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Abstract

As an alternative to domain discretization methods, the boundary element method (BEM) provides a powerful tool for the cal-

culation of dynamic structural response in frequency and time domain. Field equations of motion and boundary conditions are cast

into boundary integral equations (BIE), which are discretized only on the boundary. Fundamental solutions are used as weighting

functions in the BIE which ful®l the Sommerfeld radiation condition, i.e., the energy radiation into a surrounding medium is modelled

correctly. Therefore, in®nite and semi-in®nite domains can be e�ectively treated by the method. The soil represents such a semi-in®nite

domain in soil-structure-interaction problems. The response to vibratory loads superimposed to static pre-loads can often be calculated

by linear viscoelastic constitutive equations. Conventional viscoelastic constitutive equations can be generalized by taking fractional

order time derivatives into account. In the present paper two time domain BEM approaches including generalized viscoelastic be-

haviour are compared with the Laplace domain BEM approach and subsequent numerical inverse transformation. One of the pre-

sented time domain approaches uses an analytical integration of the elastodynamic BIE in a time step. Viscoelastic constitutive

properties are introduced after Laplace transformation by means of an elastic±viscoelastic correspondence principle. The transient

response is obtained by inverse transformation in each time step. The other time domain approach is based on the so-called `con-

volution quadrature method'. In this formulation, the convolution integral in the BIE is numerically approximated by a quadrature

formula whose weights are determined by the same Laplace transformed fundamental solutions used in the ®rst method and a linear

multistep method. A numerical study of wave propagation problems in 3-d viscoelastic continuum is performed for comparing the

three BEM formulations. Ó 1999 Elsevier Science S.A. All rights reserved.

1. Introduction

The boundary element method (BEM) has become a widely used numerical tool in statics and dynamics
[15]. A review about the e�orts in dynamics is published by Beskos [6,7]. Main advantages of the method
are the reduction of the problem dimension by one and the implicit ful®lment of the radiation condition for
unbounded domains.

For transient elastodynamic problems, the BEM is mostly formulated in frequency or Laplace domain
followed by an inverse transformation, e.g. [1]. Mansur [27] developed one of the ®rst boundary element
formulations in the time domain for the scalar wave equation and for elastodynamics with zero initial
conditions [28]. The extension of this formulation to non-zero initial conditions was presented by Antes
[2]. Detailed information about this procedure can be found in the book of Dom�inguez [11]. Frequent
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applications are soil-structure-interaction problems (e.g., [5]), dynamic analysis of 3-d foundations [23] and
contact problems [3].

Viscoelastic solids can be e�ectively treated by BEM in Laplace domain. However, calculation of
transient response via the Laplace domain requires the inverse transformation. Since all numerical inver-
sion formulas depend on a proper choice of their parameters [29] a direct evaluation in time domain seems
to be preferable. On the other hand direct calculation of viscoelastic solids in time domain requires the
knowledge of viscoelastic fundamental solutions.

Such solutions can be obtained by means of an elastic±viscoelastic correspondence principle. In Ref. [19]
the elastic fundamental solution has been transformed into Laplace domain and then the elastic±visco-
elastic correspondence principle has been adopted. For a simple rheological material model an analytical
inverse Laplace transformation is given. This leads to the viscoelastic fundamental solution in time domain.

For the implementation of this viscoelastic fundamental solution in a 3-d time domain BEM program it
is advantageous to perform the time integration analytically in a time step. This has been carried out
successfully in Ref. [34], but leads to a very complicated series solution. An alternative approach to obtain a
viscoelastic boundary integral formulation in time domain is treated by the authors in Ref. [17]. The
generalization of this approach for generalized constitutive equations with better curve ®tting properties of
measured data is presented in Ref. [18]. A completely di�erent approach on the basis of the `convolution
quadrature method' developed by Lubich [24] is published in Ref. [33].

