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Purpose: Although deep learning has shown great promise for MR image recon-
struction, an open question regarding the success of this approach is the robustness in
the case of deviations between training and test data. The goal of this study is to
assess the influence of image contrast, SNR, and image content on the generalization
of learned image reconstruction, and to demonstrate the potential for transfer
learning.

Methods: Reconstructions were trained from undersampled data using data sets with
varying SNR, sampling pattern, image contrast, and synthetic data generated from a
public image database. The performance of the trained reconstructions was evaluated
on 10 in vivo patient knee MRI acquisitions from 2 different pulse sequences that
were not used during training. Transfer learning was evaluated by fine-tuning base-
line trainings from synthetic data with a small subset of in vivo MR training data.

Results: Deviations in SNR between training and testing led to substantial decreases
in reconstruction image quality, whereas image contrast was less relevant. Trainings
from heterogeneous training data generalized well toward the test data with a range
of acquisition parameters. Trainings from synthetic, non-MR image data showed
residual aliasing artifacts, which could be removed by transfer learning–inspired fine-
tuning.

Conclusion: This study presents insights into the generalization ability of learned
image reconstruction with respect to deviations in the acquisition settings between
training and testing. It also provides an outlook for the potential of transfer learning
to fine-tune trainings to a particular target application using only a small number of
training cases.
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1 | INTRODUCTION

The use of deep learning1 for medical image reconstruction
is a new and emerging field. The first early-stage develop-
ments were reported in 2016. Wang et al proposed to aug-
ment a conventional compressed-sensing reconstruction with
a regularizer that is based on a convolutional neural net-
work.2 Kwon et al proposed to learn a parallel imaging
reconstruction without explicit use of coil sensitivity maps
that operates entirely within image space.3,4 We proposed a
learning approach based on the framework of variational
optimization with the goal of learning the complete recon-
struction procedure, which maps from multichannel k-space
raw data to image space, and the associated numerical proce-
dure.5,6 Since then, a substantial increase of developments
has occurred around the world. At the 2017 annual meeting
of the International Society for Magnetic Resonance in Medi-
cine (ISMRM), work was shown that used learning for image
reconstruction for angiography,7 multicontrast MRI,8 cardiac
imaging,9 MR fingerprinting,10 manifold learning,11 partial
Fourier imaging,12 projection reconstruction,13 and com-
pressed sensing using residual learning.14 Our own recent
developments, which were also presented at ISMRM 2017,
included a preliminary investigation of the influence of sam-
pling patterns on the training procedure,15 the influence of
different loss functions that are used in the training,16 and a
first clinical reader study with the goal of evaluating the
diagnostic content of accelerated images that were recon-
structed using a variational network.17

One of the biggest open questions regarding the success
of these technologies in practice is generalization. To what
degree can the test data deviate from the data that were used
during training? This is important for several reasons. First,
one of the key strengths of MRI is the flexibility during data
acquisition. Due to the range of available MR systems and
protocols, images from different institutions commonly vary
with respect to acquisition parameters. A learned reconstruc-
tion procedure that works only for a specific set of imaging
parameters would therefore be only of limited practical use,
as it would require retraining for every new setup. Second,
collecting large data sets for training is usually expensive
in medical imaging. In some cases, it is even impossible,
such as in the case of time-resolved imaging, in which a
high spatial and temporal resolution ground truth cannot be
obtained. The necessity to collect separate training data for
all protocol versions of a particular sequence would put
substantial restrictions on clinical translation of these new
technologies.

The main goal of this study is to assess the influence of
image contrast, SNR, sampling pattern, and image content
on the generalization of a learned image reconstruction.
These design parameters were chosen for investigation

because the goal of learning a reconstruction for accelerated
data is the separation of aliasing artifacts and true image
content. These parameters have a strong influence on the
structure of the aliasing artifacts, and consequently, the con-
ditioning of the reconstruction problem.

The additional goal, which is also related to the question
of generalization and the issue of limited training data, is to
investigate the potential for transfer learning18 for image
reconstruction using our proposed variational network archi-
tecture.6 This particular topic was recently investigated for
MR image reconstruction of brain data (Dar and Cukur,
arXiv, 2017) with a deep CNN architecture recently proposed
in Ref 9. In the context of image processing and computer
vision, the general hypothesis behind transfer learning is that
low-level image features, such as edges and simple geometri-
cal structures, are independent of the actual image content of
the target application. As a consequence, they can be learned
from arbitrary data sets in which large amounts of training
data are available. These pretrained models then serve as a
baseline, which is then fine-tuned to the target domain using
less training data than would be required when training from
scratch. This concept is appealing for MR image reconstruc-
tion because nonmedical image data are easily available,19,20

which can be used to simulate synthetic k-space data. In con-
trast, large amounts of true measurement training data are
often challenging to obtain.

