Thus the Spanish PEPS may present an
unpackaged (partial) token saying that a citizen has done a “study” of “Natuurkunde” at the
“Technische Universiteit Delft”.

HTML.1

Generate Data type consent
[ask-data-type-consent]opt

176 | P a g e

D4.10 Final Version of Technical Design

5 Software design

The software design describes for each of tha Java packages the class diagram and the
specification of the interface. Only the PEPS module is described in two separate sections, as
they were developed by two separate teams.

Most processes in terms of D4.9 are reflected in only one package, with some exceptions:

• The AUB/PO/BA process is reflected in several packages: Commons, PEPS, VIDP, Specific,
SAMLEngine, AttributeAggregation; due to its complexity and differences in
implementation (centralised vs distributed)

• The PV is integrated in previous process

• The signature creation and validation is included in 2 packages: signatures and Document
Transport Layer

• The Version Control is made common for PEPS/VIDP together with the VC for SPs.

For each of these packages a class diagram is included which explains the relationship
between all classes. Also for each package an interface specification is included which
specifies the available methods, their parameters and function.

5.1 PEPS

5.1.1 Description

The PEPS module is core of STORK 2.0. It is the project where the business logic and web layer
is implemented.

This module includes two libraries:

• Commons library → implements utility classes to be used by the main project (PEPS).

• Specific library → implements reference code to be used and modified by each Member
States regarding its own national requirements.

PEPS requires configurations which includes:

• An own keystore, to handle all the network SAML Requests (sign and validation).

• Main configuration file (peps.xml) and one for each of the two librarys: Commons
(pepsUtils.properties) and Specific (specific.properties).

• Two log files, one for each PEPS’ component (S-PEPS and C-PEPS) and one for Commons
library.

5.1.2 Package specification

The following diagram shows the main classes involved in the AUB, BA and PV processes and
the respective description.

177 | P a g e

D4.10 Final Version of Technical Design

AUSPEPS

samlService: ISPEPSSAMLService

<<Interface>>

ISPEPSService

getAuthenticationResponse(Map<String,
String>, IStorkSession):
STORKAuthnRequest

spApplication: String

countryService:
ISPEPSCountrySelectorService

transService: ISPEPSTranslatorService

spCountry: String
spInstitution: String
spSector: String

AUSPEPSTranslator

specPeps: ITranslatorService

AUSPEPSSAML

samlSpInstance: String

AUSPEPSCountrySelector

destination: String
spepsUtil: AUSPEPSUtil

<<Interface>>

ISPEPSSAMLService

getSAMLToken(Map<String, String>, String, boolean): byte[]

<<Interface>>

ISPEPSTranslatorService

normaliseAttributeNamesToStork(IPersonalAttributeLis
t): IPersonalAttributeList

<<Interface>>

ISPEPSCountrySelectorService

createCountrySelector(): List<Country>
checkCountrySelectorRequest(Map<String, String>,
ISPEPSSAMLService): STORKAuthnRequest

dtlUtil: IDTLPEPSUtil

AUSPEPSUtil

bypassValidation: boolean

 loadConfig(String): String

<<Interface>>

IDTLPEPSUtil

...

configs: Properties

maxQAA: int
minQAA: int

loadConfigPepsURL(String): String
validateSP(Map<String, String>,
ISPEPSSAMLService): boolean
validateSPCertAlias(String, String):
boolean
checkContents(String,
IPersonalAttributeList): boolean
setBypassValidation(boolean): void
isBypassValidation(): boolean

processSAMLRequest(byte[], Map<String, String>):
STORKAuthnRequest

validateLogoutResponse(byte[], IStorkSession): STORKLogoutResponse

processSAMLResponse(byte[],
STORKAuthnRequest, STORKAuthnRequest,
String): STORKAuthnResponse
validateSAMLLogoutRequest(byte[], Map<String, String>):
STORKLogoutRequest
generateSpAuthnRequest(STORKAuthnRequest): STORKAuthnRequest
generateCpepsAuthnRequest(STORKAuthnRequest):
STORKAuthnRequest

generateAuthenticationResponse(STORKAuthnRequest,
STORKAuthnResponse, String): byte[]
generateErrorAuthenticationResponse(String, String, String, String,
String, String, String): byte[]

generateCpepsLogoutRequest(STORKLogoutRequest):
STORKLogoutRequest

loggerBean: IStorkLogger

messageSource: MessageSource
spepsUtil: AUSPEPSUtil
samlCpepsInstance: String

normaliseAttributeNamesFromStork(IPersonalAttribute
List): IPersonalAttributeList
normaliseAttributeValuesToStork(IPersonalAttributeList
): IPersonalAttributeList

processCountrySelector(Map<String,
String>): byte[]
getCountrySelectorList(): List<Country>
getAuthenticationRequest(Map<String,
String>, IStorkSession):
STORKAuthnRequest

getLogoutRequest(Map<String, String>,
IStorkSession): STORKLogoutRequest
validateLogoutResponse(Map<String,
String>, IStorkSession):
STORKLogoutResponse

<<Interface>>

ITranslatorService

...

SpecificPEPS

...

...

Figure 32. Class diagram for S-PEPS

Next, the classes depicted above (S-PEPS) are briefly explained:

Interface

Class

ISPEPSService

Description Interface for managing incoming requests coming from the Service Provider
and forward them to the CPEPS, and Vice-versa.

Methods • processCountrySelector (Map<String, String> parameters): byte[]
Description: Generates a SAML token for the Country Selector.
Output: The SAML token in the format of byte array.

• getCountrySelectorList (): List<Country>
Description: Generates the Country Selector List.
Output: The List of known countries.

• getAuthenticationRequest (Map<String, String> parameters,

178 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

ISPEPSService

IStorkSession session): STORKAuthnRequest
Description: Validates the origin of the request and of the Country
Selected, and creates a SAML token to send to the C-PEPS.
Output: An authentication request.

• getAuthenticationResponse (Map<String, String> parameters,
IStorkSession session): STORKAuthnRequest
Description: Receives an Authentication Response, validates the
origin of the response, and generates a SAML token to be sent to
the SP.
Output: An Authentication response.

• getLogoutRequest (Map<String, String> parameters, IStorkSession
session): STORKLogoutRequest
Description: Receives a Logout Request and validates the origin, the
destination and generates a SAML token to be sent to CPEPS.
Output: A logout request.

• validateLogoutResponse (Map<String, String>
httpRequestParameters, IStorkSession session):
STORKLogoutResponse
Description: Receives a Logout Response, validates its fields and
generates a SAML token to be sent to SP.
Output: A logout response.

Table 22: Interface of ISPEPSService class of S-PEPS

Class AUSPEPS

Description This class serves as the middle-man in the communications between the
Service Provider and the CPEPS. It is responsible for handling the requests
coming from the Service Provider and forward them to the CPEPS, and Vice-
versa.

Methods See Table 40

Table 23: Class AUSPEPS of S-PEPS

Interface

Class

ISPEPSCountrySelectorService

Description Interface to that holds the method to present the citizen the country
selector form.

Methods • createCountrySelector (): List<Country>

179 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

ISPEPSCountrySelectorService

Description: Creates the CountrySelector form.
Output: List of known countries and respective IDs.

• checkCountrySelectorRequest (Map<String, String> parameters,
ISPEPSSAMLService spepsSAMLService): STORKAuthnRequest
Description: Creates authentication data and checks if a SP is
allowed to access requested attributes.
Output: An authentication request.

Table 24: Interface of ISPEPSCountrySelectorService class of S-PEPS

Class AUSPEPSCountrySelector

Description This class is used by AUSPEPS to create the Country Selector and to check
the selected Country.

Methods See Table 24

Table 25: Class AUSPEPS of S-PEPS

Interface

Class

ISPEPSSAMLService

Description Interface for working with SAMLObjects.

Methods • getSAMLToken (Map<String, String> parameters, String errorCode,
boolean isRequest): byte[]
Description: Base64 decodes the incoming SAML Token.
Output: The decoded SAML token in the format of byte array.

• processSAMLRequest (yte[] samlToken, Map<String, String>
parameters): STORKAuthnRequest
Description: Validates the SAML Token request and checks if the SP
is reliable.
Output: An authentication request created from the SAML token.

• processSAMLResponse (byte[] samlToken, STORKAuthnRequest
authnData, STORKAuthnRequest spAuthnData, String remoteAddr):
STORKAuthnResponse
Description: Validates the response SAML Token.
Output: The authentication response with a new
PersonalAttributeList.

• validateSAMLLogoutRequest (byte[] samlToken, Map<String,
String> parameters): STORKLogoutRequest

180 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

ISPEPSSAMLService

Description: Validates the SAML Token logout request and checks if
the SP is reliable.
Output: A logout request created from the SAML token.

• generateSpAuthnRequest (STORKAuthnRequest authData):
STORKAuthnRequest
Description: Creates a SAML Authentication Request to send to SP.
Output: A new authentication request with the SAML token
embedded.

• generateCpepsAuthnRequest (STORKAuthnRequest authData):
STORKAuthnRequest
Description: Creates a SAML Authentication Request to send to C-
PEPS.
Output: A new authentication request with the SAML token
embedded.

• generateCpepsLogoutRequest (STORKLogoutRequest reqData):
STORKLogoutRequest
Description: Creates a SAML Logout Request to send to C-PEPS.
Output: A new logout request with the SAML token embedded.

• generateAuthenticationResponse (STORKAuthnRequest authData,
STORKAuthnResponse authResp, String ipUserAddress): byte[]
Description: Generates a response's SAML token.
Output: The response's SAML token in the format of byte array.

• generateErrorAuthenticationResponse (String inResponseTo, String
issuer, String destination, String ipUserAddress, String statusCode,
String subCode, String message): byte[]
Description: Generates a response's SAML token in case of error.
Output: The response's SAML token in the format of byte array.

• validateLogoutResponse (byte[] samlToken, IStorkSession session):
STORKLogoutResponse
Description: alidates STORK Logout response and generate a new
one to be sent to SP.
Output: A Logout Response

Table 26: Interface of ISPEPSSAMLService class of S-PEPS

Class AUSPEPSSAML

Description This class is used by AUSPEPS to get, process and generate SAML Tokens.

181 | P a g e

D4.10 Final Version of Technical Design

Class AUSPEPSSAML

Methods See Table 26

Table 27: Class AUSPEPSSAML of S-PEPS

Interface

Class

ISPEPSTranslatorService

Description Interface for normalizing IPersonalAttributeList.
Methods • normaliseAttributeNamesToStork (IPersonalAttributeList pal):

IPersonalAttributeList
Description: Normalizes the attributes' name from a given
IPersonalAttributeList to a common format.
Output: The normalized personal attribute list.

• normaliseAttributeNamesFromStork (IPersonalAttributeList pal):
IPersonalAttributeList
Description: Normalizes the attributes' name from a given
IPersonalAttributeList to a specific format.
Output: The normalized personal attribute list.

• normaliseAttributeValuesToStork (IPersonalAttributeList pal):
IPersonalAttributeList
Description: The normalized personal attribute list.
Output: The normalized personal attribute list.

Table 28: Interface of ISPEPSTranslatorService class of S-PEPS

Class AUSPEPSTranslator

Description This class is a service used by AUSPEPS to normalise attribute names and
values.

Methods See Table 27

Table 29: Class AUSPEPSTranslator of S-PEPS

182 | P a g e

D4.10 Final Version of Technical Design

AUCPEPS

citizenService: ICPEPSCitizenService

transService: ICPEPSTranslatorService

<<Interface>>

ICPEPSService

processAuthenticationRequest(Map<String, String>, IStorkSession):
STORKAuthnRequest

samlService: ICPEPSSAMLService

attributeListProcessor: IAttributeListProcessor

processCitizenConsent(Map<String, String>,IStorkSession, boolean):
IPersonalAttributeList
processIdPResponse(Map<String, String>, IStorkSession): void
processAPResponse(Map<String, String>, IStorkSession):
STORKAuthnRequest
generateSamlTokenFail(STORKAuthnRequest, PEPSErrors, String):
String
removeAPRejectedAttributes(IStorkSession): void
filterAttrList(IPersonalAttributeList): IPersonalAttributeList
updateAttrList(IPersonalAttributeList, IPersonalAttributeList): void
validateLogoutRequest(Map<String, String>, IStorkSession):
STORKLogoutRequest
getLogoutResponse(boolean, STORKLogoutRequest): String
hasAlwaysRequestAttributes(IPersonalAttributeList): boolean

AUCPEPSCitizen

AttributeListProcessor

mandateAttrName: String
normalAttributesAdded:
Map<String,Boolean>

AUCPEPSSAML

loggerBean: IStorkLogger

SAML_INSTANCE: String

AUCPEPSTranslator

specificPeps: ITranslatorService

<<Interface>>

ICPEPSCitizenService

processCitizenConsent(CitizenConsent,
STORKAuthnRequest , String,
ICPEPSSAMLService): void

<<Interface>>

ICPEPSSAMLService

getSAMLToken(String): byte[]
processAuthenticationRequest(byte[], IStorkSession, String): STORKAuthnRequest

<<Interface>>

ICPEPSTranslatorService

normaliseAttributeNamesToStork(IPersonalAttributeList): IPersonalAttributeList
normaliseAttributeNamesFromStork(IPersonalAttributeList): IPersonalAttributeList

<<Interface>>

IAttributeListProcessor

hasAllowedAttributes(IPersonalAttributeList,
List<String>): boolean
hasBusinessAttributes(IPersonalAttributeList,
List<String>): boolean

getCitizenConsent(Map<String, String>,
 IPersonalAttributeList): CitizenConsent
updateAttributeList(CitizenConsent,
 IPersonalAttributeList): IPersonalAttributeList
updateAttributeList(IStorkSession,
 IPersonalAttributeList): IPersonalAttributeList
updateAttributeListValues(IStorkSession,
 IPersonalAttributeList): IPersonalAttributeList

generateAuthenticationResponse(STORKAuthnRequest, String, boolean): byte[]
generateAuthenticationResponse(STORKAuthnRequest, List<STORKAttrQueryResponse>, String);
generateErrorAuthenticationResponse(STORKAuthnRequest, String, String ,String, String, boolean):
byte[]
checkMandatoryAttributes(STORKAuthnRequest, IPersonalAttributeList, String): void
checkAttributeValues(STORKAuthnRequest, IPersonalAttributeList, String): void

normaliseAttributeValuesToStork(ICPEPSSAMLService, STORKAuthnRequest, String):
IPersonalAttributeList

SpecificPEPS

....

...

specificPeps: ITranslatorService

countryCode: String
minQAA: int
maxQAA: int
messageSource: MessageSource

hasBusinessAttributes(IPersonalAttributeList):
boolean
addAPMandatoryAttributes(IPersonalAttribute
List, List<String>): IPersonalAttributeList
addAPMandatoryAttributes(IPersonalAttribute
List): IPersonalAttributeList
removeAPMandatoryAttributes(IPersonalAttri
buteList, List<String>): IPersonalAttributeList
removeAPMandatoryAttributes(IPersonalAttri
buteList, Map<String, Boolean>):
IPersonalAttributeList
removeAPRejectedAttributes(IPersonalAttribu
teList): IPersonalAttributeList
hasPowerAttribute(IPersonalAttributeList):
boolean
hasAttributeValue(IPersonalAttributeList,
String): boolean
hasAttributeValue(IPersonalAttribute):
boolean
getNormalAttributesAdded(): Map<String,
Boolean>
addNormalAttributes(IPersonalAttributeList,
IPersonalAttributeList): IPersonalAttributeList
filterAttrList(IPersonalAttributeList):
IPersonalAttributeList
updateAttrList(IPersonalAttributeList,
IPersonalAttributeList): void
hasAlwaysRequestAttributes(IPersonalAttribut
eList): booleanSAML_INSTANCE: String

normalAttributes: List<String>

alwaysRequestAttributes: List<String>
aPMandatoryAttributes: List<String>

<<Interface>>

ITranslatorService

...

Figure 33. Class diagram for C-PEPS

Next, the classes depicted above (C-PEPS) are briefly explained:

Interface

Class

ICPEPSService

Description Interface for handling incoming requests coming from the S-PEPS and
handling communication with the IdP and APs in order to authenticate the
citizen.

Methods • processAuthenticationRequest (Map<String, String> parameters,

183 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

ICPEPSService

IStorkSession session): STORKAuthnRequest
Description: Decodes the SAML Token, normalizes data from STORK
format to specific format, and presents a consent-type form for the
citizen to choose the optional attributes to be requested from the
IdP/AP. Alternatively, the user can cancel the process.
Output: The newly created authentication request.

• processCitizenConsent (Map<String, String> parameters,
IStorkSession session, boolean askConsentType):
IPersonalAttributeList
Description: Validates the consent sent by the citizen, then redirects
the citizen to the IdP for the login process.
Output: The Personal Attribute List updated with user consent.

• processIdPResponse (Map<String, String> params, IStorkSession
session): void
Description: Processes the incoming response from the IdP and
updates the personal attribute list, in session, if the IdP provided any
attributes' value.
Output: N.A.

• processAPResponse (Map<String, String> parameters, IStorkSession
session): STORKAuthnRequest
Description: Normalizes the attributes to STORK format, generates
the SAML Tokens to send to S-PEPS, and if required displays the
consent-value form.
Output: The new authentication request.

• generateSamlTokenFail (STORKAuthnRequest authData, PEPSErrors
errorId, String ipUserAddress): String
Description: Generates an error SAML token.
Output: A Base64 encoded SAML token.

• removeAPRejectedAttributes(IStorkSession session): void
Description: Remove all normal attributes that cannot be requested
to AP.
Output: N.A.

• filterAttrList (IPersonalAttributeList attrList): IPersonalAttributeList
Description: Updates list by filtering any attribute that must be
requested instead of using a value obtained from cache (business
and legal attrs).
Output: the filtered list.

