

Navigation Dynamics in Recommendation Networks

Daniel Lamprecht

Denis Helic

Markus Strohmaier

markus.strohmaier@gesis.org

Der Wissenschaftsfonds.

daniel.lamprecht@tugraz.at

dhelic@tugraz.at

«Personalized Recommendations will replace the navigation grid on Netflix» Neil Hunt, CPO of Netflix

SUMMARY

far, recommender systems have been mostly evaluated on accuracy → one-click analysis

We extend this evaluation towards sequences of dependent clicks → multiple-click analysis

RESULTS

Recommendation networks are poorly navigable, but explorative and variable scenarios are better supported.

Collaborative Filtering produces navigable networks than more content-based recommendations.

We find that more attention to recommendation networks is needed.

RESEARCH QUESTIONS

- 1) How well are recommendation networks suited for navigation and exploratory search?
- 2) What is the influence of parameters (e.g., recommendation algorithms and the number of recommendations shown) on navigability?

REFERENCES

- [1] M. J. Bates. The design of browsing and berrypicking techniques for the online search interface. Online Information Review, 13(5):407–424, 1989.
- [2] J. Kleinberg. Complex networks and decentralized search algorithms. In Proceedings of the International Congress of Mathematicians (ICM), volume 3, pages 1019–1044, 2006.
- [3] P. Pirolli. Information Foraging Theory: Adaptive Interaction with Information. Oxford University Press, 2007.

CONTACT

Full paper available! www.daniellamprecht.com daniel.lamprecht@tugraz.at

We build recommendation networks with movies from MovieLens and books from BookCrossing, taking the items as nodes and a fixed number of unpersonalized outgoing recommendations per node as links.

We use two types of recommendations:

- Collaborative Filtering recommendations from user ratings
- Content-based recommendations via text similarity of Wikipedia articles for items.

NAVIGATION

We model navigation with Decentralized Search [2], based on of the following intuitions:

- 1. **Title Similarity** (*Star Wars* and *Star Trek*)
- 2. Shared Neighbors (i.e., What neighbor shares the most neighbors with the target?)

Navigation uses one of these types of local knowledge for greedily picking the next hop.

SCENARIOS

- 1) Point-to-Point Search as a static start-totarget navigation.
- 2) Berrypicking [1] as a dynamic and explorative scenario picking one item (berry) from several clusters.
- 3) Information Foraging [3] as a dynamic and explorative scenario searching (foraging) for a whole cluster of items.

FINDINGS

In general we found recommendation networks to be poorly navigable.

We evaluated scenarios based on Success Ratio (the fraction of successfully found targets) over the number of **Hops** (the maximum number of allowed steps).

Point-to-Point Search

Point-to-Point search was only poorly supported (Success Ratio < 20%). This suggests that current recommender systems do not support static navigation scenarios.

Berrypicking & Information Foraging

We found Berrypicking and Information Foraging, examples of explorative scenarios, to be better supported.

Collaborative Filtering produces more navigable networks than content-based recommendations for all scenarios. Concluding, we find that careful attention to recommendation networks is needed in evaluation. With our approach, modifications of recommendation algorithms can be assessed.