2 | METHODS

We used a combination of true measurement k-space data
from clinical patients, additionally processed k-space data,
and completely synthetic data for the experiments in this
study. For in vivo data acquisition, 40 consecutive patients
referred for diagnostic knee MRI to evaluate for internal
derangement were enrolled in the study, which was approved
by the internal review board. Fully sampled raw data were
acquired on a clinical 3T system (Magnetom Skyra, Siemens,
Erlangen, Germany) with a standard 15-channel knee coil.
We acquired data with the conventional 2D turbo spin-echo
protocol that is used clinically at our institution. Coronal pro-
ton density–weighted (PDw) sequences with and without fat
suppression (FS) were acquired. Technologists were
instructed to keep the following sequence parameters con-
stant during the study:

� PDw: TR5 2750 ms, TE5 27ms, echo-train length5 4,
matrix size5 3203 288, in-plane resolution5 0.493
0.44mm2, slice thickness5 3mm; and

� PDw FS: TR5 2870 ms, TE5 33 ms, echo-train length5
4, matrix size5 3203 288, in-plane resolution5 0.493
0.44mm2, slice thickness5 3mm.
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The number of acquired slices varied depending on the size
of the patient. Twenty cases were acquired for both the PDw

(5 female, 15 male; age 15-76; body mass index 20-33) and
the PDw FS (10 female, 10 male; age 30-80; body mass
index 20-34) sequence. The data were split equally into 2
categories. The first 10 acquisitions were used for training
and the remaining half was used for validation. A selection
of slices reconstructed by an inverse Fourier transform fol-
lowed by a sum-of-squares combination of the individual
coil elements is shown in Supporting Information Figure S1.
These data show strong similarities in terms of the actual
image content but have fundamentally different contrast and
SNR. The noise level rest of the 2 sequences was estimated
from an off-center slice that showed only background ur.
The estimation was performed by averaging the SD from the
real and imaginary channels of the uncombined multichannel
data, and then averaging over all Nk training data cases
n: restðurÞ5 1

Nk

PNk
n51ðstdð½ReðurÞÞ�1stdð½ImðurÞÞ�Þ. This

resulted in an estimated noise level of rest51025, which was
identical for both the fat-suppressed and the non-fat-
suppressed sequence. The signal level lest was then esti-
mated by calculating the l2 norm of the complex multichan-
nel k-space data f , averaged over the central Nsl520 slices
of all training data cases: lestðf Þ5 1

Nk

PNk
n51ð 1

Nsl

PNsl
sl51

||f ||2
lengthðf ÞÞ.

The central 20 slices were selected to ensure that no slices
that contained no signal because of being outside the imaged
anatomy were included in this analysis. In this definition, f is
organized as a single stacked column vector of the data from
all receive coils. The estimated SNR5 lest

rest
of the PDw data

was approximately 80, and that of the PDw FS data was
approximately 20. A third data set was then generated by
adding additional complex Gaussian noise to the PDw data
such that the SNR corresponded to the PDw FS data. These
data sets allowed us to study the generalization influences of
SNR and image contrast independently from each other.

Synthetic k-space data were generated using 200 images
from the Berkeley segmentation database (BSDS).19 Images
were cropped according to the matrix size of the knee k-
space data, including readout oversampling. The images
were modulated with a synthetic sinusoidal phase using
different randomly selected frequencies. After point-wise
multiplication with randomly selected coil sensitivity maps
estimated from our knee training data, the images were
Fourier-transformed. Complex Gaussian noise was then
added to these synthetic k-space data according to the noise
levels of our knee imaging data. We generated 3 different
versions of these data. The first was generated at the SNR
level of the PDw data, the second at the SNR level of the
PDw FS data, and the third with a randomly selected level of
SNR for every single image using the PDw FS data as the
lower and the PDw data as the upper bound of SNR.