In the present paper all three approaches, calculation in Laplace domain and the two time domain
formulations, are presented. Results of forced wave propagation in a 3-d rod are compared. Finally, the
wave propagation in an elastic concrete foundation slab bonded to viscoelastic semi-in®nite soil is studied.

2. Constitutive equation

Decomposition of the stress tensor rij into the the hydrostatic part dijrkk=3 and the deviatoric part sij

yields

rij � 1
3
rkkdij � sij; where sii � 0: �1�

The corresponding decomposition holds for the strain tensor eij

eij � 1
3
ekkdij � eij; where eii � 0: �2�

Two independent sets of constitutive equations for viscoelastic materials exist after this decomposition

XN

k�0

p0k
dk

dtk
sij �

XM

k�0

q0k
dk

dtk
eij;

XN

k�0

p00k
dk

dtk
rii �

XM

k�0

q00k
dk

dtk
eii: �3�

More ¯exibility in ®tting measured data in a large frequency range is obtained by replacing the integer order
time derivatives by fractional order time derivatives [16].

The derivative of fractional order a is de®ned by

dax�t�
dta

� 1

C�1ÿ a�
d

dt

Z t

0

x�t ÿ s�
sa

ds 06 a < 1 �4�

with the Gamma function C 1ÿ a� � � R1
0

eÿxxÿa dx, as the inverse operation of fractional integration at-
tributed to Riemann and Liouville [30]. A di�erent de®nition based on generalized ®nite di�erences is given
by Gr�unwald [21]

dax�t�
dta

� lim
N!1

t
N

� �ÿaXNÿ1

j�0

C�jÿ a�
C�ÿa�C�j� 1�x t 1

��(
ÿ j

N

��)
: �5�

This discrete de®nition is more convenient in constitutive equations treated by time stepping algorithms and
the equivalence of de®nition (4) and (5) can be shown.
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The fractional derivatives in Eq. (4) appear complicated in time domain. However, Laplace transform
reveals the useful result

L
dax�t�

dta

� �
� saLfx�t�g ÿ

Xnÿ1

k�0

sk daÿ1ÿk

dtaÿ1ÿk
x�0�; nÿ 1 < a6 n; �6�

where s is the Laplace variable.
With the de®nition (4) or (5) the generalized viscoelastic constitutive equations are given byXN

k�0

p0k
dak

dtak
sij �

XM

k�0

q0k
dbk

dtbk
eij;

XN

k�0

p00k
dak

dtak
rii �

XM

k�0

q00k
dbk

dtbk
eii: �7�

For N � M � 1 and fractional time derivatives of order a and b a possible representation of a uniaxial
stress strain equation with 5 parameters (E Young's modulus, p; q viscoelastic parameters and the orders of
the fractional derivatives a and b)

p
da

dta
r� r � E e

�
� q

db

dtb
e

�
�8�

is given. For wave propagation problems, e.g., in unbounded domains, the wave velocity is important. In
viscoelasticity it is de®ned with the initial modulus E�0� of the relaxation function [8]

c �
����������
E�0�

q

s
: �9�

For the determination of the initial modulus, the initial value theorem of Laplace transform
limt!0 f �t� � lims!1 sLff �s�g is used. This theorem and the de®nition of the initial modulus lead to

E�0� � lim
s!1

E
1� psa

1� qsb
� E lim

s!1
�1=sb� � psaÿb

�1=sb� � q
: �10�

The limiting process gives a ®nite value only for the restriction a � b. For solid viscoelastic materials this
restriction is in accordance with experimental data.

Finally, according to Ref. [4] a credible model of the viscoelastic phenomenon should predict nonneg-
ative internal work and a nonnegative rate of energy dissipation. To satisfy these restrictions, constraints on
the remaining parameters of the model are developed. This produces the constraints [31]

E > 0; q > p > 0; 0 < a � b < 2: �11�
A powerful tool for calculating viscoelastic behaviour from a known elastic response is the elastic±visco-
elastic correspondence principle. According to this principle [14] the viscoelastic solution is calculated from
the analytical elastic solution by replacing the elastic moduli in the Fourier or Laplace transformed domain
by the transformed impact response functions of the viscoelastic material model. The viscoelastic solution is
then obtained by inverse transformation.