184 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

ICPEPSService

• updateAttrList (IPersonalAttributeList cachedAttrList,
IPersonalAttributeList requestedAttrsList): void
Description: Updates the list of cached attrs by inserting the
business and/or legal attrs requested by the user.
Output: N.A.

• comparePersonalAttributeLists (Map<String, String> parameters,
IStorkSession session): STORKLogoutRequest

Description: Validates the received Logout Request contained in the
http parameters.

Output: The Logout Request.

• getLogoutResponse (boolean error, STORKLogoutRequest
logoutReq): String

Description: Generates the Logout Response.

Output: A Logout Response.

• hasAlwaysRequestAttributes (IPersonalAttributeList attributeList):
boolean

Description: Verifies if normal attribute list contains any attribute
that we must always request (usually business attributes)

Output: true is there is at least one attribute that must be requested
or false otherwise.

Table 30: Interface of ICPEPSService class of C-PEPS

Class AUCPEPS

Description This class deals with the requests coming from the S-PEPS and
communicates with the IdP and APs in order to authenticate the citizen,
validate the attributes provided by him/her, and to request the values of the
citizen's attributes.

Methods See Table 30

Table 31: Class AUCPEPS of S-PEPS

Interface

Class

ICPEPSCitizenService

Description Interface that supplies methods for processing citizen-related matters.
Methods • processCitizenConsent (CitizenConsent consent,

STORKAuthnRequest authData, String ipUserAddress,
ICPEPSSAMLService cpepsSAMLService): void
Description: Checks if the citizen consent has all the required
mandatory attributes.

185 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

ICPEPSCitizenService

Output: N.A.

• getCitizenConsent (Map<String, String> parameters,
IPersonalAttributeList personalList): CitizenConsent
Description: Constructs the Citizen Consent based on the checked
boxes from consent-type form.
Output: CitizenConsent containing the mandatory and optional
attributes that PEPS has permission to request.

• updateAttributeList (CitizenConsent citizenConsent,
IPersonalAttributeList personalList): IPersonalAttributeList
Description: Eliminates attributes without consent, and updates the
Personal Attribute List.
Output: The updated Personal Attribute List.

• updateAttributeList (IStorkSession session, IPersonalAttributeList
attributeList): IPersonalAttributeList

Description: Replaces the attribute list in session with the one
provided.
Output: The updated Personal Attribute List.

• updateAttributeListValues (IStorkSession session,
IPersonalAttributeList attributeList): IPersonalAttributeList

Description: Updates the values and the status of the attributeList in
session.
Output: The updated Personal Attribute List.

Table 32: Interface of ICPEPSCitizenService class of C-PEPS

Class AUCPEPSCitizen

Description This class is a service used by AUCPEPS to get, process citizen consent and to
update attribute the attribute list on session or citizen consent based.

Methods See Table 32

Table 33: Class AUCPEPSCitizen of C-PEPS

Interface

Class

ICPEPSSAMLService

Description Interface for communicating with the SAMLEngine.
Methods • getSAMLToken (String samlToken): byte[]

Description: Decodes the incoming SAML Token from Base64.
Output: A byte array containing the decoded SAML Token.

• processAuthenticationRequest (byte[] samlObj, IStorkSession

186 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

ICPEPSSAMLService

session, String ipUserAddress): STORKAuthnRequest
Description: Validates the SAML Token request.
Output: The processed authentication request.

• generateAuthenticationResponse (STORKAuthnRequest authData,
String ipUserAddress, boolean isConsent): byte[]
Description: Generates a SAML response Token.
Output: A byte array containing the SAML Response Token.

• generateAuthenticationResponse (final STORKAuthnRequest
authData,

• final List<STORKAttrQueryResponse> attrQueryResponse, final
String ipUserAddress): byte[]
Description: Generates a SAML response Token.
Output: A byte array containing the SAML Response Token.

• generateErrorAuthenticationResponse (STORKAuthnRequest
authData, String errorCode, String subCode, String errorMessage,
String ipUserAddress, boolean isAuditable): byte[]
Description: Constructs a SAML response token in case of error.
Output: A byte array containing the SAML Response.

• checkMandatoryAttributes (STORKAuthnRequest authData,
IPersonalAttributeList allAttrList, String ipUserAddr): void
Description: Checks if all mandatory attributes have the status to
Available.
Output: N.A.

• checkAttributeValues (STORKAuthnRequest authData,
IPersonalAttributeList allAttrList, String ipUserAddress): void
Description: Validates the values of the attributes.
Output: N.A.

• validateLogoutRequest (byte[] samlToken, IStorkSession session):
STORKLogoutRequest
Description: Validates the SAML Logout Request.
Output: N.A.

Table 34: Interface of ICPEPSSAMLService class of C-PEPS

Class AUCPEPSSAML

Description This class is used by AUCPEPS to get, process and generate SAML
Tokens. Also, it checks attribute values and mandatory attributes.

187 | P a g e

D4.10 Final Version of Technical Design

Class AUCPEPSSAML

Methods See Table 34

Table 35: Class AUCPEPSCitizen of C-PEPS

Interface

Class

ICPEPSTranslatorService

Description Interface for normalizing the IPersonalAttributeList.

Methods • normaliseAttributeNamesToStork (IPersonalAttributeList pal):
IPersonalAttributeList

Description: Normalizes the attributes' name from a given
IPersonalAttributeList to a common format.

Output: The normalized personal attribute list.

• normaliseAttributeNamesFromStork (IPersonalAttributeList pal):
IPersonalAttributeList

Description: Normalizes the attributes' name from a given
IPersonalAttributeList to a specific format.

Output: The normalized personal attribute list.

• normaliseAttributeValuesToStork (ICPEPSSAMLService samlService,
STORKAuthnRequest authData, String ipUserAddress): byte[]

Description: Normalizes the attributes' values from a given
IPersonalAttributeList to the common format.

Output: The normalized personal attribute list's values.

• deriveAttributesToStork (ICPEPSSAMLService samlService,
IStorkSession session, STORKAuthnRequest authData, String
ipUserAddress): IPersonalAttributeList

Description: Derives the attributes' name to a common format.
Updates the original Personal Attribute List, stored in the session,
based on the values of attrList.

Output: The new personal attribute list with the derived attributes.

• deriveAttributesFromStork (IPersonalAttributeList pal):
IPersonalAttributeList

Description: Derives the attributes' name to a specific format.

Output: The new personal attribute list with the derived attributes.

Table 36: Interface of ICPEPSTranslatorService class of C-PEPS

Class AUCPEPSTranslator

Description This class is a service used by AUCPEPS to normalise attribute names and
values.

188 | P a g e

D4.10 Final Version of Technical Design

Class AUCPEPSTranslator

Methods See Table 36

Table 37: Class AUCPEPSCitizen of C-PEPS

Interface
Class

IAttributeListProcessor

Description Interface for AttributeListProcessor.

Methods • hasAllowedAttributes (final IPersonalAttributeList attrList, final
List<String> attributes): boolean
Description: Checks if attribute list only contains allowed attributes.
Output: true is all the attributes are allowed.

• hasBusinessAttributes (final IPersonalAttributeList attrList, final
List<String> normalAttributes): boolean
Description: Lookup for business attribute.
Output: true is at least one business attribute was requested.

• hasBusinessAttributes (final IPersonalAttributeList attrList): boolean
Description: Lookup for business attribute in normal attribute list
(loaded by implementation).
Output: true is at least one business attribute was requested.

• addAPMandatoryAttributes (final IPersonalAttributeList attrList,
final List<String> attributes): IPersonalAttributeList
Description: Add eIdentifier, name, surname, and DateOfBirth
attributes to get business attributes from some AP.
Output: the requested attribute list and the new attributes added
(eIdentifier, name, surname, and DateOfBirth).

• addAPMandatoryAttributes (final IPersonalAttributeList attrList):
IPersonalAttributeList
Description: Adds eIdentifier, name, surname, and DateOfBirth
attributes, loaded by implementation, to get business attributes
from some AP.
Output: the requested attribute list and the new attributes added
(eIdentifier, name, surname, and DateOfBirth).

• removeAPMandatoryAttributes (final IPersonalAttributeList attrList,
final List<String> attributes): IPersonalAttributeList
Description: Removes from attribute list the given list of attributes.
Output: the requested attribute list and the attributes removed.

• removeAPMandatoryAttributes (IPersonalAttributeList attrList,
Map<String, Boolean> attributes): IPersonalAttributeList
Description: Removes from attribute list the given list of attributes

189 | P a g e

D4.10 Final Version of Technical Design

Interface
Class

IAttributeListProcessor

and change attributes status if attribute was optional in the request.
Output: the requested attribute list and the attributes removed.

• removeAPRejectedAttributes (IPersonalAttributeList attrList):
IPersonalAttributeList
Description: Removes from attribute list the STORK list of attributes.
Output: the attribute list without rejected attributes.

• hasPowerAttribute (IPersonalAttributeList attrList): boolean
Description: Checks if mandate attribute exist in the requested
Attribute List. Power attribute name to lookup is loaded by
implementation.
Output: true if mandate attribute exists or false otherwise.

• hasAttributeValue (final IPersonalAttributeList attrList, final String
attrName): boolean
Description: Checks if attribute name was requested and has value.
Output: true if attribute was requested and has value or false
otherwise.

• hasAttributeValue (final PersonalAttribute attr): boolean
Description: Checks if attribute has value.
Output: true if has value.

• getNormalAttributesAdded (): Map<String, Boolean>
Description: Gets a map (attribute name, attribute isRequired) of
attributes added to attribute list.
Output: the Map of attributes added and if is required to attribute
list.

• addNormalAttributes (IPersonalAttributeList attrList,
IPersonalAttributeList allAttrList): IPersonalAttributeList
Description: Add normal attributes to personal attribute list if exist
in original list (allAttrList).
Output: the attributes list updated.

• filterAttrList (IPersonalAttributeList attrList): IPersonalAttributeList
Description: Updates list by filtering any attribute that must be
requested instead of using a value obtained from cache (business
and legal attrs).
Output: the filtered list

• updateAttrList (IPersonalAttributeList cachedAttrList,
IPersonalAttributeList requestedAttrsList): void

190 | P a g e

D4.10 Final Version of Technical Design

Interface
Class

IAttributeListProcessor

Description: Updates the list of cached attrs by inserting the
business and/or legal attrs requested by the user.
Output: N.A.

• hasAlwaysRequestAttributes (IPersonalAttributeList attributeList):
boolean
Description: Verifies if normal attribute list contains any attribute
that we must always request (usually business attributes).
Output: true if there is at least one attribute to be request or false
otherwise.

Table 38: Interface of IAttributeListProcessorclass of C-PEPS

Class IAttributeListProcessor

Description This class is utility to process IPersonalAttributeList.

Methods See Table 38

Table 39: Class AUCPEPSCitizen of C-PEPS

SpecificPEPS

<<Interface>>

IAUService

prepareCitizenAuthentication(IPersonalAttributeList , Map<String, Object>, Map<String, Object>, IStorkSession): byte[]
preparePVRequest(IPersonalAttributeList, <String, Object>, Map<String, Object>, IStorkSession): byte[]
authenticateCitizen(IPersonalAttributeList, Map<String, Object>, Map<String, Object>): IPersonalAttributeList
powerValidation(IPersonalAttributeList, Map<String, Object>,
Map<String, Object>): IPersonalAttributeList
prepareAPRedirect(IPersonalAttributeList, Map<String, Object>, Map<String, Object>,IStorkSession): boolean
getAttributesFromAttributeProviders(IPersonalAttributeList, Map<String, Object>, Map<String, Object>): IPersonalAttributeList
getAttributesWithVerification(IPersonalAttributeList, Map<String, Object>, Map<String, Object>, IStorkSession, String): boolean
processAuthenticationResponse(byte[], IStorkSession): STORKAuthnResponse
generateErrorAuthenticationResponse(String,String, String, String, String,String, String): byte[]
comparePersonalAttributeLists(IPersonalAttributeList, IPersonalAttributeList): boolean
prepareAttributeRequest(IPersonalAttributeList, Map<String, Object>, IStorkSession): byte[]
processAttributeResponse(byte[], IStorkSession): STORKAttrQueryResponse

<<Interface>>

ITranslatorService

normaliseAttributeNamesToStork(IPersonalAttributeList): IPersonalAttributeList
normaliseAttributeValuesToStork(IPersonalAttributeList): IPersonalAttributeList
normaliseAttributeNamesFromStork(IPersonalAttributeList): IPersonalAttributeList
deriveAttributeFromStork(IPersonalAttributeList): IPersonalAttributeList
deriveAttributeToStork(IStorkSession,IPersonalAttributeList): IPersonalAttributeList
checkAttributeValues(IPersonalAttributeList): boolean

normaliseAttributeNamesToStork(IPersonalAttributeList): IPersonalAttributeList
normaliseAttributeValuesToStork(IPersonalAttributeList): IPersonalAttributeList
normaliseAttributeNamesFromStork(IPersonalAttributeList): IPersonalAttributeList
deriveAttributeFromStork(IPersonalAttributeList): IPersonalAttributeList
deriveAttributeToStork(IStorkSession,IPersonalAttributeList): IPersonalAttributeList
checkAttributeValues(IPersonalAttributeList): boolean
prepareCitizenAuthentication(IPersonalAttributeList , Map<String, Object>, Map<String, Object>, IStorkSession): byte[]
preparePVRequest(IPersonalAttributeList, <String, Object>, Map<String, Object>, IStorkSession): byte[]
authenticateCitizen(IPersonalAttributeList, Map<String, Object>, Map<String, Object>): IPersonalAttributeList
powerValidation(IPersonalAttributeList, Map<String, Object>,
Map<String, Object>): IPersonalAttributeList
prepareAPRedirect(IPersonalAttributeList, Map<String, Object>, Map<String, Object>,IStorkSession): boolean

getAttributesFromAttributeProviders(IPersonalAttributeList, Map<String, Object>, Map<String, Object>): IPersonalAttributeList
getAttributesWithVerification(IPersonalAttributeList, Map<String, Object>, Map<String, Object>, IStorkSession, String): boolean
processAuthenticationResponse(byte[], IStorkSession): STORKAuthnResponse
generateErrorAuthenticationResponse(String,String, String, String, String,String, String): byte[]
comparePersonalAttributeLists(IPersonalAttributeList, IPersonalAttributeList): boolean
prepareAttributeRequest(IPersonalAttributeList, Map<String, Object>, IStorkSession): byte[]

processAttributeResponse(byte[], IStorkSession): STORKAttrQueryResponse

derivedImpl: Map<String, IDeriveAttribute>
normaliseImpls: Map<String, INormaliseValue>
validateImpls: Map<String, ICheckAttributeValue>

Figure 34. Class diagram for Specific Module

191 | P a g e

D4.10 Final Version of Technical Design

Next, the classes depicted above are briefly explained:

Interface

Class

IAUService

Description Represents Specific Authentication methods to be implemented by each
Member State.

Methods • prepareCitizenAuthentication(IPersonalAttributeList personalList,
Map<String, Object> parameters, Map<String, Object>
requestAttributes, IStorkSession session): byte[]
Description: Prepares the citizen to be redirected to the IdP.
Output: the SAML Request.

• preparePVRequest(IPersonalAttributeList personalList, Map<String,
Object> parameters, Map<String, Object> requestAttributes,
IStorkSession session): byte[]
Description: Prepares the citizen to be redirected to the Power
Validation module.
Output: the SAML Request.

• authenticateCitizen(IPersonalAttributeList personalList, Map<String,
Object> parameters, Map<String, Object> requestAttributes):
IPersonalAttributeList
Description: Authenticates a citizen.
Output: the Personal Attribute requested and obtained in the
Authentication process.

• prepareAPRedirect(IPersonalAttributeList personalList, Map<String,
Object> parameters, Map<String, Object> requestAttributes,
IStorkSession session): boolean
Description: Prepares the Citizen browser to be redirected to the AP.
Output: true in case of no error.

• getAttributesFromAttributeProviders(IPersonalAttributeList
personalList, Map<String, Object> parameters, Map<String, Object>
requestAttributes): IPersonalAttributeList
Description: Prepares the Citizen browser to be redirected to the AP.
Output: Returns the Personal attribute list updated by AP.

• getAttributesWithVerification IPersonalAttributeList personalList,
Map<String, Object> parameters, Map<String, Object>
requestAttributes, IStorkSession session, String auProcessId):
boolean
Description: Get the attributes from the AP with verification.
Output: true if the attributes were correctly verified.

• processAuthenticationResponse (byte[] samlToken, session):

192 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAUService

STORKAuthnResponse
Description: Validates a SAML Response.
Output: the STORKAuthnResponse associated with the validated
response.

• generateErrorAuthenticationResponse (String inResponseTo, String
issuer, String assertionURL, String code, String subcode, String
message, String ipUserAddress): byte[]
Description: Compares two given personal attribute lists.
Output: true if the original list contains the modified one. False
otherwise.

• comparePersonalAttributeLists (IPersonalAttributeList original,
IPersonalAttributeList modified): boolean
Description: Validates a SAML Response.
Output: the SAML Response.

• prepareAttributeRequest (IPersonalAttributeList personalList,
Map<String, Object> parameters, IStorkSession session): byte[]
Description: Prepares the citizen to be redirected to the AtP.
Output: the SAML Request.

• processAttributeResponse (byte[] samlToken, IStorkSession
session): STORKAttrQueryResponse
Description: Validates a SAML Response.
Output: the STORKAttrQueryResponse associated with the validated
response.

Table 40: Interface of IAUService class of Specific Module

Interface

Class

ITranslatorService

Description Represents attribute normalization methods to be implemented by each
member state.