K-space data were undersampled by a factor of 4, accord-
ing to a regular Cartesian undersampling pattern as

implemented by the scanner vendor for accelerated acquisi-
tions using parallel imaging, and variable density pseudoran-
dom sampling according to Ref 21. The same random
sampling pattern was used in all experiments. Twenty-four
reference lines at the center of k-space were used for the esti-
mation of coil sensitivity maps in both cases, using
ESPIRiT.22

We followed the learned image reconstruction procedure
using a variational network described in Ref 5. In this approach
a regularized iterative image reconstruction defined by

EðuÞ5RðuÞ1k
2
||Au2f ||22 (1)

is learned from the training data. The input of the variational
network is the undersampled k-space raw data f and the corre-
sponding coil sensitivity maps (included in the forward-
sampling operator A in Equation 1), and the output is a
complex-valued coil-combined image u. All computations are
performed by accounting for the complex valued data with the
exception of the application of the regularizer on the image u,
in which the image is split up into the real and imaginary part.
The regularizer is defined as

RðuÞ5
XNk

i51

qiðki � uÞ; ki � u5ki;Re � uRe1ki;Im � uIm:

(2)

It consists of a set of Nk spatial filter kernels k for the
real and imaginary component of an MR image and potential
functions q, which are learned from the data together with
the regularization parameter k. Inserting this regularizer in an
iterative image reconstruction yields the following update:

ut115ut2
XNk

i51

�k ti � q0i;tðkti � utÞ2kt A�ðAut2f Þ; kt>0; 0 � t � T21

where �kti denote the filter kernels k
t
i rotated by 180 8; and q0i;t

are the first derivatives of the potential functions qi;t. Unfold-
ing several iterations of this scheme leads to the variational
network structure depicted in Figure 1.6 Essentially, one gra-
dient step GD of an iterative reconstruction can be related to
one stage t in a network with a total of T stages. For refer-
ence, the used network architecture is shown in Figure 1.
Ten stages were used, each consisting of 24 convolution ker-
nels of size 113 11. The iPalm optimizer23 and the varia-
tional network architecture were implemented and trained
using Tensorflow,24 which was extended with additional
operators such as the trainable activation functions and
(inverse) Fourier shift operations. The source code of our
extended TensorFlow library will be provided online (https://
github.com/VLOGroup/tensorflow-icg). Example training
and testing code for MRI reconstruction will be provided
online as well (https://github.com/VLOGroup/mri-variatio-
nalnetwork). Trainings were performed slice by slice. During
both training and testing each slice u was normalized
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between 0 and 1 u5 uorig
maxðjuorigjÞ

� �
for the application of the

learned regularizer. The pixel-by-pixel mean-squared-error to
the fully sampled reference was used as the error metric that
was minimized during the training process. All trainings
were performed with 150 epochs and a batch size of 5, using
the iPalm algorithm.24 One epoch was defined as a sequence
of updates of the network parameters when all training exam-
ples have been used exactly once. Trainings were performed
using the following training data.

First set of experiments: assessment of generalization
with respect to contrast and SNR:

1. PDw using the central 20 slices from 10 patients (total of
N5 200 slices).

2. PDw FS using the central 20 slices from 10 patients (total
of N5 200 slices).

3. PDw using the central 20 slices from 10 patients (total of
N5 200 slices) with additional noise added to the
complex multichannel k-space data such that the SNR
corresponds to the SNR level of the FS sequence.

4. Joint PDw (5 patients) and PDw FS (5 patients) training,
each using the central 20 slices (total of N5 200 slices).

5. Joint PDw (5 patients) and PDw with additional noise
added (5 patients) training, each using the central 20
slices (total of N5 200 slices).

Second set of experiments: influence of the number of train-
ing samples and the heterogeneity of the training data:

6. Joint PDw (10 patients) and PDw FS (10 patients) training,
each using the central 20 slices (total of N5 400 slices).

7. PDw using the central 20 slices from the 5 patients used in
the joint training in experiment 4 in the first set of experi-
ments (total of N5 100 slices).

8. PDw FS using the central 20 slices from the 5 patients used
in the joint training in experiment 4 in the first set of
experiments (total of N5 100 slices).