As an example for calculating viscoelastic behaviour with the elastic±viscoelastic correspondence prin-
ciple a free-®xed 1-d rod is used (Fig. 1). The solutions for the displacement u�x; t� can be determined with
inverse Laplace transformation from the elastic solution in Laplace domain [20]

û�x; s� � F̂ �s�
qc

sinh�sx=c�
s cosh�s`=c�; �12�

after inserting the elastic±viscoelastic correspondence

E! E
1� psa

1� qsa
) c! c

���������������
1� psa

1� qsa

s
: �13�

In the equations above �̂� denotes the Laplace transformed functions. Whereas the elastic solution can be
obtained by an analytical inversion, the viscoelastic one is performed by a numerical inverse transformation.
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Here, the method of Talbot [35] is used. For F �t� � 1 N H�t�; E � 1 N=m2; q � 1 kg=m3; q � 1 sÿ0:8;
a � 0:8 and ` � 3 m the displacement u�`; t� is plotted versus time for di�erent viscoelastic parameters p in
Fig. 1.

For 3-d continua the elastic±viscoelastic correspondence principle is as simple as in the 1-d case. If the
same damping mechanisms are assumed in hydrostatic and deviatoric stress strain state, the corresponding
3-d constitutive equations are gained by replacing the uniaxial stress and strain by the hydrostatic and the
deviatoric states. For the above-mentioned generalized three parameter model (8) the elastic±viscoelastic
correspondence is the same as in the 1-d case (13) with unchanged real Poisson's ratio m. The last condition
is only valid if the same damping mechanisms are present [31].

As for the above-mentioned 1-d rod example, construction of fundamental solutions by the elastic±
viscoelastic correspondence principle leads to viscoelastic solutions in Laplace or Fourier domain, ®rstly.
Afterwards, a numerical inverse transformation is necessary.

3. Comparison of numerical inverse transformation algorithms

As only few viscoelastic constitutive equations of minor practical importance allow analytical inverse
Laplace transformation, the performance of numerical inverse transformation methods is analysed below.
Based on the study in Ref. [29], here, the algorithms of Durbin [13] and Crump [9] are taken into con-
sideration and additionally the method of Talbot [35]. The two ®rst mentioned methods are further de-
velopments of the algorithm proposed by Dubner and Abate [12]. The main idea of the method is a Fourier
series expansion of the complex inversion formula of Laplace transformation. In contradiction to this the
method of Talbot maps the complex integration along the Bromwich contour with in®nite limits into a real
integral with ®nite integration limits.

Table 1 compares the results of inverse transformation for the following test functions at discrete times

· function 1: eÿsa

s �H�t ÿ a�
· function 2 : 1���������

s�s�a�
p eÿ

r
c
����������������
s�s� a�p

� I0
a
2

����������������
t2 ÿ �rc�2

q� �
eÿ

a
2
tH t ÿ r

c

ÿ �
· function 3: 1

s e
ÿsr

c

���������
1�ps0:7

1�qs0:7

q
�no analytical solution

where H� � denotes the Heaviside function and a � 1; r=c � 0:5; p � 1 and q � 2. The dashes in the table
denotes no solution or nonconverging method. The test functions were selected because of the following
reasons:
· shifting of the Heaviside function in function 1 occurs in the elastodynamic fundamental solution (23)

and represents the wave front, which is also expected in the viscoelastic case,
· function 2 is part of the transformed fundamental solution with viscoelastic Maxwell model [34],
· function 3 is part of Eq. (20) after applying the elastic±viscoelastic correspondence principle (13).