Methods • normaliseAttributeNamesToStork (IPersonalAttributeList
personalList): IPersonalAttributeList
Description: Translates the attributes from local format to STORK
format.
Output: The Personal Attribute List with normalised attributes.

• normaliseAttributeValuesToStork (IPersonalAttributeList
personalList): IPersonalAttributeList

193 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

ITranslatorService

Description: The PersonalAttributeList with normalised values.
Output: the SAML Request.

• normaliseAttributeNamesFromStork (IPersonalAttributeList
personalList): IPersonalAttributeList
Description: Translates the attributes from STORK format to local
format.
Output: The PersonalAttributeList with normalised attributes.

• deriveAttributeFromStork (IPersonalAttributeList personalList):
IPersonalAttributeList
Description: Derive Attribute Names To STORK format.
Output: The PersonalAttributeList with derived attributes.

• deriveAttributeToStork (IPersonalAttributeList personalList):
IPersonalAttributeList
Description: Derive Attribute Names from STORK format.
Output: The PersonalAttributeList with derived attributes.

• checkAttributeValues IPersonalAttributeList personalList): boolean
Description: Validate the values of the attributes.
Output: True, if all the attributes have values. False, otherwise.

Table 41: Interface of ITranslatorService class of Specific Module

Interface

Class

SpecificPEPS

Description This class implements ITranslatorService and IAUService interfaces and is
also a reference code to be used by each member state.

Methods See Table 40 and Table 41

Table 42: Class SpecificPEPS of Specific Module

5.2 PEPS/V-IDP Attribute Aggregation

5.2.1 Description

The PEPS/V-IDP Attribute Aggregation is in charge of retrieving and aggregating domain
specific requested attributes.

AUB Part 2 is part of the PEPS module.

5.2.2 Package specification

The following table describes the main classes involved in AUB process part 2.

194 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAPEPService

Description Interface for handling attribute requests.
Methods • getAttributeProviderSelectorList(final boolean remoteApeps) :

List<AttributeProvider>
Description: Generates the Attribute Provider Selector List.
Input parameters:
 remoteApeps: True if this is remote A-PEPS.
Output: The List of known Attribute Providers.

• getAllowedProviderSelectorList(final List<AttributeProvider>
providers, final IPersonalAttributeList pal) :
Hashtable<String, List<AttributeProvider>>
Description: Generates an Attribute Provider Selector List for each
Attribute Name.
Inpute parameters:
 providers: The List of known Attribute Providers.
 pal: The List of Attribute Names.
Output: The Hashtable with a list of Attribute Providers for each
Attribute Name.

• getAttributeNameSelectorList(final IPersonalAttributeList exclude):
List<AttributeName>
Description: Generates the Attribute Name Selector List.
Output: The List of known Attribute Names.

• getAttributeNameSessionSelectorList(final IPersonalAttributeList
sessionPal):
List<AttributeName>
Description: Generates the Attribute Name Selector List.
Output: The List of known Attribute Names.

• getCountrySelectorList() :
List<Country>
Description: Generates the Country Selector List.
Output: The List of known Countries.

• processCitizenAPSelection final Map<String, String> parameters,
final IPersonalAttributeList personalList, boolean remoteApeps):
IAttributeProvidersMap
Descrption: Validates citizen's selection of APs and groups the
attributes to be requested per AP.
Input Parameters:
 parameters: A map of the selected attribute providers.
 personalList: The personal attribute list.
 remoteApeps: True if we are running in REMOTE A-PEPS mode.

Output: Map of Attribute Providers with the respective
Attributes or null if something is wrong (i.e. invalid user selection).

• processCitizenMoreAPSelection(final Map<String, String>
parameters, final IPersonalAttributeList personalList, final
IPersonalAttributeList gatheredList):
IAttributeProvidersMap
Description: Validates citizen's selection for More attributes of APs

195 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAPEPService

and groups the attributes to be requested per AP.
Input Paramters:
 parameters: A map of the selected attribute providers.
 personalList The personal attribute list.
 gatheredList The personal attribute list already gathered.
Output: map of Attribute Providers with the respective Attributes
or null if something is wrong (i.e. invalid user selection).

• filterCitizenAttributeList(final IPersonalAttributeList personalList) :
IPersonalAttributeList
Description: Filters the citizen's attribute list in order to return only
the attributes that will be sent to APs.
Input parameters:
 personalList The personal attribute list.
Output: The filtered personal attribute list.

• compareAttributeLists(final IPersonalAttributeList sessionList, final
IPersonalAttributeList providerList, final IStorkSession session) :
boolean
Description: Compare the two Attribute Lists in order to verify the
response from the Attribute Source (either provider or country).
Input paramters:
 sessionList The list that was requested.
 providerList The list inside the response.
 session The current session.
Output: true if the list is accurate (contains all attributes and all
required elements are filled)

• prepareAPEPSRequest(final IPersonalAttributeList attrList, final
Map<String, String> parameters, final IStorkSession session) :
STORKAttrQueryRequest
Description: Creates a STORKAttrQueryRequest to send to APEPS
(remote CPEPS) on attribute collection from remote countries.
Input Paramerers:
 attrList: List of personal attributes to gather
 parameters: HTTP Request parameters
 session: Current HTTP session
Output: The APEPS request

• processAPEPSRequest(final Map<String, String> parameters, final
IStorkSession session) :
STORKAttrQueryRequest
Description: Decodes the SAML Token, normalizes data from STORK
format to specific format, and stores the request to session.
Input parameters:
 Parameters: HTTP Request parameters
 Session: Current HTTP session
Output: STORKAuthnRequest created from the SAML Token

• prepareAPEPSResponse(final Map<String, String> parameters,
final IStorkSession session) :
byte[]

196 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAPEPService

Description: Decodes and validates the SAML Token, normalizes
data from STORK format to specific format.
Input parameters:
 Parameters: HTTP Request parameters
 param session: Current HTTP session

• processAPEPSResponse(final Map<String, String> parameters, final
IStorkSession session) :
STORKAttrQueryResponse
Description: Decodes and validates the SAML Token, normalizes
data from STORK format to specific format.
Input parameters:
 Parameters: HTTP Request parameters
 param session: Current HTTP session
Output: The STORKAttributeQueryRequest

Table 43: Class SpecificPEPS of Specific Module

Interface

Class

IAPEPSSAMLService

Description Interface for communicating with the SAMLEngine for APEPS operations.

Method • checkMandatoryAttributes(STORKAttrQueryRequest attrData,
String ipUserAddress):
Description: Checks if all mandatory attributes have the status to
Available.
Input parameters:
 authData The authentication request.
 ipUserAddr The citizen's IP address.

• generateAttrQueryResponse(STORKAttrQueryRequest attrData,
List<STORKAttrQueryResponse> responses, String ipUserAddress) :
byte[]
Description:Generates the attribute query response object with the
collected attribute values to send to caller CPEPS
Input parameters:
 attrData: The attribute query request
 ipUserAddress: The citizen's IP address.
Output: The Attribute Query Response

• generateErrorAttrQueryResponse(STORKAttrQueryRequest
attrData, String code, String subCode, String errorMessage, String
ipUserAddress, boolean isAuditable) :
byte[]
Description: Constructs a SAML response token in case of error.
Input parameters:
 authData: The authentication request.
 errorCode: The status code.
 subCode: The sub status code.
 errorMessage: The error message.

197 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAPEPSSAMLService

 ipUserAddress: The citizen's IP address.
 isAuditable: Is a auditable saml error?
Output: A byte array containing the SAML Response.

• getSAMLToken(String samlToken) :
byte[]
Description: Decodes the incoming SAML Token from {@link
Base64}.
Input parameters:
 samlToken: The Token to be decoded.
Output: A byte array containing the decoded SAML Token.

• processAttrQueryRequest(byte[] samlObj, IStorkSession session,
String ipUserAddress) :
STORKAttrQueryRequest
Description: Validates the SAML Token request.
Input parameters:
 samlObj: the SAML Token to be validated.
 session: The current session.
 ipUserAddress The citizen's IP address.
Output: The processed authentication request.

• processAttrQueryResponse(byte[] samlObj, IStorkSession session,
String ipUserAddress) :
STORKAttrQueryResponse
Description: Validates the attribute query response and generates a
STORKAttrQueryResponse from the saml token
Input parameters:
 samlObj: Response saml token
 session: Current session
 ipUserAddress: The citizen's IP address
Output: A STORKAttrQueryResponse object generated from
response saml token

• generateAttrQueryRequest(STORKAttrQueryRequest authData) :
STORKAttrQueryRequest
Description: Creates the saml token for the given
STORKAttrQueryRequest object
Input parameters:
 authData: STORKAttrQueryRequest to generate saml token
Output: A STORKAttrQueryRequest object with the saml token set

• checkAttributeValues(STORKAttrQueryRequest attrData, String
ipUserAddress) :
Description: Validates the values of the attributes.
Input parameters:
 authData: The authentication request.
 ipUserAddress: The citizens' IP address.

Table 44: Interface of communication with SAML Engine

198 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAASPEPSIDDiscoveryService

Description Interface that holds the methods to discover the APs the citizen has
selected.

Methods • discoverAttributeProviderURL(Map<String, String> parameters,
IPersonalAttributeList personalList) :
IAttributeProvidersMap
Description: Extracts and groups the attributes to be requested by
each AP.
Input parameters:
 parameters A map of the selected attribute providers.
 personalList The personal attribute list.
Ouptut: Map of Attribute Providers with the respective Attributes.

• discoverMoreAttributeProviderURL(Map<String, String>
parameters, IPersonalAttributeList personalList) :
IAttributeProvidersMap
Description: Extracts and groups the attributes to be requested by
each AP. This method is used when collecting more attributes, in
order to copy the friendly name of a Personal Attribute to the name.
Input parameters:
 parameters: A map of the selected attribute providers.
 personalList: The personal attribute list.
Output: Map of Attribute Providers with the respective Attributes.

• isAttributeProviderValid(String providerId, String attrName,
boolean remoteApeps) :
Boolean
Description: Check if the provider ID is valid or not.
Input parameters:
 providerId: The providerId to verify
 attrName: The Attribute Name requested from this AP
 remoteApeps: True if we are running in REMOTE A-PEPS mode
Output: true if the provider ID is valid

• isAttributeNameValid(String attributeId) :
boolean
Description: Check if the attribute ID is valid or not.
Input parameters:
 attributeId: The attributeId to verify
Output: true if the attribute ID is valid

• isCountryValid(String countryId) :
Boolean
Description: Check if the country ID is valid or not.
Input parameters:
 countryId: The countryId to verify
Output: true if the country ID is valid

Table 45: Interface AASPEPSIDDiscovery class

199 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAASPEPSAttributeProcessorService

Description Interface that holds the methods to filter Attributes and process the
responses from Attribute Providers.

Methods • filterPersonalAttributes(IPersonalAttributeList personalList) :
IPersonalAttributeList
Description: Filters the personal attribute list in order to return only
the list that will be requested to the Attribute Providers.
Input parameters:
 personalList The personal attribute list.
Output: The filtered personal attribute list.

• compareAttributeLists(IPersonalAttributeList sessionList,
IPersonalAttributeList providerList) :
boolean
Description: Compare the two Attribute Lists in order to verify the
response from the Attribute Source (either provider or country).
Input parameters:
 sessionList: The list that was requested.
 providerList: The list inside the response.
Output: true if the list is accurate (contains all attributes and all
required elements are filled)

Table 46: Interface AASPEPSAttributeProcessor class

Interface

Class

IAASPEPSAttributeProviderSelectorService

Description Interface that holds the methods to present the citizen the attribute
provider selector form.

Methods • createAttributeProviderSelector(boolean remoteApeps) :
List<AttributeProvider>
Description: Creates the AttributeProviderSelector form.
Input parameters:
 remoteApeps: True if this is remote A-PEPS.
Output: List of known Attribute Providers and respective IDs.

• createAttributeNameSelector(IPersonalAttributeList exclude) :
List<AttributeName>
Description: Creates the AttributeNameSelector form.
Input parameters:
 exclude: The exclude list Attribute Names
Output: List of known Attribute Names.

• createAttributeNameSessionSelector(IPersonalAttributeList
sessionPal) :
List<AttributeName>
Description: Creates the AttributeNameSelector form.
Input parameters:
 sessionPal: The PAL from the session to retrieve the list of
Attribute Names
Output: List of known Attribute Names.

200 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAASPEPSAttributeProviderSelectorService

• allowedAttributeProviderSelector(List<AttributeProvider>
providers, IPersonalAttributeList pal) :
Hashtable<String, List<AttributeProvider>>
Description: Creates the AllowedAttributeProviderSelector form.
Input parameters:
 providers: The List of known Attribute Providers.
 pal: The List of Attribute Names.
Output: The Hashtable with a list of Attribute Providers for each
Attribute Name.

Table 47: Interface AASPEPSAttributeProviderSelector class

Interface

Class

IAASPEPSCountrySelectorService

Description Interface that holds the method to present the citizen the country selector
form.

Methods • createCountrySelector() :
Description: Creates the CountrySelector form.
Output: List of known countries and respective IDs.

Table 48: Interface Country Selector class of Anonymity

Interface

Class

IAPEPSTranslatorService

Description Interface to normalise attribute names and values.
Methods • normaliseAttributeNamesToStork(IPersonalAttributeList pal) :

IPersonalAttributeList
Description: Normalizes the attributes' name from a given {@link
IPersonalAttributeList} to a common format.
Input parameters:
 pal: The personal attribute list to normalize.
Output: The normalized personal attribute list.

• normaliseAttributeNamesFromStork(IPersonalAttributeList pal) :
IPersonalAttributeList
Describe: Normalizes the attributes' name from a given {@link
IPersonalAttributeList} to a specific format.
Input parameters:
 pal: The personal attribute list to normalize.
Output: The normalized personal attribute list.

• normaliseAttributeValuesToStork(IAPEPSSAMLService samlService,
STORKAttrQueryRequest attrData, String ipUserAddress) :
IPersonalAttributeList
Description: Normalizes the attributes' values from a given {@link
IPersonalAttributeList} to the common format.
Input parameters:
 samlService: The SAML Service.

201 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

IAPEPSTranslatorService

 authData: The authentication request.
 ipUserAddress: The citizen's IP address.
Output: The normalized personal attribute list's values.

• deriveAttributesToStork(IAPEPSSAMLService samlService,
IStorkSession session, STORKAttrQueryRequest attrData, String
ipUserAddress) :
IPersonalAttributeList
Description: Derives the attributes' name to a common format.
Updates the original Personal Attribute List, stored in the session,
based on the values of attrList.
Input parameters:
 samlService: The SAML Service.
 session: The session containing the original attribute list to
update.
 authData: The authentication request.
 ipUserAddress: The citizen's IP address.
Output: The new personal attribute list with the derived attributes.

• deriveAttributesFromStork(IPersonalAttributeList pal) :
IPersonalAttributeList
Description: Derives the attributes' name to a specific format.
Input parameters:
 pal: Personal attribute list with the attributes to derive.
Output: The new personal attribute list with the derived attributes.

Table 49: Interface AASPEPSTranslator class

5.3 V-IDP

5.3.1 Description

V-IDP acts as a gateway between SP, S-PEPS and C-PEPS entities. In the course of these
deployments, the same V-IDP software supports both deployment modes and roles in a
country following the decentralized deployment model formerly referred to as “middleware”
(in this case, Austria) and abroad, integrating the broad range of country-specific and STORK-
specific functionalities and interfaces in one coherent package. This approach enables easier
deployment and maintenance of VIDP instances and lowers the integration and support costs.

As it was the case in STORK, Austria integrated the STORK 2.0 functionality into its production
component referred to a “MOA”. This allows Austrian SPs beyond the actual STORK 2.0 pilots
to activate STORK 2.0 simply by adjusting their configurations, as the STORK 2.0 functionality
is already given in the components the SP operates in the decentralized mode. As Austria is
the only country in STORK 2.0 that follows the decentralized approach, the common V-IDP
functions are integrated in its production component (as used in STORK1 with AT and DE in a
so-called “MARS” architecture). Therefore, the terms V-IDP (as the decentralized component
operating the STORK 2.0 protocol) and MOA (that complements it by country-specific
functions similar to country-specific parts in a PEPS) might interchange. This also highlights
that STORK 2.0 support is tightly integrated in the AT eGov enabler software components
“MOA”. The two terms therefore refer to the roles the single instance or system takes. While
V-IDP refers to the instance deployed in other MS (interfacing with an S-PEPS), MOA

202 | P a g e

D4.10 Final Version of Technical Design

describes the instance in the role that provides STORK integration for the service providers
deployed in country applying a decentralized deployment model (interfacing with a C-PEPS).

This section provides the overview of the V-IDP applications, deployment and packages
provided in the V-IDP solution.

5.3.2 Applications

There are two applications that
provide the functionality of V-
IDP package:Name

Description

moa-id-auth Provides all services and functionality of V-IDP and of the
services it depends on

moa-id-configuration Exposes web interface for configuration of V-IDP services
and functionality

Table 50: Applications included in the V-IDP package

Additionally, in the course of V-IDP deployments, the installation of the third application is
recommended as well. BKUOnline11 (MOCCA suite) is a part of the MS–specific components.
Acting as an optional module that facilitates easier deployment, it is not considered as a part
of V-IDP software itself. It represents a separate project that provides one of
implementations that exposes functionality of Austrian citizen card environment.

5.3.3 Modules

This section provides the description of the most relevant software modules of V-IDP
software.

5.3.3.1 MOA-ID

Name Description

moa-id-auth
Contains an implementation of Web service used for
authentication and communication with service
providers and other STORK nodes.

moa-id-configuration Contains the implementation of the web interface
used to configure MOA-ID and VIDP functionality.

moa-id-lib Contains API that provides the functionality of MOA-
ID and STORK related processes and functions

moa-id-modules

This module contains additional functionality that
enables the dynamic extensions of MOA-ID and VIDP.
It enables the definition of tasks that are then
executed by process engine, in the different phases of
the process flows.

