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Abstract: Automotive Noise, Vibration and Harshness (NVH) issues often cause costly customer complaints. In particular, 
NVH of the brake system is critical for subjective ratings of vehicle safety and passenger comfort. Recently, especially a 
stick-slip induced low-frequency phenomenon, the so-called brake creep groan, has become increasingly relevant. In 
order to avoid this brake NVH problem within upcoming automobile fleets, simulative and/or experimental parameter 
studies throughout all industrial brake development stages are indispensable. To this end, reasonable and efficient data 
analysis methods are necessary too. This kind of signal assessment challenge is addressed here by means of a method 
which applies techniques of Artificial Intelligence (AI) or Artificial Neural Networks (ANNs) respectively. The basis for this 
is a large number of generically synthesised brake component acceleration spectra which represents data in the 
frequency domain with and without creep groan. This generic data is used to create specifically elaborated pattern 
recognition ANNs. Eventually, the proposed approach provides an integrated framework of conditioned ANNs which is 
supposed to detect and separate non-linear signatures of different brake creep groan vibrations. In order to examine the 
method’s practical limitations, additional data sets of synthetic accelerations including generic noise have been 
considered, and moreover, gauged accelerations concerning two test rig setups have been taken into account. Although 
the devised creep groan analysis approach is designated for automotive brake development workflows, its principle could 
be appropriate for similar NVH problems or signal analysis tasks in other engineering fields alike. 
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1. INTRODUCTION 
  

1.1. Automotive Brake NVH 
  

For some years now, the automotive industry has been 
facing immensely increasing requirements for technical, 
economical, environmental and people-oriented aspects 
for a manifold range of ever faster developed vehicle 
types. This also counts for automotive Noise, Vibration 
and Harshness (NVH) issues which are potentially 
misconstrued by drivers and passengers as serious quality 
deficits, or even as system malfunctions. Hence, 
automotive NVH requirements involve inherently 
safety-critical friction brake systems in particular. 
 
Beyond aspects related to car occupants exclusively, offer 
sound-emitting brakes annoyance potential for external 
individuals too. Akay [1] mentioned a survey from the 
1930s which stated brake noise as a top-ten urban noise 
pollution problem of New York City. Nowadays, in case of 
up-to-date (semi-) automated vehicle driving modes such 
as Parking-Pilot or Garage-Pilot, an externally affected 
person could even be the actual “driver”, see Fig. 1 and [2] 
respectively. 

 

 
  

Fig. 1. Parking-Pilot / Garage-Pilot enable remote 
operability by external “driver”, adapted from [2]. 

  
However, brake NVH affected the subjective perception of 
a car’s and/or brand’s comfort and reliability long before 
advanced technologies such as those just referenced 
entered the market. In 1991, Crolla and Lang [3] presented 
research data concerning reported brake faults after the 
market launch of five different European passenger car 
series. For each up to 1-year-old type, brake noise was 
indicated with a dominant quantity. In the early 2000s, 
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Akay [1] referenced to industry studies which assessed 
annual costs of brake NVH warranty claims on the North 
American market around one billion dollar. According to a 
paper of Abendroth and Wernitz [4] from the same 
period, leading automotive friction material companies 
spend almost 50 % of their engineering budgets directly or 
indirectly on measures against brake NVH problems. A few 
years later, Bittner [5] mentioned a comparable cost 
component for the automotive brake system supplier as a 
whole. A J.D. Power Studies North American market 
survey from 2014 [6], which rested upon more than 
40.000 responses by original owners of up to 3-year-old 
automobiles, yielded two different brake NVH problems 
within the top-five complaints. A Japanese market study 
from 2017 [7] reported NVH of friction brakes as a major 
inconvenience for around 2 % of roughly 19.000 involved 
purchasers. 
 
Thus, vibro-acoustic friction brake emissions entail an 
undesirable circumstance of high priority. One of these, 
the so-called brake creep groan phenomenon, is in focus 
within this article. In the typical automotive (disk) brake 
NVH classification chart in Fig. 2, which is based on an 
adapted literature condensation including [5] by 
Huemer-Kals [8], one can imagine via the sensibility 
examples in [9] that self-excited creep groan is situated in 
the tactile/audible frequency range of human perception. 

  

 
  

Fig. 2. Typical classification of common (disk) brake NVH 
phenomena, adapted from [8].  

  
A comparable verbalised classification can be found in 
[10]. Although further fragmentation in terms of brake 
NVH is possible, e.g. 10 spectral and/or phenomenological 
subdivisions in [9], or even 15 terminologies in [1], the 
creep groan issue remains one of the most salient ones. 
 