The results in Table 1 for function 1 correspond to times before and after the Heaviside jump at t � a.
The method of Talbot fails for t < a. Only the results of the method by Crump can be considered zero
numerically in this range.

Fig. 1. Displacement at x � ` of a free-®xed 1-d rod versus time for di�erent viscoelastic parameters p.
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Based on a more detailed comparison [31] it can be concluded, that the methods by Talbot and Crump
lead to better accuracy than the method by Durbin, which is as well more time consuming for complicated
functions. The method of Crump seams to be very suitable, but it is obviously not so robust like the method
of Durbin, i.e., for some times it does not converge. If jumps can be avoided the method of Talbot should
be preferred. Nevertheless, for all three methods a proper choice of the parameters is essential.

4. Viscoelastic BE-formulations

Assuming homogeneity and linear viscoelastic material the dynamic behaviour of a waveguide as well as
the wave propagation in an unbounded domain X will be determined. In the following, Latin indices take
the values 1,2, and 1,2,3 in 2-d and 3-d, respectively, where summation convention is implied over repeated
indices, and commas and over-dots denote spatial and time di�erentiation, respectively. On the boundary
C � Cp [ Cu of the domain X, tractions pi�x; t� and displacements uj�x; t�, respectively, i.e.

rijnj � pi�x; t� for t > 0; x 2 Cp; ui�x; t� � qi�x; t� for t > 0; x 2 Cu �14�
are prescribed, while the initial conditions ui�x; 0� and _ui�x; 0�; x 2 X [ C are assumed to be zero

ui�x; 0� � 0; _ui�x; 0� � 0 x 2 X [ C: �15�
rij is the stress tensor and nj means the outward normal vector on the boundary C. Neglecting the body
force e�ects, the dynamic extension of Betti's reciprocal work theorem combining two states of displace-
ments and tractions �Uij; Pij� and �uj; pj� leads to the integral equation [31]

�16�

where � denotes the convolution with respect to time. Uij and Pij are the displacements and tractions, re-
spectively, due to a unit impulse in the direction xi, i.e., the time-dependent fundamental solution of the full
space. For the linear viscoelastic material described in Section 2, e.g., the generalized 3-parameter model
(8), the integral free terms cij�y� are identical to those of elastostatics and dependent only on the local
geometry at y and on Poisson's ratio m, i.e., for y on a smooth boundary cij�y� � dij=2. However, this is

Table 1

Comparison of inverse transformation algorithms

Time (s) Talbot Exact Durbin Crump

0.7 ÿ3:91� 1050 0.000000 7:88� 10ÿ4 1:60� 10ÿ9

0.9 ÿ5:04� 1012 0.000000 9:67� 10ÿ4 1:95� 10ÿ8

function 1 1.1 1.000000 1.000000 0.998886 0.999999

1.3 1.000000 1.000000 0.998565 1.000000

1.5 1.000000 1.000000 1.004410 1.000000

0.5 0.394691 0.389400 0.389363 ±

0.6 0.708395 0.745920 0.746377 0.745920

function 2 0.7 0.715297 0.715298 0.716224 0.715298

0.8 0.686752 0.686759 0.690466 0.686759

0.9 0.660142 0.660141 0.663267 0.660141

0.5 0.906345 ± 0.906504 ±

0.6 0.926606 ± 0.925405 0.926606

function 3 0.7 0.938730 ± 0.942046 0.938730

0.8 0.947151 ± 0.943823 0.947151

0.9 0.953470 ± 0.949619 0.953470
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valid only for the assumption of the same viscoelastic behaviour of the deviatoric and hydrostatic stress
strain state.

When x approaches y, the kernel Uij�x; y; t� is weakly singular and Pij�x; y; t� is strongly singular, i.e., the
second integral in Eq. (16) exists only in the Cauchy principal value sense.