This module also contains two submodules that
implement the modular support for monitoring
functionality and STORK related processes.

11 https://joinup.ec.europa.eu/software/mocca/home

203 | P a g e

D4.10 Final Version of Technical Design

Name Description

Commons
The common STORK library that provides beans, Java
Interfaces and utility classes to integrate PEPS/VIDP
with SAML Engine.

SamlEngine
This common STORK library provides tools to support
developers working with the Security Assertion
Markup Language (SAML).

Table 51: The main software modules included in the V-IDP package

5.3.3.2 MOA-Common

This module provides logging and utility classes that are used by various components of VIDP
solution.

5.3.3.3 MOA-SPSS

MOA-SPSS represents a set of modules that enable the applications to create and verify
electronic signatures. It consists of the module for server signature (SS) and the module for
signature verification (SP).

Module SS provides functionality for creation of XML-Signatures according to the interface
specification of SecurityLayer12. It supports both the creation of software based signatures,
and the ones using external Hardware Security Module (HSM). The applications can use this
module through the Java-API or as a WebService.

Module SP enables the applications to verify XML and CMS signatures, as well as XAdES and
CAdES based signatures produces according to the SecurityLayer specification.

The following table provides the overview and descriptions of the relevant modules included
in the MOA-SPSS package.

Name Description

moa-spss-lib API that provides the functionality of modules for server
signature (SS) and signature verification (SP)

moa-spss-ws Web service that provides the functionality of modules for
server signature (SS) and signature verification (SP)

moa-spss-tools This module integrates helper processes used both by SP
and SS portions of moa-spss

Table 52: Modules of MOA-SPSS package

5.3.4 Package descriptions

In this section provided are package descriptions separated by modules and components that
provide particular functionality. This description includes the most relevant packages for VIDP
functionality. Due to the complex structure and for the purpose of readability, the package
names in the following descriptions are provided without prefixes common for each module.
These prefixes are available at the beginning of each subsection.

12 https://www.buergerkarte.at/konzept/securitylayer/spezifikation/20140114/core/core.html

204 | P a g e

D4.10 Final Version of Technical Design

5.3.4.1 Packages in moa-id-auth module

The package names provided in this section include the prefix at.gv.egovernment.moa. In
order to provide readable descriptions and maintain proper formatting of the tables, this
prefix has been omitted from the following tables. Therefore, all the package names
contained in this section are assumed to begin with this this prefix, suffixed with respective
package name.

5.3.4.1.1 Packages providing general functionality

Package name Description

id.advancedlogging Class used to perform the logging for statistical purposes

id.client Contains the client and helper classes used to access
supplementary register gateway (SZRGW)

id.config

Contains interfaces, implementations, utility classes, exceptions,
factories and providers for configuration parameters used for
authentication components and STORK, legacy and proxy
configurations.

id.data Contains interfaces and classes used to provide and hold
authentication data used by various protocols and processes.

id.entrypoints Contains the classes used for the processing and further routing
of incoming web service requests.

id.iaik.config Provides an implementation of the interfaces needed to initialize
an IAIK JSSE TrustManager

id.moduls

This package contains the definitions of interfaces of actions,
requests and responses provided in various processing steps.

It furthermore contains the classes that enable the management
of authentication and single-sign-on in various processing steps,
including the supporting utility classes and storage handlers.

id.opensaml Contains the helper functions for using OpenSAML in MOA
components.

id.process

This package contains the interface definition for process engine
used to manage the execution of processes. It contains the
implementation of this functionality as well, including the
related exceptions, enumerations and helper parsers.
These are provided in the respective subpackages of this
package, including model, task, event and execution context
management and representation packages, and the package to
support the integration with SpringWeb.

id.protocols
This package contains subpackages related to the four main
protocols used for authentication: OAuth2, PVP2, STORK 2.0 and
legacy Saml1.

205 | P a g e

D4.10 Final Version of Technical Design

Package name Description

id.protocols.stork2

This package contains the classes that implement processing for
STORK2 protocol. These include the two-step based process
support for MOA process engine, the classes providing support
for consent evaluation, attribute management and gathering, as
well as mandate gathering, storage, and general data container.

id.storage This package provides classes used for the storage of assertions
and authentication sessions.

id.util

This package contains utility classes used to establish secure
connections, store cryptographic constants and paramameters,
verify QAA levels, XML processing and HTTP connection, forms
and session management.

Table 53: Packages providing general functionality

5.3.4.1.2 Packages enabling authentication and STORK 2.0 specific flows

Package name Description

id.auth

Contains API for Authentication Service, session and mandate
management. Additionally this package contains the class
supporting the initialization and management of web application
components.

id.auth.builder

Contains the classes used to generate various objects and
descriptions used in the various authentication and request
processing steps.
These include the support for assertions, authentication blocks
and data, generation of BPK and DataURL references, as well as
support for XMLSignatureRequests, InfoBoxRequests and login
forms.

id.auth.data
This package provides the interfaces and classes defining and
implementing the data containers for authentication and single-
sign on.

id.auth.exception Contains the exceptions used in various subpackages in the scope
of moa.id.auth package.

id.auth.invoke This package provides the class supporting the integration of
signature verification using MOA-SPSS web service and API.

id.auth.modules

This package contains the interfaces and classes used for the
definition, description, registration and integration of separate
authentication modules and supported tasks. These objects are
defined in respective subpackages, providing additional
definitions of internal tasks available in MOA.

id.auth.parser Provides classes used to support parsing of InfoBoxReadResponse
and further verification integration with MOA-SPSS.

206 | P a g e

D4.10 Final Version of Technical Design

Package name Description

id.auth.servlet
Provides classes that implement servlets and support
functionalities for redirection, SSO and SLO, generation of
iFrames, authentication and logout.

id.auth.stork Defines interface and classes for verification and processing of
STORK responses.

id.auth.validator

Defines an interface and provides an implementation for
validation of responses, including ones of InfoboxReadResponse,
CreateXMLSignatureResponse, IdentityLink and
VerifyXMLSignatureResponse.
The subpackages of this package include additionally the
implementation of SZRGW client and utility classes to process
SZRGW responses and manipulate their parts.

Table 54: Packages enabling the integrationof STORK 2.0 flows

5.3.4.1.3 Packages supporting the integration of MOA-ID modules

The following table contains the packages defined separately in the module integration
package (moa-id-modules) that provides the description and integration of additional
modules into the main application. The packages listed there are assumed to begin with
at.gv.egovernment.moa.id prefix.

Package name Description

auth.servlet
Servlet implementation of monitoring module used to
periodicaly check the functionality and state of the
applicaiton.

monitoring

Interface and implementation of test manager component.
This package also contains the implementations of specific
monitoring tasks, such as database test task and
IdentityLink test.

auth.modules.stork Contains module descriptor for the integration of STORK
2.0 authentication processes in the application flow.

auth.modules.stork.tasks
This package contains the implementations of STORK 2.0
specific actions, enabling their integration into MOA ID
processing flow.

Table 55: Packages supporting the integration of MOA-ID modules

5.3.4.1.4 Packages integrating common STORK 2.0 functionality

VIDP integrates the modules that provide common STORK 2.0 core functionality. These
include Commons and SamlEngine. Based on the V-IDP architecture, these modules are
integrated without any significant changes imposed upon their structure. For the descriptions
of the packages included in these modules please refer to the respective sections for
Commons and SamlEngine.

207 | P a g e

D4.10 Final Version of Technical Design

5.3.4.2 Packages in MOA-ID-Configuration

The package names provided in this section begin with the prefix at.gv.egovernment.moa.id.
In order to provide readable descriptions and maintain proper formatting of the tables, this
prefix has been omitted from the following tables. Therefore, all the package names
contained in this section are assumed to begin with this prefix.

Package name Description

configuration.auth
This package contains the classes used to manage
authenticated session’s data, including the users’s
data and credentials.

configuration.auth.pvp2

This package includes utility classes used to build,
filter and process metadata and attributes that
support the authentication using PVP, AT specific
protocol. Its subpackage also includes the servlets
used to manage SLO in this context.

configuration.config
This package contains the configuration provider for
the application as well as supporting and utility
classes.

configuration.data

This package contains the classes used as data
entities, DAOs and building elements used for the
storage, description and processing of particular
configuration entries and options. These additionally
include the

configuration.data.pvp2
This package contains classes related to data
descritions of users using PVP2 authentication
protocol

configuration.data.oa

This package contains interface defining the
description of online applications as used in persistent
storage for configuration elements. It also contains
the implementations specific for each protocol and
configuration section, as supported by configuration
interface.

configuration.exception This package contains exception classes used by the
configuration interface.

configuration.filter
This package contains utility classes used for
processing, encoding and filtering of configuration
elements.

configuration.helper

This package contains helper classes used for user
interface specific adjustments, such as date/time
presentation and processing, language support, and
parsing of the data elements.

configuration.struts

This package and its subpackages contain
implementations of specific classes used in the Struts
framework. These include action handlers and
integration with Hibernate.

Table 56: Packages in web configuration interface of V-IDP

208 | P a g e

D4.10 Final Version of Technical Design

Package name Description

configuration.utils

This package contains utility classes used or
management of request storage, processing and
conversion of SAML elements and encryption of
persistent storage elements.

configuration.validation

This package contains the constants used across the
project.
Its subpackages contain component specific validation
classes.

configuration.validation.moaconfig
This package contains validation classes used for
general configuration, as well as ones applied for the
validation of PVP2 and STORK2 entries

configuration.validation.oa
This ackage contains validation classes used for the
validation of online applications (service provider)
configuration entries

Table 57: Other packages of the web configuration interface

5.3.4.3 Packages in MOA-Common

The package names provided in this section begin with the prefix at.gv.egovernment. In order
to provide readable descriptions and maintain proper formatting of the tables, this prefix has
been omitted from the following tables. Therefore, all the package names contained in this
section are assumed to begin with this prefix.

Package name Description

moa.logging This package implements and wraps logging
functionality used in MOA and V-IDP context

moa.util

This package contains common utility classes that
support the generation processing of entitites, URLs,
XPath expressions, messages, DOM elements and
other entitites used across the project

moa.util.ex This package contains exception handling classes

Table 58: Common VIDP packages

5.3.4.4 Packages in MOA-SPSS

The package names provided in this section begin with the prefix at.gv.egovernment.moa. In
order to provide readable descriptions and maintain proper formatting of the tables, this
prefix has been omitted from the following tables. Therefore, all the package names
contained in this section are assumed to begin with this prefix.

209 | P a g e

D4.10 Final Version of Technical Design

5.3.4.4.1 Packages providing API and general functionality

Package name Description

spss.api

This package contains the classes used for
configuration and initialization of SPSS API and
interfaces that provide functions for signature
creation and verification.

spss.api.cmssign Contains the interfaces that enable the definition and
integration of CMS signature requests and responses.

spss.api.cmsverify

This package contains the interfaces that manage the
verification of CMS signature requests and responses,
including the definitions of data object and content
references.

spss.api.common

In this package included are the classes used across
the SPSS API, supporting various functions and
transformations including the Base64 transformations,
XSLT and XPath operations, filters and
transformations. It furthermore includes the
encapsulation classes that support the XML content,
meta data, location references and binary content.

spss.api.impl This package contains the implementation classes of
the interfaces defined across the package.

spss.api.xmlbind This package contains various parsers supporting the
profiles, requests, transformations and responses.

spss.api.xmlsign

This package contains the interfaces used to support
the integration and processing of
CreateXMLSignatureRequest and
CreateXMLSignatureResponse elements. It also
included the interfaces that enable the integration of
transformation profiles and encapsulate signature
objects during various phases of signature creation.

spss.api.xmlverify

This package contains the interfaces used to support
the integration and processing of
VerifyXMLSignatureRequest and
VerifyXMLSignatureResponse. It also includes the
encapsulation and transformation classes.

spss.api.tsl.config

This package and its subpackages include the classes
that support the integration and management of TSL
used in the application. It also includes the
configuration and connector for TSLs.

spss.api.tsl.utils This package contains utility classes support the
integration of TSL functionality in application.

spss.util This package contains general utility classes used in
the application.

Table 59: SPSS API packages

210 | P a g e

D4.10 Final Version of Technical Design

5.3.4.4.2 Packages providing support for SPSS server functions

Package name Description

spss.server.config

In this package contained are the classes related to
configuration of SPSS module. It also contains the
classes that suppor the parsing of configuration files
and suppor the integration of hardware crypto and
key modules in the application. Furthemore the
package contains configuration support for CRL and
OCSP distribution points.

spss.server.iaik

This package and its subpackages contain the classes
that provide the implementation profiles and auxiliary
information for creation and verification of XML and
CMS signatures. It furthermore includes the classes for
XML manipulation, XPath and XSLT.

spss.server.iaik.pki
This subpackage contains the implementations of
interfaces supporting certificate path validation and
revocation checks.

spss.server.init
This package contains supporting classes for
initialization and configuration implementation of
SPSS web service

spss.server.invoke

In this package contained are various implementation
and utility classes used by invocation of primary
functionalitites related to generation and verification
of XML and CMS signatures.

spss.server.logging This package wraps the logging support for SPSS
service.

spss.server.service
This package contains the web service endpoints for
signature creation and verification, request handler
and configuration servlet.

spss.server.transaction This package contains transaction handling manager
and context access.

spss.server.util This package contains utility classes used by SPSS
server module.

Table 60: SPSS server packages

5.4 SAMLEngine

5.4.1 Description

Next figure shows a functional view of the Authentication Engine implemented. From here
on, the engine is called SAML Engine. The section follows a bottom-up approach to explain
each component.

211 | P a g e

D4.10 Final Version of Technical Design

Figure 35 – Authentication/SAML engine: Model

The Authentication Service Layer is in charge of implementing the business logic of the PEPS
authentication service itself, both for the C-PEPS and the S-PEPS. Below this layer, the
functionality is split into the common and the specific parts. The figure above only details the
common part, which is explained next.

The SAML Engine module is responsible for implementing the operations on SAML messages,
both requests (S-PEPS) and responses (C-PEPS). This module is configured through the SAML
Core submodule. Besides, and from a functional viewpoint, next submodules are
differentiated:

• SAML Generator

This part of the engine generates the SAML Tokens, which can be either SAML
Authentication (with Attribute query as an extension) requests or SAML Assertions
(Authentication and Attribute statements) responses.

• SAML Processor

This part of the engine validates and processes the SAML Tokens above.

The S-PEPS functionality is covered by the SAML Generator  SAML Requests and SAML
Processor  SAML Responses parts of the engine. That is, the S-PEPS will generate requests
and process responses.

The C-PEPS functionality is covered by the SAML Processor  SAML Requests and SAML
Generator SAML Responses parts of the engine. That is, the C-PEPS will process requests
and generate responses.

SAML Engine

SAMLCore

S-PEPS
(SPEPSAUCommon)

C-PEPS
(CPEPSAUCommon)

SAMLEngineConf

OpenSAMLConf

Common
Part

Beans

Authentication Service

Specific
Part

SAML Processor

SAML
Requests

SAML
Responses

SAML Generator

SAML
Requests

SAML
Responses

OpenSAML

Common
Interface

212 | P a g e

D4.10 Final Version of Technical Design

The SAML Engine manages SAML objects by means of the OpenSAML library.

The SAML-related information is transmitted from the SAML Engine layer to the
Authentication Service layer through the identified Beans.

Furthermore, and as can be seen in the figure above, two configurations files are needed:

• OpenSAMLConf contains the configuration of the SAML library (OpenSAML).

• SAMLEngineConf contains the configuration needed for the operation of the PEPS SAML
Engine.

Next subsections give more detail about each “box” identified in the figure above. In
particular, next parts of the engine are described:

• OpenSAML

• SAML Engine

• Keystores management

5.4.2 OpenSAML

Package: OpenSAML specific

This subsection deals with XML signature processing (generation and validation) only. SAML
token validation according the SAML 2.0 schema is not explained, but it is obviously necessary
as a first step when parsing SAML tokens received from other PEPS. Other operations to be
fulfilled while interacting with the OpenSAML, like library initialization and configuration, or
SAML message generation and processing are explained further in SAML Engine description.

As shown in figure above, OpenSAML needs a configuration file, which corresponds to the file
OpenSAMLConf and that establishes the configuration with which the library operates. It is
supposed that no further or extra configuration will be needed except the default one. Please
refer to OpenSAML for further information.

5.4.3 Basic Class Diagram (XML signature generation process)

Enveloped signatures are the only method formally prescribed in the XML Signature profile of
the SAML specification. Next Figure depicts the most important classes from OpenSAML that
must be used by the PEPS implementation, and in particular, by the PEPS Authentication
Module, in order to generate the XML signature over a SAML Token.

Figure 36 – OpenSAML Class Diagram for XML signature generation purposes

Next, the classes depicted in the figure above are briefly explained.

SignatureImpl

«interfaz»
Signature

1

«interfaz»
Credential

«interfaz»
X509Credential

BasicX509CredentialX509Certificate

1

213 | P a g e

D4.10 Final Version of Technical Design

5.4.3.1.1 org.opensaml.xml.signature.Signature Interface

This Interface represents the XML signature to generate. Although it supports enveloped and
detached signatures, only enveloped signatures must be generated.

5.4.3.1.2 org.opensaml.xml.signature.impl.SignatureImpl

This class (constructor protected) is instantiated by means of the
org.opensaml.xml.signature.impl.SignatureBuilder.

5.4.3.1.3 org.opensaml.xml.security.credential.Credential Interface

This interface represents the credential material for an entity. In STORK, this credential will
represent the asymmetric cryptographic information. Depending on the entity, the credential
contains either the private and public keys (local entity) or just the public key (remote entity).