Third set of experiments: assessment of generalization
with respect to the sampling pattern:

9. Training with regular sampling, testing with regular
sampling.

10. Training with random sampling, testing with regular
sampling.

11. Training with regular sampling, testing with random
sampling.

12. Training with random sampling, testing with regular
sampling.

13. Joint training with regular and random sampling, testing
with regular sampling.

14. Joint training with regular and random sampling, testing
with random sampling.

Fourth set of experiments: training with synthetic data:

15. Synthetic BSDS data (total of N5 200 images) with
(high) SNR level of PDw, regular sampling.

16. Synthetic BSDS data (total of N5 200 images) with
(low) SNR level of PDw FS, regular sampling.

17. Synthetic BSDS data (total of N5 200 images) with vari-
able SNR, regular sampling.

18. Synthetic BSDS data (total of N5 200 images) with vari-
able SNR, random sampling.

Transfer learning experiments: fine-tuning the regular
sampling variable SNR synthetic BSDS model for another
150 epochs:

19. Fine-tuning using a subset of N5 20 slices selected from
all PDw cases.

20. Fine-tuning using a subset of N5 20 slices selected from
all PDw FS cases.

FIGURE 1 Overview of the variational network architecture used in this work
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In addition, trainings using only the reduced subsets that
were used for fine-tuning were performed as a reference for
the transfer learning experiments.

The remaining 10 knee-measurement data sets of both
sequences and the data set with additional noise added were
used to test the performance of the different learned image
reconstruction networks. Quantitative evaluation was performed

by calculating the root-mean-squared-error RMSEðu; uref Þ5
||uref2u||2
||uref ||2

and the structural similarity index SSIMðu; uref Þ5
ð2 meanðuref Þ meanðuÞ1C1Þð2 covðu;uref Þ 1C2Þ

ðmeanðuref Þ21meanðuÞ21C1Þðstdðuref Þ21stdðuÞ21C2Þ to the fully sampled

reference uref for all test slices (378 slices in the case of PDw

and 365 slices in the case of PDw FS). In the definition of the

structural similarity metric (SSIM), C15ð0:01LÞ2 and

C25ð0:03LÞ2, with L being the dynamic range of the input
images, are regularization parameters that are used to avoid
instabilities in regions of the image where the local mean or SD
is close to zero.25 Finally, to obtain insight into the fine-tuning
process in transfer learning, the learned network parameters
before and after fine-tuning were visualized together with those
from the corresponding in vivo training.

3 | RESULTS

Results of the assessment of generalization with respect to
contrast and SNR are shown in Figure 2. A zoomed view to
a region of interest that includes complex image texture due
to bone trabeculae and fine details due to ligaments and
cartilage is shown in Supporting Information Figure S2.
Unsurprisingly, the best results can be achieved when apply-
ing the network to test data from the same sequence on
which it was trained. When applying the network trained
from high SNR PDw data to the lower SNR FS data, a sub-
stantial level of noise is present in the reconstructed images.
This leads to a reduction of SSIM from 0.89 to 0.81 for this
particular slice. In contrast, applying the network trained
from low SNR PDw FS data to higher SNR PDw data leads
to slightly blurred images with some residual artifacts, lead-
ing to a SSIM reduction from 0.94 to 0.91. The behavior of
the network trained from PDw data with additional noise is
comparable to the network trained from the lower SNR PDw

FS data. In particular, the SSIM is 0.88 for the PDw FS test
data in comparison to 0.89 when training with the data from
the same sequence. In the case of the PDw data test, the
SSIM is identical (0.91). The PDw test data with additional
noise results in substantially lower quality in the case of the
PDw training (SSIM of 0.74) in comparison to all other train-
ings, including the individual training from the PDw FS data
(SSIM of 0.82). The results from the joint training using data
from both contrasts are identical to using the same sequence
for training and testing (SSIM of 0.89 for PDw FS and 0.94

for PDw). The joint training from PDw data with and without
additional noise leads to identical results for the PDw and
noisy PDw test data. For the PDw FS test data, SSIM is
reduced slightly (0.85 in comparison to 0.88 for training with
noisy PDw). The visual impression and the SSIM values of
the individual slices shown for the different experiments are
confirmed by the quantitative SSIM and RMSE analysis
over all cases in the test set (Supporting Information Table
S1).

The influence of the number of training data points in
relation to their heterogeneity is shown in Figure 3. No sub-
stantial differences in image quality can be observed between
the results of these trainings and the individual trainings in
Figure 2. A small improvement of 0.01 in the SSIM can be
observed in the quantitative analysis (Supporting Information
Table S2) for the largest training data set that includes all
training samples from both sequences.