According to the boundary element method the boundary surface C is discretized by E iso-parametric
elements Ce where F polynomial spatial shape functions N f

e �x� are de®ned. Hence, with the time dependent
nodal values uef

j �t� and pef
j �t� the following representation is adapted

uj�x; t� �
XE

e�1

XF

f�1

N f
e �x�uef

j �t�; pj�x; t� �
XE

e�1

XF

f�1

Nf
e �x�pef

j �t�: �17�

Inserting these `ansatz' functions in Eq. (16) gives

�18�

In what follows, usually, the fundamental solutions must be known. Only for the simplest viscoelastic
model, the Maxwell material, the fundamental solutions are available analytically [17]. For more realistic
models the fundamental solutions are only known in Laplace domain. Until now, three di�erent boundary
element formulations have been proposed. These are summarized here and afterwards described in more
detail:
· Formulation 1: Uses the boundary element method in Laplace domain and a subsequent numerical in-

verse transformation, proposed, e.g., by [1].
· Formulation 2: Time shape functions for the unknown displacements and tractions are chosen and the

convolution of these functions with the elastodynamic fundamental solution is integrated analytically.
The result is transformed in Laplace domain, where the elastic±viscoelastic correspondence principle is
applied. A numerical inverse transformation leads to a time domain boundary element formulation [18].

· Formulation 3: Uses the so called `convolution quadrature method' developed by Lubich [24] to evaluate
the convolution in Eq. (18). This method only requires the fundamental solutions inLaplace domain [33].
In all three formulations the spatial integration of the regular integrals over the boundary elements is

performed by Gaussian quadrature. The weakly singular integrals are regularized with polar coordinate
transformation and the strongly singular integrals with the method proposed by Guiggiani [22]. Finally, the
solution of the resulting algebraic system of equations is solved by a direct solver.

Formulation 1: The Laplace transform of the integral equation (18) is

�19�

The viscoelastic fundamental solutions Ûij�x; y; s� and P̂ij�x; y; s� are obtained by applying the elastic±vis-
coelastic correspondence to the elastodynamic solutions [10]

Ûij�x; y; s� � 1

4pq
1

r2

3rirj

r3

��
ÿ dij

r

� s r
c1
� 1

s2
e
ÿ r

c1
s

�
ÿ s r

c2
� 1

s2
e
ÿ r

c2
s
�
� rirj

r3

1

c2
1

e
ÿ r

c1
s

�
ÿ 1

c2
2

e
ÿ r

c2
s
�
� dij

rc2
2

e
r

c2
s
�
; �20�

where r � ������
riri
p

with ri � xi ÿ yi. The corresponding fundamental traction components needed in Eq. (19)
are obtained via

P̂ij � q�c2
1 ÿ 2c2

2�Ûjm;mdiknk � qc2
2�Ûji;knk � Ûjk;ink� �21�

with the Kronecker symbol dik. The correspondence principle simply replaces the elastic wave velocities by
the viscoelastic ones

c1 �
���������������������������������

E�1ÿ m�
.�1ÿ 2m��1� m�

s
! c1

���������������
1� qsa

1� psa

s
; c2 �

�������������������
E

.2�1� m�

s
! c2

���������������
1� qsa

1� psa

s
�22�
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in Eqs. (20) and (21). As next step, the solution is transformed back to time domain. Preferable methods for
this application are those of Durbin or Crump, according to the experience reported in [26].