5.4.3.1.4 org.opensaml.xml.security.x509.X509Credential Interface

This interface is a particular view of the Credential. In STORK, it will represent an X.509
Certificate along with the private key.

5.4.3.1.5 org.opensaml.xml.security.x509.BasicX509Credential Class

This class is the implementation of the interface
org.opensaml.xml.security.x509.X509Credential. This class manages an implementation of the
JCE X.509 certificate.

5.4.3.1.6 java.security.cert.X509Certificate Class

This class is the JCE implementation of an X.509 certificate that wraps the public key for the
verification of digital signatures.

5.4.4 Basic Class Diagram (XML Signature verification process)

OpenSAML provides several ways of performing an XML signature validation incorporated in a
SAML token. The method based on trust engine offers both the cryptographic verification of
the signature and the trust establishment of the verification credential. Therefore, this
method has been chosen from the SAML core.

Next Figure depicts the most important classes from OpenSAML that must be used by the
PEPS implementation, and in particular, by the PEPS Authentication Module, in order to verify
the XML signature of a SAML Token according to the trust engine approach.

214 | P a g e

D4.10 Final Version of Technical Design

Figure 37 – OpenSAML Class Diagram for XML signature verification purposes

Next, the classes depicted in the figure above are briefly explained.

5.4.4.1.1 org.opensaml.xml.signature.SignatureTrustEngine Interface

This Interface represents the functionality to evaluate the trustworthiness and validity of XML
or raw Signatures against implementation-specific requirements.

5.4.4.1.2 org.opensaml.xml.signature.impl.ExplicitKeySignatureTrustEngine Class

This class implements the interface SignatureTrustEngine. Two instances must be indicated
when invoking the constructor of this class: BasicProviderKeyInfoCredentialProvider and
KeyStoreCredentialResolver.

5.4.4.1.3 org.opensaml.xml.security.keyinfo.BasicProviderKeyInfoCredentialProvid
er Class

This class implements the interface
org.opensaml.xml.security.keyinfo.KeyInfoCredentialResolver

A KeyInfoCredentialResolver allows the signature trust engine to retrieve the credential
information from the KeyInfo material contained in the SAML signature. OpenSAML offers
several implementations of key info credential resolver, among which this class has been
selected.

BasicProviderKeyInfoCredentialProvider extracts the public key information from the
<ds:KeyInfo> element contained in the XML signature to verify the digital signature. This
resolver needs a list of org.opensaml.xml.security.keyinfo.KeyInfoProvider implementing
providers in order to be able to search and retrieve the credential material from the XML
signature.

In particular, STORK interfaces [Interfaces] define that the XML signature must contain the
<ds:X509Certificate> embedded in a <ds:X509Data> element contained in <ds:KeyInfo>. As a
result, this credential provider will need to obtain the public key from the X509Certificate. An
instance of InlineX509DataProvider must be provided to the constructor of this class.

«interfaz»
SignatureTrustEngine

-credentialResolver : KeyStoreCredentialResolver
-keyInfoCredentialResolver : BasicProviderKeyInfoCredentialProvider

ExplicitKeySignatureTrustEngine
-keyStore : KeyStore
-password : Map<String><String>
-usage : UsageType

KeyStoreCredentialResolver

«interfaz»
CredentialResolver

KeyStore Map<String><String> UsageType

1

1

KeyInfoCredentialResolver

InlineX509DataProvider

-dataProvider : InlineX509DataProvider
-keyInfoProvider : KeyInfoProvider
-keyInfoCredentialResolver : KeyInfoCredentialResolver

BasicProviderKeyInfoCredentialProvider

«interfaz»
KeyInfoProvider

1

1

215 | P a g e

D4.10 Final Version of Technical Design

5.4.4.1.4 org.opensaml.xml.security.keyinfo.provider.InlineX509DataProvider
Class

This class implements the org.opensaml.xml.security.keyinfo.KeyInfoProvider interface.

This provider is used by BasicProviderKeyInfoCredentialProvider to obtain the public key from
the <ds:X509Certificate> information.

5.4.4.1.5 org.opensaml.xml.security.credential.KeyStoreCredentialResolver Class

Besides verifying the digital signature, the certificate that wraps the public key must be
trusted by the verifier in order to give complete validity to the XML signature.

This class evaluates if the public key (certificate) is contained in the configured trusted key
store (class java.security.KeyStore). The credentials to access the key store must be provided
in a java.util.Map implementing class (e.g. java.util.HashMap). It must use the
STORKTrustedKeyStore keystore to verify if the certificate is trusted or not.

Additionally, a key usage constraint can be indicated as well
(org.opensaml.xml.security.credential.UsageType). The objective is to reject keys used to sign
the SAML token that do not comply with the key usages defined for the PEPSs’ certificates
(see [11]).

OpenSAML only supports three types of key usages: ENCRYPTION, SIGNING and UNSPECIFIED.
For that reason, UsageType SIGNING must be indicated during the instantiation of this class.

5.4.5 Methods

Methods SamlEngine

Description Interface for SPDocumentservie.

Methods:

• Generate stork attribute query request.
o eu.stork.peps.auth.commons.STORKAttrQueryRequest

 generateSTORKAttrQueryRequest(eu.stork.peps.au
th.commons.STORKAttrQueryRequest request)

• Generate stork attribute query response.
o eu.stork.peps.auth.commons.STORKAttrQueryResponse

 generateSTORKAttrQueryResponse(eu.stork.peps.a
uth.commons.STORKAttrQueryRequest request,
eu.stork.peps.auth.commons.STORKAttrQueryResponse
responseAttrQueryRes, String ipAddress, String
destinationUrl, boolean isHashing)

• Generate stork attribute query response fail.
o eu.stork.peps.auth.commons.STORKAttrQueryResponse

 generateSTORKAttrQueryResponseFail(eu.stork.pe
ps.auth.commons.STORKAttrQueryRequest request,
eu.stork.peps.auth.commons.STORKAttrQueryResponse
response, String ipAddress, String destinationUrl, boolean
isHashing)

• Generate stork attribute query response from multiple assertions
o eu.stork.peps.auth.commons.STORKAttrQueryResponse

 generateSTORKAttrQueryResponseWithAssertions(
eu.stork.peps.auth.commons.STORKAttrQueryRequest

216 | P a g e

D4.10 Final Version of Technical Design

Methods SamlEngine

request,
eu.stork.peps.auth.commons.STORKAttrQueryResponse
responseAttrQueryRes,
List<eu.stork.peps.auth.commons.STORKAttrQueryResponse
> responses, String ipAddress, String destinationUrl, boolean
isHashing)

• Generate stork authentication request.
o eu.stork.peps.auth.commons.STORKAuthnRequest

 generateSTORKAuthnRequest(eu.stork.peps.auth.c
ommons.STORKAuthnRequest request)

• Generate stork authentication response.
o eu.stork.peps.auth.commons.STORKAuthnResponse

 generateSTORKAuthnResponse(eu.stork.peps.auth.
commons.STORKAuthnRequest request,
eu.stork.peps.auth.commons.STORKAuthnResponse
responseAuthReq, String ipAddress, boolean isHashing)

• Generate stork authentication response.
o eu.stork.peps.auth.commons.STORKAuthnResponse

 generateSTORKAuthnResponseAfterQuery(eu.stork
.peps.auth.commons.STORKAuthnRequest request,
eu.stork.peps.auth.commons.STORKAuthnResponse
responseAuthReq, String ipAddress, boolean isHashing,
List<eu.stork.peps.auth.commons.STORKAttrQueryResponse
> res)

• Generate stork authentication response fail.
o eu.stork.peps.auth.commons.STORKAuthnResponse

 generateSTORKAuthnResponseFail(eu.stork.peps.a
uth.commons.STORKAuthnRequest request,
eu.stork.peps.auth.commons.STORKAuthnResponse
response, String ipAddress, boolean isHashing)

• Generate stork logout request.
o eu.stork.peps.auth.commons.STORKLogoutRequest

 generateSTORKLogoutRequest(eu.stork.peps.auth.c
ommons.STORKLogoutRequest request)

• Generate stork logout response.
o eu.stork.peps.auth.commons.STORKLogoutResponse

 generateSTORKLogoutResponse(eu.stork.peps.auth
.commons.STORKLogoutRequest request,
eu.stork.peps.auth.commons.STORKLogoutResponse
response)

• Generate failed stork logout response.
o eu.stork.peps.auth.commons.STORKLogoutResponse

 generateSTORKLogoutResponseFail(eu.stork.peps.a
uth.commons.STORKLogoutRequest request,
eu.stork.peps.auth.commons.STORKLogoutResponse
response)

• Gets the single instance of STORKSAMLEngine.
o static STORKSAMLEngine getInstance(String

nameInstance)
• Validate stork attribute query request.

217 | P a g e

D4.10 Final Version of Technical Design

Methods SamlEngine

o eu.stork.peps.auth.commons.STORKAttrQueryRequest
 validateSTORKAttrQueryRequest(byte[] tokenSaml)

• Validate stork attribute query response.
o eu.stork.peps.auth.commons.STORKAttrQueryResponse

 validateSTORKAttrQueryResponse(byte[]
tokenSaml, String userIP)

• Validate stork authentication request.
o eu.stork.peps.auth.commons.STORKAuthnRequest

 validateSTORKAuthnRequest(byte[] tokenSaml)
• Validate stork authentication response.

o eu.stork.peps.auth.commons.STORKAuthnResponse
 validateSTORKAuthnResponse(byte[] tokenSaml,
String userIP)

• Validate stork authentication response.
o eu.stork.peps.auth.commons.STORKAuthnResponse

 validateSTORKAuthnResponseWithQuery(byte[]
tokenSaml, String userIP)

• Validate stork logout request.
o eu.stork.peps.auth.commons.STORKLogoutRequest

 validateSTORKLogoutRequest(byte[] tokenSaml)
• Validate stork logout response.

o eu.stork.peps.auth.commons.STORKLogoutResponse
 validateSTORKLogoutResponse(byte[] tokenSaml)

Table 61: SAML Component interfaces

5.4.6 Keystore Management

Keystores have to be used by both the Authentication Engine and the Validation Engine in
order to generate and validate the electronic signatures of SAML Tokens and OCSP tokens,
respectively. This section offers the class design of the components that deal with keystore
management.

Package: eu.stork.peps.keystores

This subsection gives an overview of the classes that support the PEPSP SAML Engine for the
verification and generation SAML Tokens XML Signatures.

5.4.7 Basic Class Diagram

Next Figure outlines the classes that represent the static view of the KeyStore Management.

218 | P a g e

D4.10 Final Version of Technical Design

Figure 38 – KeyStore Management Classes

5.4.7.1.1 eu.stork.peps.keystoresKeyStoreLoader Class

Figure 39 – KeyStoreLoader Class

This class loads in memory the information of the keystores. Thereby, cryptographic
operations like XML signature/OCSP signature generation, XML signature/OCSP signature
verification can be performed.

Attributes

1. private storkTrustedKeyStoreProp

Properties of the STORKTrustedKeyStore keystore.

2. private storkOCSPRespondersTrustedKeyStoreProp

Properties of the STORKOCSPRespondersTrustedKeyStore keystore.

3. private storkOwnKeyStoreProp

Properties of the STORKOwnKeyStore keystore.

4. private storkTrustedKeyStore

Keystore STORKTrustedKeyStore

5. private storkOCSPRespondersTrustedKeyStore

Keystore STORKOCSPRespondersTrustedKeyStore

6. private storkOwnKeyStore

java.security.KeyStore

+static load()
-static loadKeyStore(entrada properties, entrada keystore : java.security.KeyStore)

-static storkTrustedKeyStoreProp
-static storkOCSPRespondersTrustedKeyStoreProp
-static storkOwnKeyStoreProp
+static storkTrustedKeyStore
+static storkOCSPRespondersTrustedKeyStore
+static storkOwnKeyStore
+static storkOwnKeyStoreOPwdMap

KeyStoreLoader

+static STORK_TRUSTED_KEYSTORE
+static STORK_OCSP_RESPONDERS_TRUSTED_KEYSTORE
+static STORK_OWN_KEYSTORE
+static KEYSTORE_PATH
+static KEYSTORE_PASS
+static ENTRY_ID
-static PWD_ID

KeyStoreConf

+static load()
-static loadKeyStore(entrada properties, entrada keystore : java.security.KeyStore)

-static storkTrustedKeyStoreProp
-static storkOCSPRespondersTrustedKeyStoreProp
-static storkOwnKeyStoreProp
+static storkTrustedKeyStore
+static storkOCSPRespondersTrustedKeyStore
+static storkOwnKeyStore
+static storkOwnKeyStoreOPwdMap

KeyStoreLoader

219 | P a g e

D4.10 Final Version of Technical Design

Keystore STORKOwnKeyStore

7. private storkOwnKeyStorePwdMap

Hashmap with the password for every key entry in the keystore STORKOwnKeyStore

Methods

1. public static load

Static method that loads all the information from the keystores and fills in the
attributes described above.

2. private static loadKeyStore

Auxiliary method to load each keystore information in memory.

5.4.7.1.2 eu.stork.peps.keystoresKeyStoreConf Class

Figure 40 – KeyStoreConf Class

This class contains certain values used by KeyStoreLoader class for the keystores loading.

5.5 Digital Signatures

5.5.1 Description

The reference signature solution consists of an OASIS-DSS module that integrates the
implementation of a signature service. A signature service implements the SPI interface.

In the course of STORK 2.0 developments for the purpose of facilitating signature integration
among MSes, two different SPI implementations have been provided:

1) the reference SPI implementation that uses SD-DSS Signature applet, and

2) an Austrian SPI implementation using MS-specific services for creating digital
signatures (Mocca and the Austrian Mobile Phone Signature).

The reference implementation consists of three parts, the SPI implementation added to the
OASIS-DSS module, a web service for each SPI implementation and the SD-DSS signature
applet. The reference implementation is based on SD-DSS version 4.1.013 .

The integration of the signature functionality with the PEPS is considered MS-specific. In
order to provide a sample integration, additional signAP module and the accompanying code
are provided. The code added to eu.stork.peps.auth.dtl.DTLPepsUtil.java class within the PEPS
makes sure that the SignRequest and the document to be signed are transmitted from the
PEPS to the OASIS-DSS module. The signAP then provides the component responsible for
forwarding the user to the signing solutions (via the OASIS-DSS module) and returning the
SignResponse as signedDoc attribute value back to the PEPS.

13 https://joinup.ec.europa.eu/asset/sd-dss/description

+static STORK_TRUSTED_KEYSTORE
+static STORK_OCSP_RESPONDERS_TRUSTED_KEYSTORE
+static STORK_OWN_KEYSTORE
+static KEYSTORE_PATH
+static KEYSTORE_PASS
+static ENTRY_ID
-static PWD_ID

KeyStoreConf

220 | P a g e

D4.10 Final Version of Technical Design

The following subsections provide an overview of the packages integrated in the modules of
reference signature solution. OASIS-DSS and OASIS-DSS-API modules provide the core of this
solution. The common SOAP-client and STORK-database modules provide the supporting
packages for the integration into practical MS-specific solution. However the MSes are
encouraged to rely on their own implementations that suit their particular needs,
infrastructure and environment. The two reference implementations delivered in this work
also depend on them. Finally, the signAP module enables the integration of the digital
signature functionality with the PEPS.

5.5.2 Packages in OASIS-DSS-API

Package name Description

eu.stork.oasisdss.api

This package contains the classes that define
signature and wrapping types and profiles. It
furthermore contains the classes for handling,
processing, marshalling and unmarshaling of oasis-
dss data.

eu.stork.oasisdss.api.exceptions
This package consists of the classes for the
handling of oasis-dss and processing specific
exceptions.

eu.stork.oasisdss.api.utils
This package provides helper classes used for
mapping and extracting data, as well as for the
invocation of clients and services.

eu.stork.oasisdss.profile

This package contains the automatically generated
classes supporting OASIS Stork profile, obtained by
applying the schemas present in
resources/schema/oasis-dss package.

eu.stork.signature.spi This package includes the interface definition of
SPI.

Table 62: DSS-API packages

5.5.3 Packages in OASIS-DSS module

Package name Description

at.gv.egiz.bku.viewer
This package contains the definition of a validator
interface applicable for various mime types, as well
as its helper classes.

at.gv.egiz.bku.text This package contains the implementation of text
validator.

at.gv.egiz.bku.slxhtml Contains the implementation of SLXHTML validator
and supporting classes.

eu.stork.oasis.caching

This package includes the definition of caching
provider for OASIS-DSS requests, as well as its in-
memory based implementation and supporting
classes.

eu.stork.oasis.exceptions This package contains the exception classes from

221 | P a g e

D4.10 Final Version of Technical Design

Package name Description

the module.

eu.stork.oasisdss
In this package defined is the entry point for OASIS-
DSS web service interface, integration servlet and
OASIS DSS webform binding processing engine.

eu.stork.oasisdss.processing This package provides various handlers used by
OASIS-DSS processing engine.

eu.stork.oasisdss.redirectors

Contains definition interface and implementation
for the targetLocator service for Oasis-DSS
requests. It also contains SPITarget
implementation that is responsible for forwarding
the requests to other ISignature implementations.

eu.stork.oasisdss.utils This package contains utility classes used in the
package.

eu.stork.oasisdss.webform
This package contains the implementation of the
registry of pending requests provided using
webform binding.

Table 63: DSS module packages

5.5.4 Packages in reference SPI implementation using SD-DSS applet

The reference implementation based on SD-DSS signature applet consists of the following
packages:

Package name Description

eu.stork.signature.spi.impl.reference
This package contains the implementation of
ISignature interface, as provided in OASIS-DSS
API

eu.stork.signature.spi.impl.reference.c
onfig

Classes managing initialization of
configuration parameters

Eu.stork.signature.referenceImplemen
tation

This package contains servlet that handles
signature requests.