Figures 4 and 5 show the results of the assessment of
generalization with respect to the sampling pattern. When the
sampling pattern is consistent between training and testing,
results without aliasing artifacts and preservation of fine
details are obtained. Applying a network that was trained
from random undersampled data to regular undersampling
leads to subtle residual artifacts. With the exception of appli-
cation of a network that was trained from regular undersam-
pling to random undersampling, which shows a small SSIM
drop from 0.96 to 0.95 for the PDw test data, quantitative
image metrics were identical for all other combinations of
training and test data. A joint training with data from both
sampling patterns leads to results that are comparable to indi-
vidual trainings with no deviations in acquisition parameters.
This behavior is identical to the experiments with image con-
trast and SNR. Quantitative SSIM and RMSE analysis over
all cases in the test set are provided in Supporting Informa-
tion Table S3 for this experiment.

To demonstrate that the trainings are properly converged,
plots of RMSE and SSIM of the training and test sets over
the training epochs are shown in Figure 6 for the experiments
shown in Figures 3–5, and 6.

The results of the trainings that were performed on syn-
thetic k-space data generated from the BSDS database are
shown in Figure 7. The most substantial difference to the
experiments when training with true in vivo MR data from
the same anatomical area is the presence of residual aliasing
artifacts in the results (indicated by red arrowheads in Figure
3). The effects of the influence of SNR can be reproduced
with the synthetic data. Training data with a substantially
higher SNR level leads to noise amplification. This effect is
strongest in the case of no additional noise, where the SSIM
drops to 0.65 for this particular slice of PDw FS test data.
Training with substantially lower SNR leads to blurring and
residual artifacts. This effect is strongest when using the net-
work trained at the noise level of the PDw FS data for non-

KNOLL ET AL.
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FIGURE 3 Influence of the number of training data points in relation to their heterogeneity. No substantial differences in image quality can be
observed between the results of these trainings and the individual trainings in Figure 2

FIGURE 2 Assessment of generalization with respect to contrast and SNR. The structural similarity metric (SSIM) to the fully sampled reference is
shown for the corresponding slices. When applying a network from high SNR proton density–weighted (PDw) data to lower SNR PDw fat-suppression
(FS) data, a substantial level of noise is present in the reconstructions. Applying the low-SNR PDw FS network to higher SNR PDw data leads to slightly
blurred images with residual aliasing artifacts. The behavior of the network trained from PDw data with additional noise was comparable to the network
trained from the lower SNR PDw FS data. The PDw test data with additional noise results in substantially lower quality in the case of the PDw training in
comparison to all other trainings. The results from the joint training using data from both contrasts are identical to using the same sequence for training and
testing. The joint training from PDw data with and without additional noise leads to identical results for the PDw and noisy PDw test data and slightly
reduced SSIM for the PDw FS test data. A zoomed view of these results is included in the Supporting Information
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FS test cases. Again, training with a range of SNR values
leads to results that are comparable to training with data that
are consistent with the test data in terms of SNR. The corre-
sponding quantitative analysis is provided in Supporting
Information Table S4.

The results from the transfer learning experiments are
shown in Figure 8. For data of both sequences, results from
fine-tuned networks outperform both baseline trainings using
only synthetic data, as well as reference trainings using the
same subset of knee MRI data that were used during fine-

FIGURE 4 Assessment of generalization with respect to the sampling pattern for the higher SNR non-FS data. When the sampling pattern is consist-
ent between training and testing, results without aliasing artifacts and preservation of fine details are obtained. Applying a network that was trained from
regular undersampling to random undersampling leads to subtle oversmoothing, which is also reflected in a slight drop of the SSIM from 0.96 to 0.95.
Applying a network that was trained from random undersampled data to regular undersampling leads to residual artifacts. Identical to the experiments with
image contrast and SNR, a joint training with data from both sampling patterns leads to results that are comparable to individual trainings with no devia-
tions in acquisition parameters

FIGURE 5 Assessment of generalization with respect to the sampling pattern for the lower SNR FS data shows the same behavior as the experiments
with non-FS data (Figure 4). However, residual aliasing artifacts are subtler because the image corruption is primarily dominated by noise amplification in
this lower SNR case and aliasing artifacts are buried under the noise level

KNOLL ET AL.
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tuning in terms of removal of residual artifacts. Quantitative
SSIM and RMSE analysis are given in Supporting Informa-
tion Table S5. In particular, with the exception of SSIM for
training and testing with non-FS PDW data (0.96 versus 0.95
for the corresponding transfer learning experiment), results
for transfer learning lead to the same SSIM values as the cor-
responding trainings with in vivo MRI data from the same
sequence. Figure 9 shows plots of RMSE and SSIM for the
transfer learning experiments. The first 150 epochs are base-
line training, and the training error is shown for synthetic
data. Epochs 151 to 300 are fine-tuning and the training error
is shown for the corresponding subset of in vivo data. The
test error is shown for the in vivo test cases that were used
for all experiments in this study. A substantial jump in the
training error can be observed at the transition between base-
line training and fine-tuning. This is to be expected, because
the data set is used to obtain the error metric changes at this
point. The effect is subtler for the test error, but the baseline
training reached a plateau and then improved further during
the fine-tuning period.