Formulation 2: As has been shortly summarized above, this formulation uses the elastodynamic fun-
damental solutions in time domain, e.g., for the displacements

Uij x; n; t; s� � � 1

4pq
�t
�
ÿ s�f0�r� H t

��
ÿ sÿ r

c1

�
ÿ H t

�
ÿ sÿ r

c2

��
� f1 r� �

c2
1

d t
�
ÿ sÿ r

c1

�
� f2 r� �

c2
2

d t
�
ÿ sÿ r

c2

�� �23�

with abbreviated functions depending on spatial coordinates only

f0 r� � � 3r;ir;j ÿ dij

r3
; f1 r� � � r;ir;j

r
; f2 r� � � dij ÿ r;ir;j

r
: �24�

The solution for the tractions is calculated by the time domain expression corresponding to Eq. (21). The
elapsed time t is discretized by N equal time-increments Dt. The simplest nontrivial choice for the time shape
functions, ensuring that no terms drop out in the boundary integral equation after one differentiation, are
linear shape functions for the displacements uef

j �t� and constant shape functions for the tractions pef
j �t�

uef
j t� � � uef

j�mÿ1�
tm ÿ s

Dt

�
� uef

jm
sÿ tmÿ1

Dt

�
; pef

j t� � � 1 � pef
jm �25�

The actual time step is m. Inserting these `ansatz' function in Eq. (18) analytical time integration can be
carried out within each time step because of the properties of the Dirac and Heaviside functions. This
integration leads to piecewise de®ned functions. For the sake of brevity the integration is indicated only for
the ®rst term on the right side of Eq. 18)

Z tm

tmÿ1

Uij�x; n; t ÿ s�ds � 1

4pq

0; t < tmÿ1 � r
c1
;

f0�r�
2

t ÿ tmÿ1� �2 ÿ � r
c1
�2

h i
� f1�r�

c2
1

; tmÿ1 � r
c1
< t < tm � r

c1
;

f0�r� ttm ÿ ttmÿ1 ÿ t2m
2
� t2mÿ1

2

h i
; tm � r

c1
< t < tmÿ1 � r

c2
;

f0 r� �
2
� r

c2
�2 ÿ tm ÿ t� �2

h i
� f2 r� �

c2
2

; tmÿ1 � r
c2
< t < tm � r

c2
;

0; tm � r
c2
< t:

8>>>>>>>><>>>>>>>>:
�26�

Now, after performing the convolution, function (26) and the corresponding function for the tractions are
transformed in the Laplace domainZ 1

0

Xn

m�1

Z tm

tmÿ1

Uij x; n; t� ÿ s� ds eÿstdt � 1

4p.

Xn

m�1

Z tm�r
c1

tmÿ1� r
c1

f0�r�
2
�t
��(
ÿ tmÿ1�2 ÿ � r

c1

�2
�
� f1�r�

�
eÿstdt

�
Z tmÿ1� r

c2

tm� r
c1

f0�r� t tm

�
ÿ t tmÿ1 ÿ t2

m

2
� t2

mÿ1

2

�
eÿstdt

�
Z tm� r

c2

tmÿ1� r
c2

f0�r�
2

r
c2

� �2
"

ÿ �t ÿ tm�2 � f2�r�
#

eÿst dt

)

� 1

4p.

Xn

m�1

eÿstmÿ1� ÿ eÿstm� f0�r�1s2

r
c1

� �
e
ÿ r

c1
s

��
ÿ r

c2

� �
eÿrc2s

�
� f1�r�1seÿrc1s � f2�r�1se

ÿ r
c2

s
�
: �27�

In Laplace domain the elastic±viscoelastic correspondence (22) is applied. Causality of the solution implies
that no response is present prior to the arrival of the waves. This physical requirement is assumed for the
numerical inversion of Eq. (27). The correspondence relation

Lf eÿstmÿ1 ÿLf eÿstm �f �t ÿ tmÿ1�H�t ÿ tmÿ1� ÿ f �t ÿ tm�H�t ÿ tm� �28�
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is taken into account as well. The inverse transformation therefore leads to a function de®ned piecewise in
the time ranges of Eq. (26) with the viscoelastic wave velocities

cviscoelastic
1 � c1

���
q
p

r
cviscoelastic

2 � c2

���
q
p

r
; �29�

de®ned in accordance to Eqs. (9) and (10). The inversion is carried out numerically by the method of
Talbot, because the method of Crump produces convergence problems and the method of Durbin is very
time consuming.