Eu.stork.signature.spi.impl.reference.c
onfig Contains configuration initialization classes.

Table 64: Reference implementation packages integrating SD-DSS

This module includes additional packages provided by third-party SD-DSS implementation.
The details on these packages can be obtained from the developer’s repository14.

14 https://joinup.ec.europa.eu/asset/sd-dss/description

222 | P a g e

D4.10 Final Version of Technical Design

5.5.5 Packages in reference SPI implementation using Austrian services

Package name Description

eu.stork.signature.app.service This package contains the implementation of
ISignature interface, as provided in OASIS-DSS API

eu.stork.signature
Contains the interface definition for signature
types and implementation helpers supporting
PAdES and XAdES profiles.

eu.stork.signature.web
Contains the implementations of login, dataurl
and signature servlets, as well as support for
application configurations.

eu.stork.securitylayer
This package and its subpackages contain helper
classes for the mapping of SignRequests to AT-
specific SecurityLayer requests.

eu.stork.securitylayer.identitylink Contains helper class for processing of
InfoBoxReadRequests.

eu.stork.securitylayer.signature Contains the classes for handling and processing
of signature requests and responses.

Table 65: Reference implementation packages integrating MS services

5.5.6 Packages in the common SOAP-client module

Package name Description

at.gv.e_government.reference.namespace.
verificationservice._20120922

Axis-derived classes providing the
support for AT eGov namespace

eu.stork.signature.verification.soap.client Contains the implementation of sample
SOAP client

org.w3._2000._09.xmldsig_ Contains auto-generate classes

Table 66: Common SOAP-client packages

5.5.7 Packages in the common STORK-database module

Package name Description

eu.stork.signature.database

Provides entities that represent SignRequest
including request metadata and document that
should be cache, along with its particular
metadata. It furthermore provides the
transaction implementation using database.

eu.stork.signature.database.except
ions Contains the exception clases used in the module

Table 67: Packages in common STORK-database module

223 | P a g e

D4.10 Final Version of Technical Design

5.5.8 Packages in the SignAP module

This module is an extended version of a the DemoAP module. Therefore, the most of the
descriptions in DemoAP apply to this module and packages as well.

The most relevant additional functionalities provided by this module are the following:

• Extraction of SignRequest from the PersonalAttributeList

• Communication with the OASIS module via Web Form Binding

• Temporary storage of the incoming SAMLRequest, to enable later integration and
correlation with the SignResponse

• Extraction of the SignResponse returned by the OASIS module and its integration into
STORKAttrQueryResponse

• Delivery of STORKAttrQueryResponse to APResponseURL

Package name Description

eu.stork.ap
This package contains the interfaces for managing of
incoming requests and working with SAML objects and
their implementations.

eu.stork.ap.actions

This package contains action handlers.

The main actions that supports the integration with
OASIS are provided in StartSignatureCreationAction
and ObtainSignatureAction classes.

eu.stork.ap.exceptions Contains the exceptions used in the module.

eu.stork.ap.idp This package integrates the actions that support
authentication.

eu.stork.ap.security This package contains the interceptor class used to
filter and validate incoming requests.

eu.stork.ap.storage

This package defines the interface and provides the
implementation for the temporary storage of SAML
requests, used to enable the maping after the
signature has been returned by OASIS module.

Table 68: SignAP packages

5.6 Document Transfer Layer (DTL)

5.6.1 Description

The document transfer layer (DTL) handles the transfer of signature request (signDoc)
between SP, S-PEPS, C-PEPS and member specific DSS (document signature service). The DTL
is a JAX webservice with a mySQL database and WSDL interface for transfer of documents

The DTL is designed as a standalone web service to communicate with PEPS and other DTL for
transfer of signature documents between Member States. The process has two phases, 1) The
user and the document is transferred to the DSS of the user’s home country, where the user
signes the document. 2) The user and the signed document is signed data is returned to the
SP.

224 | P a g e

D4.10 Final Version of Technical Design

Figure 41 Signature request transferred from SP to country DSS

Phase one has the following steps.

1. User requests service from SP (i.e. bank)

2. SP redirects user to S-PEPS with an Oasis signRequest for the document to be signed.

3. S-PEPS process signRequest and uploads document to his S-DTL.

4. S-DTL stores document and return a document ID (DocUI)

5. S-PEPS requests users consent for action

6. User gives his consent

7. S-PEPS redirects user to C-PEPS

8. C-PEPS requests users consent for action

9. User gives his consent

10. C-PEPS creats a document transfer request SAML and sends to his C-DTL

11. C-DTL requests document from S-DTL with the document request SAML

12. S-DTL ask S-PEPS to validate request SAML

13. S-PEPS validates request and returns DocUI

14. S-DTL return document to C-DTL

15. C-DTL returns document and mime type to C-PEPS

16. C-PEPS forwards user to his DSS for signature creation

225 | P a g e

D4.10 Final Version of Technical Design

Figure 42 Signature response is returned to SP from DSS

Phase two has the following steps:

1. DSS returns signature response to C-PEPS

2. C-PEPS uploads response to C-DTL

3. C-DTL updates cache

4. C-DTL confirms update

5. C-PEPS requests consent from user

6. User gives his consent

7. C-PEPS redirect user to S-PEPS

8. S-PEPS creats a document transfer request SAML and sends to his S-DTL

9. S-DTL requests document from C-DTL with the document request SAML

10. C-DTL ask C-PEPS to validate request SAML

11. C-PEPS validates request and returns DocUI

12. C-DTL return document to S-DTL

13. S-DTL updates cache

14. S- DTL returns document and mime type to S-PEPS

15. S-PEPS requests users consent for action

16. User gives his consent

17. S-PEPS returns signature response to SP

226 | P a g e

D4.10 Final Version of Technical Design

5.6.2 Packages

Following are the main classes in the DTL and a short description of the functionality.

5.6.2.1.1 Documentservice

Figure 43 Class diagram for Documentservice

5.6.2.1.1.1 Class description

Here is a description of the main classes involved in the Documentservice package.

Interface

Class

DocumentService

Description Implements the interface of DocumentService.
Methods:

• Add document to DTL layer
o String addDocument(byte[] document, String xmlRequest,

String country, String SpId, String mimeType, String
receiverCert)

• Add document to DTL layer which SP has uploaded
o String addSPDocument(String docId, String xmlRequest,

String country, String SpId, String receiverCert)
• Get document from DTL

o byte[] getDocument(String documentTransferRequest,
String dtlUrl)

• Get document mime type of document
o String getDocumentMime(String docId, String dtlUrl)

• Update document in dtl
o Boolean updateDocument(String docId, String

xmlResponse, byte[] document)
• Update document in DTL and prepare for SP

o boolean updateSPDocument(String
documentTransferRequest, String dtlUrl, String
xmlResponse)

Table 69: Main classes in the Document service package

227 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

SPDocumentService

Description Interface for SPDocumentservice.
Methods:

• Add document to temp layer
o String addSPSignDocument(byte[] document, String spId,

String mimeType, String receiverCert)
• Get document from Temp layer

o byte[] getSPDocument(String docId, String spId)

Table 70: Methods in the SPDocumentService interface

Interface

Class

DocumentServiceImpl

Description Implements that functionality for the document service.

Methods:

• Add document to DTL layer
o String addDocument(byte[] document, String xmlRequest,

String destinationCountry, String SpId, String mimeType,
String receiverCert)

• Add document to DTL layer which SP has uploaded
o String addSPDocument(String docId, String xmlRequest,

String destinationCountry, String SpId, String receiverCert)
• Get document from DTL

o byte[] getDocument(String documentTransferRequest,
String dtlUrl)

• Get document mime type of document
o String getDocumentMime(String docId, String dtlUrl)

• Update document in dtl
o boolean updateDocument(String docId, String

xmlResponse, byte[] document)
• Update document in DTL and prepare for SP

o boolean updateSPDocument(String
documentTransferRequest, String dtlUrl, String
xmlResponse)

Table 71: Methods in the DocumentServiceImpl interface

Interface

Class

SPDocumentServiceImpl

Description Implements the actual interaction with documents in database
Methods:

• Add document to temp layer
o String addSPSignDocument(byte[] document, String SpId,

228 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

SPDocumentServiceImpl

String mimeType, String receiverCert)
• Get document from Temp layer

o byte[] getSPDocument(String docId, String spId)

Table 72: Methods in the SPDocumentServiceImpl interface

5.6.2.1.2 Documentservice.data

Figure 44 Class diagram for data

5.6.2.1.2.1 Class description

Here is a description of the main classes involved in the Documentservice data package.

Interface

Class

DatabaseConnector

Description Implements the interface for connection and communication with database.
Methods:

• Add document to database
o boolean addDocument(DocumentModel document)

• Add request to database
o boolean addRequest(RequestModel request)

• Add temp document to database
o boolean addTempDocument(TempDocumentModel

document)
• Delete Document from database

o boolean deleteDocument(String docId)
• Delete temp document from database

o boolean deleteTempDocument(String docId)
• Get Document from database

o DocumentModel getDocument(String docId)
• Get request from database

o RequestModel getRequest(String requestId)
• Get request from database

229 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

DatabaseConnector

o RequestModel getRequestByDocId(String docId)
• Get temp document from database

o TempDocumentModel getTempDocument(String docId)
• Update document in database

o boolean updateDocument(DocumentModel
document)

• Update request in database
o boolean updateRequest(RequestModel request)

• Update temp document in database
o boolean

 updateTempDocument(TempDocumentModel
document)

Table 73: Methods in the DatabaseConnector interface

Interface

Class

DatabaseConnectorMySQLImpl

Description Implements the connection and communication with database.
Methods:

• Add document to database
o boolean addDocument(DocumentModel document)

• Add request to database
o boolean addRequest(RequestModel request)

• Add temp document to database
o boolean addTempDocument(TempDocumentModel

document)
• Delete Document from database

o boolean deleteDocument(String docId)
• Delete temp document from database

o boolean deleteTempDocument(String docId)
• Get Document from database

o DocumentModel getDocument(String docId)
• Get request from database

o RequestModel getRequest(String requestId)
• Get request from database

o RequestModel getRequestByDocId(String docId)
• Get temp document from database

o TempDocumentModel getTempDocument(String docId)
• Update document in database

o boolean updateDocument(DocumentModel
document)

• Update request in database

230 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

DatabaseConnectorMySQLImpl

o boolean updateRequest(RequestModel request)
• Update temp document in database

o boolean
 updateTempDocument(TempDocumentModel
document)

Table 74: Methods in the DatabaseConnectorMySQLImpl interface

Interface

Class

DatabaseHelper

Description Helper class for database implementation.

Methods:

• Get the current timestamp in SQL timestamp
o static Timestamp getSqlCurrentDate()

• Convert Java Date to SQL timestamp
o static Timestamp getSqlDate(Date date)

• Convert SQL timestamp to Java Date
o static Date getUtilDate(Timestamp time)

Table 75: Methods in the DatabaseHelper interface

5.6.2.1.3 Documentservice.model

Figure 45 Class diagram for model

5.6.2.1.3.1 Class description

Here is a description of the main classes involved in the Documentservice model package.

Interface

Class

DocumentModel

Description Implements the gets and sets for the document model.

Methods:

Get the time of file creation

 Date getCreated()

Get the file stream

 InputStream getDataStream()

231 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

DocumentModel

Get the time when file was deleted

 Date getDeleted()

Get the id of the document

 String getDocid()

Get a byte array of the document

 byte[] getDocument()

Get the encrypted

 String getEnciv()

Get the encrypted key

 String getEnckey()

Get filename

 String getFilename()

Get file mimetype

 String getMimetype()

Get the reciver cert

 String getReicevercert()

Get time of updated

 Date getUpdated()

Validate before insert

 void insertValidate()

Set the time of creation

 void setCreated(Date created)

Set the file strea,

 void setDataStream(InputStream stream)

Set time of deletion

 void setDeleted(Date deleted)

Set document id

 void setDocid(String docid)

set document

 void setDocument(byte[] document)

Set encrypted

 void setEnciv(String enciv)

Set encrypted key

 void setEnckey(String enckey)

232 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

DocumentModel

Set filename

 void setFilename(String filename)

Set mime type

 void setMimetype(String mimetype)

Set reciever cert

 void setReicevercert(String reicevercert)

Set time when file was last updated

 void setUpdated(Date updated)

Validate data

void updateValidate()

Table 76: Methods in the DocumentModel interface

Interface

Class

RequestModel

Description Implements get and sets for the request model

Methods:

Get the destination country

 String getDestcountry()

Get the document id

 String getDocid()

Get the full document id

 String getFullDocID()

Get the request time

 Date getReqtimestamp()

Get the request id

 String getRequestid()

Get the time of request

 Date getRestimestamp()

Get the service provider

 String getSpcountry()

Get the service provider id

 String getSpid()

Get the xml of the request

 String getXmlrequest()

233 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

RequestModel

Get the xml of the response

 String getXmlresponse()

Validate data

 void insertValidate()

Set the destionation country

 void setDestcountry(String destcountry)

Set the document id

 void setDocid(String docid)

Set the request time

 void setReqtimestamp(Date reqtimestamp)

Set the request id

 void setRequestid(String requestid)

Set the time of request

 void setRestimestamp(Date restimestamp)

Set service provider country

 void setSpcountry(String spcountry)

Set service provider id

 void setSpid(String spid)

Set the xml of the request

 void setXmlrequest(String xmlrequest)

Set the xml of the response

 void setXmlresponse(String xmlresponse)

Validate data

 void updateValidate()

Table 77: Methods in the RequestModel interface

Interface

Class

TempDocumentModel

Description Temp document model class

Methods:

Get the time of creation

 Date getCreated()

Get the data stream

 InputStream getDataStream()

234 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

TempDocumentModel

Get the time of deletion

 Date getDeleted()

Return document id

 String getDocid()

Return the file

 byte[] getDocument()

Get the encrypted initialization vector

 String getEnciv()

Get the encrypted key

 String getEnckey()

Get the time of file access

 Date getFetched()

Get the mime type of the file

 String getMimetype()

Get the the reciever cert

 String getReicevercert()

Return the service provider id

 String getSpid()

Validate data

 void insertValidate()

Set the time of creation

 void setCreated(Date created)

Set the data stream

 void setDataStream(InputStream stream)

Set the time of deletion

 void setDeleted(Date deleted)

Set the document id

 void setDocid(String docid)

Set the document

 void setDocument(byte[] document)

Set the encrypted initialization vector

 void setEnciv(String enciv)

Set the encrypted key

 void setEnckey(String enckey)

235 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

TempDocumentModel

Set the time of last access

 void setFetched(Date fetched)

Set the file mime type

 void setMimetype(String mimetype)

Set the reciver cert

 void setReicevercert(String reicevercert)

Set the service provider id

 void setSpid(String spid)

Validate

 void updateValidate()

Table 78: Methods in the TempDocumentModel interface

5.6.2.1.4 Documentservice.utils

Figure 46 Class diagram for Utils

5.6.2.1.4.1 Class description

Here is a description of the main classes involved in the Documentservice utils package.

Interface

Class

EncryptionHelper

Description Utility class with encryption functionality:

Methods:

Decrypt data with keys

 byte[] decrypt(byte[] encData)

Encrypt data with key

 byte[] encrypt(byte[] clearData)

Encrypt string with certificate

 String encryptWithCert(String certString, String input)

Generate new symmetric keys

 void generateKeys()

Get the IV string

236 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

EncryptionHelper

 String getIv()

Get the key string

 String getKey()

Initialize keys with specified keys

 void initKeys(String inKey, String inIv)

Table 79: Methods in the EncryptionHelper interface

Interface

Class

ExternalDocservice

Description Utility class for file handling

Methods:

Get document from external DTL

 static byte[] getDocument(String documentTransferRequest, String
dtlUrl)

Get document mime from external DTL

 static String getDocumentMime(String docId, String dtlUrl)

Table 80: Methods in the ExternalDocservice interface

Interface

Class

Utils

Description General utility class for DTL

Methods:

Decode base64 string to bytes

 static byte[] decodeBase64String(String base64string, boolean
urlSave)

Base64 encode bytes

 static String encodeBase64bytes(byte[] bytes, boolean urlSafe)

Get string stream

 static InputStream getStream(String string, String codePage)

Get file data

 static byte[] readData(String fileName)

Read the content of the file

 static String readString(String fileName)

Send using GET

 static String sendGet(String url)

237 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

Utils

Send using POST

 static String sendPost(String url, String urlParameters)

Table 81: Methods in the Utils interface

Interface

Class

XmlHelper

Description Utility class for xml handling

Methods:

Get request document

 static String getRequestDocument(String xmlRequest)

Get request document data

 static String getRequestDocumentData(String xmlRequest)

Get mime from request

 static String getRequestDocumentMime(String xmlRequest)

Get request id from request

 static String getRequestId(String xmlRequest)

String the document id

 static String StripDocId(String docId)

Verify the transfer request

 static String verifyRequest(String transferRequest)

Verify request bytes

 static String verifyRequestByte(byte[] transferRequest)

Table 82: Methods in the XmlHelper interface

5.6.2.1.5 Documentservice.exceptions

Figure 47 Class diagram for exceptions

5.6.2.1.5.1 Class description

Here is a short description of the main classes involved in the Documentservice exception
package.

238 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

DatabaseException

DocumentServiceException

EncryptionException

ModelException

Description Implements exception handling for DTL classes.

Table 83: Classes in the Exceptions interfaces

5.6.3 Webservice

The DTL service has the following methods and is no dependency on other STORK
components.