4 | DISCUSSION

The results from this study demonstrate that a deviation of
SNR between training and test data leads to a substantial
reduction of image quality when using a trained variational
network for image reconstruction. This can be related to the
influence of 2 design parameters in image reconstruction,
which are usually tuned by hand in a conventional image
reconstruction approach: the number of iterations in an itera-
tive reconstruction26 and the regularization parameter in
compressed sensing.21 These parameters determine the trade-
off between resolution, g-factor-based noise amplification,
and residual aliasing artifacts. In a machine learning
approach, the parameter that balances the data consistency
term and the regularization term, as well as the step size of
the numerical algorithm, is learned from the training data.
Interestingly, reconstructed test case images showed the
same behavior when an SNR deviation occurred due to a
change of the pulse sequence that was used between training
and testing, and when data from the same pulse sequence
was retrospectively corrupted by additional noise. In particu-
lar, lower SNR PDw FS test data showed comparable image
quality for trainings from PDw FS data and PDw data with
additionally added noise. The PDw test data with additionally
added noise showed substantially higher image quality for
trainings from PDw FS data, with different contrast but
matched SNR, than for trainings from the PDw data, with
matched contrast but different SNR. This demonstrates that
although SNR is a critical parameter that has to be consistent
between training and testing, image contrast is a less critical
factor. This particular behavior can only be interpreted for

FIGURE 6 A, Plots of RMSE and SSIM of the training and test sets
over the training epochs for SNR and contrast generalization experiments
in Figure 3. B, Experiments with changes in the sampling pattern from
Figures 5 and 6
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our particular network architecture, implementation of the
training procedure and difficulty of the reconstruction prob-
lem defined by the acceleration factor, SNR, and the quality
of the particular multichannel receive coil.

As expected, because the structure of the aliasing artifacts
is influenced by the used sampling pattern, deviations
between training and testing influence the quality of the

reconstructions. However, it is important to note that our
approach does not learn a particular aliasing pattern by heart.
Elimination of artifacts is performed locally, by spatial con-
volution of learned filter kernels in image space. This
explains why the negative effects on the reconstruction qual-
ity are relatively benign. However, it cannot be expected that
these results generalize to more substantial changes in the

FIGURE 7 Trainings from synthetic, regularly undersampled, k-space data generated from the Berkeley segmentation database (BSDS) database.
The SSIM to the fully sampled reference is shown for the corresponding slices. Reconstructions show a larger degree of residual aliasing artifacts (red
arrowheads) in comparison to trainings with in vivo knee data. The effects of the influence of SNR can be reproduced with the synthetic data. Experiments
with deviating SNR levels between training and test data again lead to either noise amplification or blurring and residual artifacts. Again, training with a
range of SNR values leads to results that are comparable to training with data that are consistent with the test data in terms of SNR. This particular training
was also performed and tested with random sampling, with comparable behavior

FIGURE 8 Transfer learning experiments. For both PDw and PDw FS data, results from fine-tuned networks outperform baseline trainings using only
synthetic data, as well as reference trainings using the same subset of kneeMRI data that were used during fine-tuning in terms of removal of residual
artifacts. This indicates the possibility of fine-tuning networks that were pretrained from generic data with only a very small number of training cases for a
particular target application

KNOLL ET AL.
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trajectory (e.g., 3D pseudorandom sampling or non-Cartesian
trajectories like radial or spirals, which have fundamentally
different aliasing properties).