Formulation 3: In this formulation the convolution between the fundamental solutions and the corre-
sponding nodal values in Eq. (18) is performed numerically with the so-called `convolution quadrature
method' proposed by Lubich [24,25]. The quadrature formula approximates a convolution integral

y�t� � f �t� � g�t� �
Z t

0

f �t ÿ s�g�s�ds �30�

by the ®nite sum

y�nDt� �
Xn

j�0

xnÿj�Dt�g�jDt�; n � 0; 1; . . . ;N : �31�

The integration weights xn�Dt� are the coe�cients of the power series for the function f̂ �C�z�=Dt at the
point c�z�=Dt. Herein, c�z� is the quotient of the characteristic polynomials of a linear multistep method,
e.g., the backward di�erentiation formula of second order c�z� � 3=2ÿ 2z� �1=2�z2. The coe�cients are
calculated by the integral

xn�Dt� � 1

2pi

Z
jzj�r

f̂
c�z�
Dt

� �
zÿnÿ1dz � rÿn

L

XLÿ1

`�0

f̂
c�rei`2p

L �
Dt

 !
eÿin`2p

L ; �32�

with r being the radius of a circle in the domain of analyticity of f̂ �z�. The integral in Eq. (32) is ap-
proximated by a trapezoidal rule with L equal steps 2p=L, after transformation to polar coordinates.
Details of the convolution quadrature method can be found in [24,25]. An example of this quadrature
formula related to the boundary element method is presented in [32].

The quadrature formula (31) is applied to Eq. (18). The result is the following boundary element time-
stepping formulation for n � 0; 1; . . . ;N
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e�1
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k�0
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nÿk�Ûij; y;Dt�pef

j �kDt�
n

ÿ xef
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o

�33�

with the weights corresponding to Eq. (32)

xef
n �Ûij; y;Dt� � rÿn

L

XLÿ1

l�0

Z
Ce

Ûij x; y;
c reil2p

L

� �
Dt

0@ 1ANf
e �x�dCxe

ÿin`2p
L : �34�

�35�

Note that the calculation of the quadrature weights (34) and (35) is only based on the Laplace transformed
fundamental solutions. Therefore, applying the elastic±viscoelastic correspondence principle to the fun-
damental solutions (20) and (21) leads to a visco-elastodynamic boundary element formulation in time
domain. The calculation of the integration weights (34) and (35) is performed very fast with a technique
similar to the Fast Fourier Transform (FFT).
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5. Numerical examples

The propagation of waves in a 3-d continuum has been calculated by the presented three viscoelastic
boundary element formulations. The ®rst part of the examples compare numerical results of the three
methods. As well, the wave propagation in a 3-d rod is compared with the 1-d solution. In the second part,
the wave propagation in an elastic foundation slab bonded to a viscoelastic half-space is calculated.

5.1. Comparison of the methods

The problem geometry, material data and the associated boundary discretization of the 3-d rod are
shown in Fig. 2. The rod is ®xed on one end, and is excited by a pressure jump according to a unit step
function H�t� on the other free end. The remaining surfaces are traction free. Linear spatial shape functions
on 72 triangles are used. Fig. 3 shows the longitudinal displacement in the centre of the free end cross
section (point P) versus time for all three presented formulations and the 1-d solution. The difference
between the results, also compared to the 1-d solution, is quite small. The time step size Dt is chosen optimal
for formulation 2 and 3, respectively. This means for formulation 2 the value b � c1Dt=re, with the char-
acteristic element-length re, is in the range 0:6 < b < 1 [31] and for formulation 3 is b � 0:15. However,
formulation 3 is not as sensitive to an optimal choice of b as formulation 2. This means, if e.g. b � 0:6 is

Fig. 2. Step function excitation of a free-®xed rod.