5.6.3.1.1 Interface

// Web method to upload a document to server
@WebMethod(operationName = "addDocument")
public String addDocument(byte[] document, String xmlRequest, String
country, String SpId, String mimeType, String receiverCert);

// web method to download a document from server
@WebMethod(operationName = "getDocument")
public byte[] getDocument(String documentTransferRequest, String dtlUrl);

// web method to download a document from server
@WebMethod(operationName = "getDocumentMime")
public String getDocumentMime(String docId, String dtlUrl);

// web method to update document in server
@WebMethod(operationName = "updateDocument")
public boolean updateDocument(String docId, String xmlResponse, byte[]
document);

5.6.4 Database

The DTL has been programmed to connect to a mySQL database but it should be fairly trivial
to use another database vendor. The create script for the database and tables is in the folder
DBSQL in the DocumentService project.

5.6.4.1.1 Tables

The database consists of two tables, document and request which can be seen onFigure 3.
The document tables holds data pertaining to the document data (the data its self, mimetype,
created time, encryption data etc). The request table holds information about the oasis sign
request and is linked to the document data by the document id.

239 | P a g e

D4.10 Final Version of Technical Design

Figure 48 DTL database tables.

5.7 Version Control

5.7.1 Description

Version Control (VC) is the process of sharing the configuration information related to the
STORK software and the environment.

This module includes two libraries:

• Version Control library → includes the version control functionalities.

• Updater library → schedules daily routine version control operations.

Three configuration files are existed specific to Version Control Module. First two of them are
configurated for Version Control Library and the other is for Updater Library:

• versioninfo.properties configuration file isn’t not specific to running environments (PROD,
PRE_PROD, TEST, PEPS, SP).

• myinfo-*.xml configuration file is used when generating a version control file that is
specific to running environment. * test|pre-prod|prod

• schedulerApplicationContex.xml is used for scheduling operation.

Other than these configurations, Version Control Module has configurations related with
other projects (PEPS, SP and V-IDP) and store files(keystore, trust store).
The following diagram shows the main classes involved in the anonymity process.

5.7.2 Package specification

Next, the classes depicted above are briefly explained:

240 | P a g e

D4.10 Final Version of Technical Design

Figure 49 Class diagram for Version Control

Interface

Class

InfoGeneration

Description This is an abstract class for generating and downloading PEPS/SP version
control files:

• config: configuration file
• vcType: version control file type
• verInfoPath: version control file location

Methods • generate(InfoEnvironment environment): void
Description: Abstract method for version control files generation.
Input parameters:

o environment: running environment

241 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

InfoGeneration

• storeCertificateToDir (byte[] cert, String cerFileName): void
Description: Stores byte arrays as certificate file to local storage.

o cert: certificate data as byte array

o cerFileName: certificate file name

• storeCertificateToStore(byte[] cert, String cerFileName,
VersionControlType vcSession): void
Description: Store byte arrays as certificate file to trusted store

o cert: certificate data as byte array

o cerFileName: certificate file name

o vcSession: which type certificate(PEPS |SP)

• moveMyOperativesToPublic (): void
Description: Moves my file(s) to public directory.

• downloadInfo(Collection<String> urls): Collection<String>
Description: This method downloads version control files to received
directory according to given urls.

o urls: given download urls

Output returns: failed download urls

• downloadInfo(String urlStr): File
Description: This method downloads version control file to received
directory according to given url.

o url: download url

Output returns: downloaded file

Table 84: Interface of InfoGeneration class of Version Control

Interface

Class

PEPSInfoGeneration

Description Represents a class that generating and downloading PEPS version control file.
This class contains PEPS specialized operations when generating version control
files:

• infoAccessor: PEPS version control files attributes accessor
Table 85: Interface of PEPSInfoGeneration class of Version Control

242 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

SPInfoGeneration

Description Represents a class that generating and downloading SP version control file. This
class contains SP specialized operations when generating version control files.

Table 86: Interface of SPInfoGeneration class of Version Control

Interface

Class

SamlXMLParser

Description Parses SamlEngine.xml and return trusted store path.
Methods • getKeystoreConfPath(final String samlEngineDir, final String

instanceName): InputStream
Description: Returns signer key store configuration path.
Input parameters:

o samlEngineDir: samlengine.xml file's directory path

o instanceName: instance name in xml

Table 87: Interface of SamlXMLParser class of Version Control

Interface

Class

MailService

Description Class used for sending mails.
Methods • sendMailAndHandleErrors(String subject, String message, final URL

configUrl): void
Description: Sends a mail without any exception.

• sendMailAndHandleErrors(MailData mailData): void
Description: Sends a mail with the given data contained mailData
object. This method returns silently in all failure and success cases. It
catches and logs all exceptions internally and does not rethrow
them.This is because this method is intended to be used
asynchronously either via jms or other asyncronous calls.

• sendMail(String subject, String message, URL configUrl): void
Description: Sends a mail with the configuration data contained
mailData object. Intended to be used in synchronous calls

• sendMail(MailData mailData): void
Description: Sends a mail with the given data contained mailData
object. Intended to be used synchronous calls

Table 88: Interface of MailService class of Version Control

Interface

Class

MasterAccessor

Description This class provides accessing interface to master file:

243 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

MasterAccessor

• masterFileUrl: Master file url.
• masterFile: Downloaded master file.

Methods • downloadMasterFile(final URL configUrl): void
Description: Downloads master file from given url.
Input parameters:

o configUrl: master file configuration url.

• readNodesType():void

Description: Returns NodesType field of master file.

• deleteMasterFile (): boolean

Description: Deletes master file.

 Output returns: deletion operation result

Table 89: Interface of MasterAccessor class of Version Control

Interface

Class

InfoAccessor

Description This abstract class provides accessing interface to version control files:

• config: configuration
• vcType: version control type

Methods • getCerFileByName (String fileName): File
Description: Returns certificate that is given its name.
Input parameters:

o fileName: file name

• readStorkVersionInfoType (File xmlFile): StorkVersionInfoType
Description: Returns StorkVersionInfoType field of version control file.
Input parameters:

o xmlFile: version control file xml

• readEnvironmentType(File xmlFile): EnvironmentType
Description: Returns EnvironmentType field of version control file.
Input parameters:

o xmlFile: version control file xml

• readAllCountriesEnvironmentType(File xmlFile):
Map<String,EnvironmentType>
Description: Returns MyCountry's EnvironmentType field of version
control file. This can be SPs file.

244 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

InfoAccessor

Input parameters:

o xmlFile: version control file xml

• readMyCountryEnvironmentType(File xmlFile): EnvironmentType
Description: Returns MyCountry's EnvironmentType field of version
control file. This can be SPs file.
Input parameters:

o xmlName: version control file xml

• readAllCountries(File xmlFile): File
Description: Returns countries. This can be SPs file.
Input parameters:

o xmlFile: version control file xml

• getEnvironmentType(EnvironmentsType envsType): EnvironmentType
Description: Reads country types.
Input parameters:

o envsType: environment type field of xml

• validateCert(File xmlFile, EnvironmentType envType): boolean
Description: Compares inner and outer certificate's equality.
Input parameters:

o xmlFile: version control file xml

o envType: environment type field of xml

• getAllVersionInfo(InfoDirType dirType): File[]
Description: Returns all version control files under given directory. Not
exist SPs file.
Input parameters:

o dirType: operation directory type

• deleteAllVersionInfo(InfoDirType dirType):void
Description: Deletes all version control files under given directory.
Input parameters:

o dirType: operation directory type

• deleteAllVersionInfo(InfoDirType dirType, XMLGregorianCalendar
dateBefore): void
Description: Deletes all version control files under given directory that
is generated older than given date.
Input parameters:

o dateBefore: date before

o dirType: operation directory type

245 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

InfoAccessor

• deleteCerFromStore(String alias, VersionControlType vcSession):
boolean
Description: Deletes certificate from trust store with given alias
Input parameters:

o alias: trust store alias

o vcSession: Version Control type

• deleteCersFromStore(Set<String> uniqueIDs, VersionControlType
vcSession): boolean
Description: Deletes certificates from trust store with given ids
Input parameters:

o uniqueIDs: version control file xml

o vcSession: Version Control type

• getMyCountryID (): String
Description: Returns own country id.

Table 90: Interface of InfoAccessor class of Version Control

Interface

Class

InfoComparator

Description This class provides to compare version control files:

• comparisonSummaries: definitions of changes
• certificateChanged: is certificate changed result
• mfFieldsChanged: is master file changed result
• configFile: configuration file
• vcType: version control type
• configUrl: configuration url

Methods • compareWithConfigs(final InfoEnvironment environment, final File
xmlExist): boolean
Description: Compares new version control file and configuration file
values. If changes are existed, it will return true.
Input parameters:

o environment: running environment

o xmlExist: version control file xml

• compare (File xmlOld, File xmlNew): int
Description: Compares two version controls.
Input parameters:

o xmlOld: current version control file

246 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

InfoComparator

o xmlNew: upcoming version control file

Output Return: If equals return 0.

Table 91: Interface of InfoComparator class of Version Control

Interface

Class

PEPSInfoAccessor

Description This class provides accessing interface to PEPS version control files:
Methods • getVersionFile(String countryID, InfoDirType dirType): File

Description: Returns any PEPS version control file.
Input parameters:

o countryID: country id

o dirType: operation directory type

• getOpCerFile(String countryID): File
Description: Return any PEPS operative certificate.
Input parameters:

o countryID: country id

• getMyCountryVersionFile(InfoDirType dirType): File
Description: Returns own PEPS version control file.
Input parameters:

o dirType: operation directory type

• getSPsVersionFile(InfoDirType dirType): File
Description: Returns own SPs version control file.
Input parameters:

o dirType: operation directory type

• deleteUnneededVersionInfo(Set<String> countryIDs, InfoDirType
dirType): boolean
Description: Deletes version control file that is removed from master
file.
Input parameters:

o countryIDs: country ids

o dirType: operation directory type

Table 92: Interface of PEPSInfoAccessor class of Version Control

Interface

Class

SPInfoAccessor

247 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

SPInfoAccessor

Description This class provides accessing interface to SP version control files:
Methods • getMySPVersionFile(InfoDirType dirType): File

Description: Returns own SP version control file.
Input parameters:

o dirType: operation directory type

• getVersionFile(String countryID, String spID, InfoDirType dirType): File
Description: Returns any SP version control file.
Input parameters:

o countryID: country id

o spID: SP id

o dirType: operation directory type

• getOpCerFile(String countryID): File
Description: Return any SP operative certificate.
Input parameters:

o countryID: country id

• getVersionFile(String countryID, String spID, InfoDirType dirType,
InfoEnvironment environment): StorkVersionInfoType
Description: Returns version control file's info type.
Input parameters:

o countryID: country id

o spID: SP id

o dirType: operation directory type

o envType: environment type

• getVersionFile(String countryID, String spID, InfoDirType dirType):
EnvironmentType
Description: Returns version control file's environment type.
Input parameters:

o countryID: country id

o spID: SP id

o dirType: operation directory type

• deleteVersionInfo(Set<String> countryIDs, InfoDirType dirType):
boolean
Description: Delete a SP version control file.
Input parameters:

248 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

SPInfoAccessor

o countryIDs: country ids

o dirType: operation directory type

Table 93: Interface of SPInfoAccessor class of Version Control

Interface

Class

XMLSign

Description This class signs version control xml file:
Methods • sign(File xmlfile,String keystorePath,String keyStorePassword,String

keyPassword): void
Description: Signs a xml file by stored key.
Input parameters:

o xmlfile: version control file xml

o keystorePath: keystore path

o keyStorePassword: keystore password

o keyPassword: key password

• sign(Document nodoOriginal,PrivateKey privateKey, X509Certificate
cert): byte[]
Description: Signs a document by private key.
Input parameters:

o nodoOriginal: document

o privateKey: private key

o cert: certificate

Table 94: Interface of XMLSign class of Version Control

Interface

Class

XMLValidation

Description This class validates version control xml file:
Methods • validateSignature(File xmlfile): boolean

Description: Validates version control xml file signature.
Input parameters:

o xmlfile: xml file

• validateSignature(File xmlfile,String keystorepath,String
keystorepass): boolean
Description: Validates version control xml file signature. And compares
certificate.

249 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

XMLValidation

Input parameters:

o xmlfile: xml file

o keystorepath: keystore path

o keystorepass: keystore password

• validateVersionInfo (File xmlFile): boolean
Description: Validates version control xml file by xsd. Checks type
mandatories over xml.
Input parameters:

o xmlfile: xml file

• validateMasterFile (File xmlfile): boolean
Description: Validates master xml file by xsd. Checks type mandatories
over xml.
Input parameters:

o xmlfile: xml file

• getFileCertificate (File xmlfile): byte[]
Description: Returns xml file signer's certificate.
Input parameters:

o xmlfile: xml file

• validateSignCertificate(File xmlfile,String keystorepath,String

keystorepass):boolean

Description: Checks signature certificate of xml is existed in keystore.

Input parameters:

o xmlfile: xml file

o keystorepath: keystore path

o keystorepass: keystore password

Table 95: Interface of XMLValidation class of Version Control

Interface

Class

UpdateJob

Description The UpdateJob class schedules version control daily routine process:
Methods • executeInternal (final JobExecutionContext context): void

Description: Scheduled job start here.

250 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

UpdateJob

Input parameters:

o context: include configuration

• updateVersion(final VersionControlType vcType, final String

confFilePath, final InfoEnvironment environment, final String

masterFileUrl, URL configUrl): void

Description: Loads VERSION_CTRL bean from the application context and

calls a function to update the version.

Input parameters:

o vcType: version control type

o confFilePath: configuration file path getting trusted urls from

o environment: running environment

o masterFileUrl: master file url

o configUrl: configuration file url
Table 96: Interface of Updater class of Updater

Interface

Class

PEPSVersionControl

Description Wrapper to Stork Version Control For PEPS:

Methods • startProcess(final String confFilePath, final URL configUrl): void
Description: Starts daily routine process for PEPS..
Input parameters:

o confFilePath: peps.xml configuration file path

o configUrl: versioninfo.properties file path

Table 97: Interface of PEPSVersionControl class of Updater

Interface

Class

SPVersionControl

Description Wrapper to Stork Version Control For SP:
Methods • startProcess(final String confFilePath): void

Description: Starts daily routine process for SP.
Input parameters:

o configUrl: versioninfo.properties file path

Table 98: Interface of SPVersionControl class of Updater

251 | P a g e

D4.10 Final Version of Technical Design

5.8 Anonymity

5.8.1 Description

The Anonymity module is in charge of building an anonymity network between the PEPS, that
is, an onion-routed, delayed delivery network design for the participation in electronic
surveys.

This module includes two libraries:

• Anonymity library → implements the logic of the anonymity network.

• AnonymityVC library → version control of the anonymity nodes.

Apart from some configuration related with Version Control PEPS library, Anonymity module
requires extra configuration, which includes:

• An own keystore, to handle all the network and own certificates and keys.

• A database schema, to store nodes info and manage the network packages.

• A configuration file, which contains the configuration of the anonymity module.

• Two log files, one for each library.

5.8.2 Package specification

The following diagram shows the main classes involved in the anonymity process.

Figure 50. Class diagram for Anonymity

Next, the classes depicted above are briefly explained:

Interface

Class

Node

Description Represents a node in the anonymity network. Contains all the information
required by the process:

• name: a common name for the node

252 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

Node

• address: node service URL
• certificate: node certificate in X509 format
• infoAddress: node info URL
• weight: the weight of the node in the anonymity network
• authoritative: indicates if the node is authoritative or dependent of

another node
• sendToCitizen: the node will not be sent if it is to be extinguished

Table 99: Interface of Node class of Anonymity

Interface

Class

NodeList

Description Represents the list of nodes in the anonymity network.

• nodes: the list of nodes

Methods • loadNodeList()

Description: loads the list of nodes from the database

Table 100: Interface NodeList class of Anonymity

Interface

Class

NodeListService

Description Manages the list of nodes.

• nodes: NodeList object
Methods • sendNodeListToCitizen(String format, String digestMethod, String

c14nMethod) : NodeList
Description: Sends the node list excluding those to be extinguished.
Input parameters:

Table 101: Interface NodeListService class of Anonymity

Interface

Class

Package

Description Represents a package in the anonymity network. Contains all the
information required by the process:

• cipheredPackage: the ciphered package to be sent to the next node
• cipheredSymKey: the symmetrical key used to cypher the package,

ciphered with the next node’s public key
• returnChallenge: the challenge code to be sent back to the sender
• expectedChallenge: the challenge code we will expect from the

253 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

Package

recipient
• recipientNode: the URL of the next node in the anonymity network
• rejectionDue: the date when the package will lapse
• receivalDue: no more packages will be accepted by the SP after this

date
• notUntil: the package cannot be relayed to the next node prior to

this date
• nextTry: should the delivery fail, this will be the date when it will be

tried again
• arrival: the date when this package arrived to this node
• checksum: checksum of the package in Base64 format

Methods • checkPackageIntegrity()

Description: calculates the package checksum and compares to the
checksum included on the package

Table 102: Interface Package class of Anonymity

Interface

Class

InboundPackageHandler

Description Handles the packages before sending them to the anonymity network. It
requires the next parameters:

• nodes: the list of nodes (NodeList object)
• nodeCertificate: the self node certificate in X509 format
• nodeKey: the self node private key in RSA format

Methods • checkBundleSignature(String bundle) : Boolean
Description: receives a signed bundle and checks that the signature
is valid and belongs to a trusted node, in the node list.
Input parameters:

o bundle: the signed xml bundle containing the packages

Output: Boolean indicating if the signature is valid
• getPackagesInBundle(String bundle) : List<String>

Description: receives an xml bundle and extracts the xml string for
each package contained in it.
Input parameters:

o bundle: the xml bundle

Output: the list of packages in xml strings
• unwrapPackage(String package): Package

Description: receives a ciphered package, as extracted from the
bundle, deciphers it with the node private key and returns the
information contained in it.