Training a reconstruction from heterogeneous data leads
to the same results as training from data that were consistent
between training and testing. This behavior was consistent
for contrast, SNR, and multiple sampling patterns. These
experiments demonstrate that a reconstruction can be learned
that generalizes with respect to changes in acquisition param-
eters, under the condition that the corresponding heterogene-
ity is included in the training data. It is currently an open
question to what degree an increase of heterogeneity in the
training data also requires an increase of the total samples to
achieve generalization. The experiments in this study did not
show substantial deviations in performance when varying the
number of training samples. However, the goal of these
experiments was not a large-scale analysis of the influence of
the number of training data sets in learned image reconstruc-
tion. The goal was to study the cases in which the exact
same data sets are used in single-contrast and heterogeneous
multicontrast trainings (N5 100 to N5 400 slices). An anal-
ysis of the influence of the number of training samples in the
context of transfer learning for the network architecture pro-
posed in Ref 9 is presented in an arXiv preprint by Dar and
Cukur (“A Transfer-Learning Approach for Accelerated MRI
using Deep Neural Networks,” arXiv, 2017). The authors

report improvements of SSIM from 0.93 to 0.96 when
increasing the number of baseline training images by a factor
of 8 and the number of fine-tuning images by a factor of 4.
Although the acquisition of large data sets with sufficient
heterogeneity can be challenging in practice, the results from
this study indicate that data augmentation can potentially be
used successfully. Given the availability of fully sampled
training k-space data, experiments with different sampling
patterns and acceleration factors can be performed without
the need to acquire additional measurements. The influence
of SNR versus image contrast further supports this strategy.
Different levels of SNR can easily be achieved with data
augmentation, whereas a change of image contrast would
require either additional acquisitions or the use of synthetic
data and numerical simulations of the MR signal of different
pulse sequence and sequence parameters.

The influence of SNR that was observed in the general-
ization experiments with knee data from different sequences
can be reproduced entirely with experiments using synthetic
data. This again shows that SNR plays a more critical role
than image content in the context of learned image recon-
struction. However, results from trainings with synthetic data
showed a substantially higher level of residual aliasing arti-
facts, illustrating that both the sampling pattern and the
actual image content define the structure of the introduced
aliasing. Our experiments were designed around the 2

FIGURE 9 Plots of RMSE and SSIM of the training and test sets over the training epochs for the transfer learning experiments. The first 150 epochs
are baseline training and the training error is shown for synthetic data. Epochs 151 to 300 are fine-tuned and the training error is shown for the correspond-
ing subset of in vivo data. The test error is shown for the in vivo test cases that were used for all experiments in this study. The dashed line illustrates the
epoch in which the training changes from baseline training to fine-tuning
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extreme ends of the spectrum of training and test data consis-
tency: training from the same anatomy and scan orientation,
and training from arbitrary nonmedical images. Future work
should be conducted to investigate training from the same
anatomical structure but different scan orientations and scans
from different anatomical areas. In addition, the particular
choice of using natural camera images to generate synthetic
k-space data, and the particular image database, was only
one of several possible experiment design choices in this
study. Another topic of future research is the use of dedicated
numerical simulation data that are designed specifically with
the idea of training an image reconstruction procedure. This
is particularly interesting for dynamic imaging applications,
in which the acquisition of high spatial and temporal resolu-
tion training data is even more challenging.

Transfer learning–inspired fine-tuning with a substan-
tially smaller size of target domain knee MR images reduced
the effect of residual aliasing artifacts. The results were close
to the optimal case of using MR imaging data from the same
anatomical area and pulse sequence for training and testing.
These results are not only in line with studies in computer
vision, in which transfer learning was used to classify class
labels that were not present in the original training data set,27

but they are also comparable to transfer learning for a neural
network architecture for MR reconstruction proposed in Ref
9, evaluated on brain MR data sets (Dar and Cukur, arXiv,
2017). Visualizing the parameters of the learned network
provides some additional insight into the fine-tuning proce-
dure. Figure 10 shows a visualization of the learned filter

kernels kRE and kIM for the real and imaginary plane of the
regularizer together with the learned nonlinear activation
functions q0. The fine-tuned kernels closely resemble the ker-
nels from the baseline training, indicating that they are not
updated substantially during the fine-tuning process. Larger
updates can be observed for the learned influence functions.
They still bear closer resemblance to the baseline trainings
than the corresponding in vivo trainings. However, a direct
comparison between the trainings is challenging because
they do not necessarily perform the same operations on the
images at the same stage in the network. The reason for this
is that the training process is a highly nonconvex optimiza-
tion problem. The parameters of the whole network are
trained simultaneously, and the error metric is the final out-
put after the last stage. This indicates that the result of each
training is one of multiple local minima that leads to approxi-
mately the same result, a property that is known from deep
learning.1