Fig. 3. Longitudinal displacement of point P.
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used in formulation 3 the results differ not much from the results with b � 0:15. Below critical values,
b � 0:6 in formulation 2 and b � 0:1 in formulation 3, both formulations become unstable.

A proper parameter choice is also necessary for formulation 1. In this formulation the real part of the
selected Laplace variable s must be tuned such that the solution behaves well. A bad choice of this pa-
rameter can lead to wrong results. Furthermore, this parameter is problem dependant, so that no general
rule can be given how to choose this parameter.

From the viewpoint of CPU-time formulation 3 must be preferred, because it is nearly ten times faster
than formulation 2. An comparison of CPU-time with the Laplace domain method is not general valid,
because the amount of CPU-time depends linearly on the used amount of frequencies. However, this
amount is closely related to the problem.

Summarizing the problems of all three formulations, the conclusion of a comparison is that formulation
3 is a very e�ective formulation and simple as well to treat viscoelastic problems. Nevertheless, both other
formulations can be used as well, but their parameters must be chosen very carefully.

5.2. Wave propagation in an unbounded half-space

The propagation of waves in an elastic concrete foundation slab (2m� 2m� 1m) bonded on a visco-
elastic soil half-space has been calculated by formulation 2. Both domains are coupled by a substructure
technique based on displacement- and traction-continuity at the interface. The assumption of welded
contact does not allow the nonlinear e�ect of partial uplifting.

The problem geometry and the associated boundary discretization are shown in Fig. 4. The soil dis-
cretization is truncated after a distance of the foundation length. The surface of the foundation slab is
excited by a positive and negative pressure jump according to Fig. 4. Linear spatial shape functions have
been used. Similar to the Courant criterion the time step size Dt has been chosen close to the time needed by
the viscoelastic compression wave to travel across the largest element.

In Fig. 5 vertical surface displacement at point A on the half-space surface is plotted versus time for
di�erent values of the constitutive parameter q. Obviously the wave speeds increase for higher values of q,
because of a sti�ening of the material with growing in¯uence of viscosity. This is associated with a signi-
®cant displacement reduction.

The propagation of waves on the surface of the foundation and the half-space is presented Fig. 6, where
the magnitude of the displacement ®eld at the nodes is shown. Clearly the two wave fronts of the com-
pression and the shear wave are observed. The wave front of the compression wave can be observed during
transition from the foundation slab into the half-space. The wave front of the slower wave belongs to the
shear wave.

Fig. 4. Elastic concrete slab on viscoelastic half-space: boundary element discretization, material data and loading function.
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Fig. 5. Displacement u3 perpendicular to the surface at point A for di�erent values q.

Fig. 6. Displacement ®eld of propagating waves on the surfaces of foundation slab and half-space.
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6. Conclusions

The present paper describes three BE methodologies to treat visco-elastodynamic problems in time
domain. The ®rst and oldest approach is the calculation in Laplace domain. It requires an inverse trans-
formation if the time dependent results are of interest. The second formulation, proposed here, converts the
elastic formulation in time domain to a viscoelastic one. It turned out to be advantageous to convert after
integration over a time step Dt rather than converting the fundamental solution itself. The conversion is
performed by applying the elastic±viscoelastic correspondence principle in Laplace domain. The inverse
transformation in each time step is carried out numerically. The third approach uses the convolution
quadrature formulae developed by Lubich. By application of these quadrature formulae to the convolution
integral in the boundary integral equation, a numerical integration formula is obtained where the inte-
gration weights depend only on the Laplace transformed fundamental solutions and a linear multistep
method. All three formulations use the Laplace transformed fundamental solutions.

The comparison of the results for the wave propagation in a 3-d rod shows good agreement between all
three formulations. For the formulation in Laplace domain a proper choice of the real part of the complex
Laplace variable is essential for the quality of the results [31]. The crucial parameter for the other two
methods is a proper choice of the time step size, whereas the formulation based on the convolution
quadrature is not as sensitive to an optimal time step size.
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