254 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

InboundPackageHandler

Input parameters:

o package: a ciphered package

Output returns: Package object with the deciphered information
• checkPackageRestricitions(Package package): Boolean

Description: receives a package and checks if there is any reason to
drop it (receivalDue date expired, this is the last node and the
package was received after participationDue date, etc.).
Input parameters:

o package: a Package object

Output: Boolean indicating if the package passes all the restrictions
• handlePackageBundle(String bundle) : String

Description: receives a signed xml bundle of one or more packages,
checks the signature, unwraps and checks the integrity of every
package and, if restriction check is passed, queues them. Finally, the
queue processing procedure is triggered.
Input parameters:

o bundle: the xml bundle

Output: a string describing the result of the operation
• checkAlive() : Boolean

Description: sends back a simple answer, just to acknowledge that
this node is currently running.
Output: Boolean indicating if the node is alive

• checkAliveSecure(String challenge) : String
Description: receives a challenge ciphered with his public key and
sends back the plain challenge, to securely acknowledge that this
node is currently running (to a proxied client).
Input parameters:

o challenge: a string representing the ciphered challenge

Output: a string with the result of deciphering the challenge
• proxyPackages(String bundle): String

Description: acting as an online proxy, a bundle of packages not
addressed to this PEPS is received; the signature is verified and the
proxyPackages method on the OutboundPackageHandler is invoked.
Returned challenge codes are sent back to the client on a signed
bundle.
Input parameters:

o bundle: the signed xml bundle containing the packages

Output: a string containing the challenges of the deciphered
packages

Table 103: Interface InboundPackageHandler class of Anonymity

255 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

QueueManager

Description Handles the package queue.
• queue: the queue of packages in a node

Methods • GetOutboundPackages() : List<Package>
Description: checks the package queue and returns all the packages
that are allowed to be sent at this precise moment, grouped by
recipient.
Output: the list of Package objects in the queue

• getPackages() : List<Package>
Description: checks the package queue and returns all the packages,
grouped by recipient.
Output returns: the list of Package objects in the queue

• queuePackage(Package package)
Description: adds a new package to the queue.
Input parameters:

o package: the Package object to add to the queue

• updatePackage(Package package)
Description: updates the contents of an already queued package.
Input parameters:

o package: the Package object to be updated

• dropPackage(Long packageId)
Description: drops a package from the queue (this must be called
either to drop expired packages or to delete properly delivered
packages after the challenge code has been received and checked).
Input parametes:

o packageId: Long number that identificates the package in the

database

Table 104: Interface QueueManager class of Anonymity

Interface

Class

OutboundPackageHandler

Description Handles the package queue.
• queue: the queue of packages in a node

Methods • signPackageBundle(String bundle) : String
Description: gets an xml package bundle and uses the node
certificate and key to sign it.
Input parameters:

o bundle: a string representing the xml package bundle

Output returns: a string containing the xml bundle signed
• checkAlive(URL nodeAddress): Boolean

Description: checks if the specified node is up to receive packages

256 | P a g e

D4.10 Final Version of Technical Design

Interface

Class

OutboundPackageHandler

with a challenge package.
Input parameters:

o nodeAddress: URL address of the node

Output returns: Boolean indicating if the node is alive or not
• processQueue()

Description: gets a list of packages to be sent. For each recipient,
checks that he is up, builds and signs a bundle with all the packages
addressed to him, sends it and waits for the challenge codes, which
are checked and if correct, the packages are dropped from the
queue. Expired packages are also dropped from the list. Failed
deliveries are scheduled for a later attempt. This process must be
run periodically, besides being triggered on every package arrival.

• proxyPackages(String packages) : String
Description: a set of packages not addressed to this PEPS is received;
they are bundled (and signed) and sent to its destination. Returned
challenge codes are sent back to the caller.
Input parameters:

o packages: a string representing the xml package bundle

Output returns: a string with the challenge codes

Table 105: Interface OutboundPackageHanlder class of Anonymity

257 | P a g e

D4.10 Final Version of Technical Design

6 References

Please note that some of these references are deliverables of this project, pending on
approval by the Commission.

[1] STORK1 specifications: https://www.eid-
stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=1805

[2] STORK1 process flows: https://www.eid-
stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=1465

[3] How to Construct Pseudorandom Permutations from Pseudorandom Functions,
Luby, Michael, Rackoff, Charles (April 1988),
SIAM Journal on Computing 17 (2): 373–386, doi:10.1137/0217022, ISSN 0097-5397

[4] New European Schemes for Signatures, Integrity, and Encryption (NESSIE),
http://www.cryptonessie.org/

[5] The Transitioning of Cryptographic Algorithms and Key Sizes, NIST – 02-07-2009,
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_0702
09.pdf

[6] Deterministic and efficiently searchable encryption, Mihir Bellare, Alexandra Boldyreva,
and Adam O’Neill, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages
535–552. Springer, 2007.

[7] Anonymous Pseudonyms for Cross-Border Identification, M. Barbosa and A. Pinto, Pre-
print, CCTC/Departamento de Informática, Universidade do Minho, Portugal – 2010

[8] Efficient Constructions of Deterministic Encryption from Hybrid Encryption and Code-
Based PKE, Yang Cui, Kirill Morozov, Kazukuni Kobara, and Hideki Imai, Research
Center for Information Security (RCIS), National Institute of Advanced Industrial Science
& Technology (AIST), Japan -
http://staff.aist.go.jp/kirill.morozov/docs/cmki09efficient.pdf.

[9] ISCED Fields of Education and Training in 2013

http://www.uis.unesco.org/Education/Documents/isced-fos-consultation-draft-2013-
en.pdf.

[10] Policy requirements for certification authorities issuing qualified certificates, ETSI TS
101 456.

[11] Digital Signature Service Core Protocols, Elements, and Bindings Version 1.0, OASIS
Standard; 2007
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html

[12] Advanced Electronic Signature Profiles of the OASIS Digital Signature Service Version
1.0, OASIS Standard, 2007
http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-os.html

[13] STORK 2.0 Deliverable D4.9: Functional Design, 2013 https://www.eid-
stork2.eu/index.php?option=com_processes&controller=document&view=document&
task=streamFile&id=450&fid=1854

[14] PEPPOL Deliverable D1.3 Demonstrator and functional Specifications for Cross-Border
Use of eSignatures in Public Procurement; Part 7: eID and eSignature Quality
Classification; Revision: 2.1

[15] STORK 2.0 Deliverable D4.11 Interface Specification, 2013 https://www.eid-
stork2.eu/index.php?option=com_processes&controller=document&view=document&

258 | P a g e

https://www.eid-stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=1805
https://www.eid-stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=1805
https://www.eid-stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=1465
https://www.eid-stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=1465
http://www.cryptonessie.org/
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://staff.aist.go.jp/kirill.morozov/docs/cmki09efficient.pdf
http://www.uis.unesco.org/Education/Documents/isced-fos-consultation-draft-2013-en.pdf
http://www.uis.unesco.org/Education/Documents/isced-fos-consultation-draft-2013-en.pdf
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-os.html
https://www.eid-stork2.eu/index.php?option=com_processes&controller=document&view=document&task=streamFile&id=450&fid=1854
https://www.eid-stork2.eu/index.php?option=com_processes&controller=document&view=document&task=streamFile&id=450&fid=1854
https://www.eid-stork2.eu/index.php?option=com_processes&controller=document&view=document&task=streamFile&id=450&fid=1854
https://www.eid-stork2.eu/index.php?option=com_processes&controller=document&view=document&task=streamFile&id=450&fid=1912
https://www.eid-stork2.eu/index.php?option=com_processes&controller=document&view=document&task=streamFile&id=450&fid=1912

D4.10 Final Version of Technical Design

task=streamFile&id=450&fid=1912

[16] PEPPOL Pan-European Public Procurement Online http://www.peppol.eu/

259 | P a g e

https://www.eid-stork2.eu/index.php?option=com_processes&controller=document&view=document&task=streamFile&id=450&fid=1912

	History
	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Executive summary
	1 Introduction
	1.1 Methodology

	2 PEPS Architecture Design
	2.1 System Context
	2.2 Objectives of PEPSes and V-IDPs
	2.3 Use case view and other requirements
	2.3.1 Use case view
	2.3.1.1 STORK 2.0 core
	2.3.1.2 Version Control
	2.3.1.3 Anonymity
	2.3.1.4 Signatures

	2.3.2 Non Functional requirements (NFR)
	2.3.2.1 NFR: User Requirements
	2.3.2.2 NFR: Evolution Requirements

	2.3.3 Availability
	2.3.3.1 High Availability deployment
	2.3.3.2 Cloud deployment
	2.3.3.3 Monitoring
	2.3.3.4 Resulting availability

	2.4 Logical view
	2.4.1 S-PEPS
	2.4.1.1 Authentication on behalf of and Powers
	2.4.1.1.1 Country selector implementation
	2.4.1.1.2 Sequence diagram Prerequisite for SP without SAML capacities
	2.4.1.1.3 Description
	2.4.1.1.4 Sequence diagram AUB
	2.4.1.1.5 Description

	2.4.1.2 Domain-specific attributes (BA)
	2.4.1.2.1 Sequence diagram BA
	2.4.1.2.2 Description

	2.4.1.3 Signature Creation on Authentication
	2.4.1.3.1 Sequence Diagram
	2.4.1.3.2 Description

	2.4.1.4 Signature Creation with optional Authentication
	2.4.1.4.1 OASIS-DSS HTTP POST Transport Binding
	2.4.1.4.2 STORK 2.0 Integration
	2.4.1.4.3 Sequence Diagram
	2.4.1.4.4 Description

	2.4.1.5 Document transfer
	2.4.1.5.1 Sequence diagram of Document Transfer
	2.4.1.5.2 Detailed description of Document Transfer

	2.4.1.6 Anonymity
	2.4.1.6.1 Sequence diagram
	2.4.1.6.2 Description

	2.4.2 C-PEPS
	2.4.2.1 Authentication on behalf of and Powers
	2.4.2.1.1 Sequence diagram AUB, part 1
	2.4.2.1.2 Description AUB, part 1
	2.4.2.1.3 Sequence diagram AUB, part 2
	2.4.2.1.4 Description AUB, part 2
	2.4.2.1.5 Sequence diagram AUB, part 3
	2.4.2.1.6 Description AUB, part 3

	2.4.2.2 Domain-specific attributes
	2.4.2.2.1 Sequence diagram BA, part 1
	2.4.2.2.2 Description BA, part 1
	2.4.2.2.3 Sequence diagram BA, part 2
	2.4.2.2.4 Description BA, part 2
	2.4.2.2.5 Sequence diagram BA, part 3
	2.4.2.2.6 Description BA, part 3

	2.4.2.3 Powers Validation
	2.4.2.3.1 Sequence diagram BA, part 1
	2.4.2.3.2 Description BA, part 1
	2.4.2.3.3 Sequence diagram BA, part 2
	2.4.2.3.4 Description BA, part 2
	2.4.2.3.5 Sequence diagram BA, part 3
	2.4.2.3.6 Description BA, part 3

	2.4.2.4 Anonymity – First node
	2.4.2.4.1 Sequence diagram Anonymity First Node
	2.4.2.4.2 Description

	2.4.2.5 Anonymity – Other node
	2.4.2.5.1 Sequence diagram
	2.4.2.5.2 Description

	2.4.3 A-PEPS
	2.4.3.1 Authentication on behalf of, Powers (for digital signature) and Domain-specific attributes
	2.4.3.1.1 Description AUB, part 1
	2.4.3.1.2 Sequence diagram AUB, part 2
	2.4.3.1.3 Description part 2

	2.4.4 Version Control (PEPS)
	2.4.4.1 Sequence diagram VCP
	2.4.4.2 Description VCP

	3 V-IDP Architecture design
	3.1 System Context
	3.2 Logical view
	3.2.1 Authentication on behalf of
	3.2.1.1 Sequence Diagram Authentication on behalf of, mixed-model: UC-AUB-MP
	3.2.1.2 Description
	3.2.1.3 Sequence Diagram Authentication on behalf of, mixed-model: UC-AUB-PM
	3.2.1.4 Description
	3.2.1.5 Authentication on behalf of, middleware-model: UC-AUB-MM

	4 Commodities
	4.1 eIdentifier encryption (National Identifier Privacy)
	4.1.1 Symmetric encryption
	4.1.2 Asymmetric encryption
	4.1.3 MAC
	4.1.4 Hash

	4.2 Version Control (SPs)
	4.2.1 Sequence diagram VCS
	4.2.2 Description VCS

	4.3 Personal Data comparison (for re-authentication)
	4.3.1 Introduction to the problem
	4.3.1.1 Re-authentication
	4.3.1.2 Consequences for QAA and AQAA

	4.3.2 Double identities – two persons?
	4.3.3 STORK “solution”
	4.3.3.1 Conceptual solution
	4.3.3.2 Names comparison
	4.3.3.2.1 National cultures
	4.3.3.2.2 Accents and diacritics
	4.3.3.2.3 Transposition tables
	4.3.3.2.4 Examples

	4.3.4 Alternative solutions
	4.3.4.1 Language Sensitive Transposition tables
	4.3.4.2 Multiple Transposition tables

	4.3.5 Comparison of the chosen solution with other solutions
	4.3.5.1 False positives
	4.3.5.2 False negatives
	4.3.5.3 Complexity

	4.3.6 Software design and package usage examples
	4.3.6.1 Usage examples

	4.3.7 Conclusion

	4.4 Browser Temporary Storage Management
	4.4.1 Introduction to the problem
	4.4.2 Integrity protection of the token
	4.4.3 Generation of the token
	4.4.4 Format of the AOI stored in cookies
	4.4.5 Interpretation of the token
	4.4.6 Maintenance of the token

	4.5 SAML Unpackager
	4.5.1 Introduction
	4.5.2 Presentation of the module

	5 Software design
	5.1 PEPS
	5.1.1 Description
	5.1.2 Package specification

	5.2 PEPS/V-IDP Attribute Aggregation
	5.2.1 Description
	5.2.2 Package specification

	5.3 V-IDP
	5.3.1 Description
	5.3.2 Applications
	5.3.3 Modules
	5.3.3.1 MOA-ID
	5.3.3.2 MOA-Common
	5.3.3.3 MOA-SPSS

	5.3.4 Package descriptions
	5.3.4.1 Packages in moa-id-auth module
	5.3.4.1.1 Packages providing general functionality
	5.3.4.1.2 Packages enabling authentication and STORK 2.0 specific flows
	5.3.4.1.3 Packages supporting the integration of MOA-ID modules
	5.3.4.1.4 Packages integrating common STORK 2.0 functionality

	5.3.4.2 Packages in MOA-ID-Configuration
	5.3.4.3 Packages in MOA-Common
	5.3.4.4 Packages in MOA-SPSS
	5.3.4.4.1 Packages providing API and general functionality
	5.3.4.4.2 Packages providing support for SPSS server functions

	5.4 SAMLEngine
	5.4.1 Description
	5.4.2 OpenSAML
	5.4.3 Basic Class Diagram (XML signature generation process)
	5.4.3.1.1 org.opensaml.xml.signature.Signature Interface
	5.4.3.1.2 org.opensaml.xml.signature.impl.SignatureImpl
	5.4.3.1.3 org.opensaml.xml.security.credential.Credential Interface
	5.4.3.1.4 org.opensaml.xml.security.x509.X509Credential Interface
	5.4.3.1.5 org.opensaml.xml.security.x509.BasicX509Credential Class
	5.4.3.1.6 java.security.cert.X509Certificate Class

	5.4.4 Basic Class Diagram (XML Signature verification process)
	5.4.4.1.1 org.opensaml.xml.signature.SignatureTrustEngine Interface
	5.4.4.1.2 org.opensaml.xml.signature.impl.ExplicitKeySignatureTrustEngine Class
	5.4.4.1.3 org.opensaml.xml.security.keyinfo.BasicProviderKeyInfoCredentialProvider Class
	5.4.4.1.4 org.opensaml.xml.security.keyinfo.provider.InlineX509DataProvider Class
	5.4.4.1.5 org.opensaml.xml.security.credential.KeyStoreCredentialResolver Class

	5.4.5 Methods
	5.4.6 Keystore Management
	5.4.7 Basic Class Diagram
	5.4.7.1.1 eu.stork.peps.keystoresKeyStoreLoader Class
	5.4.7.1.2 eu.stork.peps.keystoresKeyStoreConf Class

	5.5 Digital Signatures
	5.5.1 Description
	5.5.2 Packages in OASIS-DSS-API
	5.5.3 Packages in OASIS-DSS module
	5.5.4 Packages in reference SPI implementation using SD-DSS applet
	5.5.5 Packages in reference SPI implementation using Austrian services
	5.5.6 Packages in the common SOAP-client module
	5.5.7 Packages in the common STORK-database module
	5.5.8 Packages in the SignAP module

	5.6 Document Transfer Layer (DTL)
	5.6.1 Description
	5.6.2 Packages
	5.6.2.1.1 Documentservice
	5.6.2.1.1.1 Class description

	5.6.2.1.2 Documentservice.data
	5.6.2.1.2.1 Class description

	5.6.2.1.3 Documentservice.model
	5.6.2.1.3.1 Class description

	5.6.2.1.4 Documentservice.utils
	5.6.2.1.4.1 Class description

	5.6.2.1.5 Documentservice.exceptions
	5.6.2.1.5.1 Class description

	5.6.3 Webservice
	5.6.3.1.1 Interface

	5.6.4 Database
	5.6.4.1.1 Tables

	5.7 Version Control
	5.7.1 Description
	5.7.2 Package specification

	5.8 Anonymity
	5.8.1 Description
	5.8.2 Package specification

	6 References