The relation of the number of training data samples that
was used for fine-tuning in comparison to the full trainings
(one tenth) was chosen empirically for this study. A more
systematic comparison of the influence of the relation
between the number of samples for baseline training and for
fine-tuning is presented by Dar and Cukur (Dar and Cukur,
arXiv, 2017). Moreover, although the particular network
architecture that was used in this study can be trained suc-
cessfully from data sets in the order of several hundred
samples, it is a topic for further research if additional
performance benefits can be achieved by training different

FIGURE 10 Visualization of a selection of learned nonlinear activation functions q' and filter kernels kRE and kIM for the real and imaginary plane of
the regularizer. The fine-tuned kernels closely resemble the kernels from the baseline training, indicating that they are not updated substantially during the
fine-tuning process. Larger updates can be observed for the learned influence functions
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architectures with a larger number of free parameters using
synthetic data followed by a fine-tuning step using real MR
data.

5 | CONCLUSIONS

This study presents insights into the general properties and
the generalization ability of a learned variational network for
MR image reconstruction with respect to deviations in the
acquisition settings between training and testing for a clini-
cally representative set of test cases. Our results show that
mismatches in SNR have the most severe influence. Our
experiments also demonstrate that by increasing the hetero-
geneity of the training data set, trained networks can be
obtained that generalize toward wide-range acquisition set-
tings, including contrast, SNR, and the particular k-space
sampling pattern. Finally, our study provides an outlook for
the potential of transfer learning to fine-tune trainings of our
variational network to a particular target application using
only a small number of training cases.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the
supporting information tab for this article.
FIGURE S1 Overview of the training data that were used
in this study. A, Data from a coronal PDw 2D turbo spin-
echo sequence for knee imaging with and without FS. These
two data sets show substantial differences in terms of image
contrast and SNR. B, Knee data from the PDw sequence
without FS, with additional noise added to the complex multi-
channel k-space data, such that the SNR is comparable to the
lower SNR FS data. Completely synthetic k-space data were
generated from images from the BSDS
FIGURE S2 Zoomed regions of interest from the results
shown in Figure 2, further demonstrating the noise amplifi-
cation and blurring in cases of SNR mismatch between
training and test data and the effects of joint training with
heterogeneous data. The selected ROI highlights these
effects in an anatomical region that includes complex
image texture due to bone trabeculae and fine details due
to ligaments and cartilage.
TABLE S1 Quantitative analysis of SSIM and RMSE to
the fully sampled reference for the generalization experi-
ments with respect to contrast and SNR. The mean and
SDs are shown for all cases in the test set, consisting of
378 slices for PDw and PDw with additional noise. The
PDw FS test set consisted of 365 slices. Highest image
quality values are achieved when data from the same

sequence are used for both training and testing. Drops can
be observed when the SNR level deviates between training
and testing. Results for trainings with PDw FS data and
PDw data with added noise are comparable. Joint trainings
from multiple contrasts and SNR levels show comparable
performance to using consistent data between training and
testing.
TABLE S2 Quantitative analysis of SSIM and RMSE to
the fully sampled reference for the experiments with differ-
ent numbers of training examples for joint training. The
mean and SDs are shown for all cases in the test set, con-
sisting of 378 slices for PDw and 365 slices for PDw FS.
TABLE S3 Quantitative analysis of SSIM and RMSE to
the fully sampled reference for the generalization experi-
ments with respect to the sampling pattern. The mean and
SDs are shown for all cases in the test set, consisting of
378 slices for PDw and 365 slices for PDw FS. Trainings
show good generalization ability with respect to changes in
the sampling pattern. In particular, for non-FS test cases,
the SSIM values are identical for all combinations of sam-
pling patterns in training and testing.
TABLE S4 Quantitative analysis of SSIM and RMSE to
the fully sampled reference for the trainings with synthetic
data. The mean and SDs are shown for all cases in the test
set, consisting of 378 slices for PDw and 365 slices for
PDw FS. A slight drop in image-quality values can be
observed in comparison to trainings with in vivo data. The
experiments show the same behavior in terms of SNR
dependency.
TABLE S5 Quantitative analysis of SSIM and RMSE to
the fully sampled reference for the experiments with differ-
ent numbers of training examples for the transfer learning
experiments. The mean and SDs are shown for all cases in
the test set, consisting of 378 slices for PDw and 365 slices
for PDw FS. Transfer learning fine-tuned results outperform
both baseline trainings using only synthetic data, as well as
reference trainings using the same subset of knee MRI data
that were used during fine-tuning. Quantitative image qual-
ity values are close to trainings with consistent in vivo
data.
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