According to the typical distribution of warranty claims, 
which has been outlined graphically by Barton and 
Fieldhouse [10] based on the report of a high performance 
vehicle manufacturer, it owns the third largest share. 
Independent of that exemplary claim distribution, creep 
groan has a steadily increasing relevance for all commonly 
installed brake types and chassis designs within all vehicle 
segments due to several reasons such as described 
hereafter. 

  

1.2. Topicality and Phenomenology of Creep Groan 
  

The main reasons for a growing attention towards the 
creep groan issue are an increased customer expectation 
in conjunction with a reduced vibro-acoustic background 
sound level of advanced engines and powertrains. 
Therefore, creep groan is problematic for high-priced 
and/or electrified passenger cars with disk brake systems 
in particular. Nevertheless, it is also present for drum 
brakes and/or commercial vehicles which is pointed out in 
a publication by Karabay et al. [11]. Their work includes 
market surveys, value and failure analyses as well as 
troubleshooting measures concerning a specific light 
truck. 
 
Various creep groan phenomena of all systems have 
comparable origination situations with associated 
characteristic spans of certain operational parameters in 
common. Accordingly, the brake pressure is moderate and 
a very slow vehicle velocity near standstill is present, 
whereby the occurrence of creep groan is favoured from 
cold and/or wet environments in particular. Since the 
mentioned simultaneity of both operational parameters is 
in some (semi-) automated driving modes a potentially 
mandatory situation for safety reasons, e.g. for remote 
controlled parking or during activated stop-and-go driver 
assistance features, creep groan tends to become 
progressively more relevant within automobile fleets of 
the next decade. However, concerning previous vehicles 
with standard automatic gearboxes it has been a known, 
but often secondarily treated brake NVH problem. 
 
Oscillation characteristics of creep groan phenomena with 
mechanical and tribological component influences have 
not only been outlined in former works of the authors, e.g. 
[12, 13, 14], but also in specific book chapters and in 
studies of other research groups, e.g. [9, 10, 11]. 
Accordingly, creep groan is related to a physically unstable 
triggering mechanism which is in tribology fields described 
as stick-slip effect. This self-excited process at the main 
friction interfaces leads to periodic non-linear 
low-frequency brake and chassis vibrations with large 
component deflections. Accompanying short-term 
structure-borne noise disturbances appear inside and 
outside the car with relevant contents up to 500 Hz. 

  
1.3. AI and ANNs for Pattern Recognition 

  
More and more companies have started to see real-life 
benefits of Artificial Intelligence (AI) implementations. 
Early adopters of AI are mainly from sectors with a 
data-driven background such as the financial service 
industry or the automotive area, e.g. concerning stock 
trading or in terms of low-frequency interior noise 
evaluation [15]. Beyond such initial adopters, is nowadays 
a wide range of strongly digitalised business sectors just 
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like complex technology fields supported by assorted 
varieties of AI, as outlined by Bughin et al. [16]. 
 
A typical application of AI is machine learning with pattern 
recognition as one of its major branches. Rosenfeld and 
Wechsler [17] summarised historical perspectives and 
expected future directions of pattern recognition within 
their article almost 20 years ago. They described pattern 
recognition as one of the most important functionalities 
for intelligent behaviour which is displayed in biological 
and artificial systems alike. A prominent biological 
example is the detection of foreign intruders in an organic 
body by specific cellular antibodies in order to ensure the 
host’s survival. For man-made tasks, a prepared AI seeks 
to apply approximating functions with the lowest possible 
probabilities of misallocations for the evaluated data set. 
Thus, the pattern recognition problem is akin to the more 
general issue of statistical regression. Typical artificial use 
cases are optical character readers to comprehend and 
separate written letters or text modules, biometrical 
algorithms to identify persons by means of fingerprints, 
iris, face or speech, and furthermore, medical analysers to 
find anomalies in heart electrocardiograms. Liu et al. [18] 
have listed further application fields such as linguistics, 
meteorology like exemplarily shown in [19], philosophy, 
psychology, robotics, or even very specialised areas, e.g. 
ethology. They traced the latest progresses especially to 
recent technology trends such as social computing. 
 
However, modern mathematical/empirical functions for 
pattern recognition rest upon Artificial Neural Networks 
(ANNs). According to [15, 17, 19, 20], two coherent data 
sets are necessary in order to obtain the requested 
functionalities. For so-called supervised learning, these 
are input signals (variables) which are available in the 
functions’ development procedure as well as in the later 
application, and furthermore, output targets (variables) 
which are usually known in the set-up process exclusively. 

  
1.4. Problem Definition / Aim of Study 

  
Creep groan phenomena are challenging for automotive 
NVH engineers. In view of this circumstance, innovative 
investigation methods and industrially implementable 
routines are necessary. These should help to devise and 
optimise efficient remedial technical measures in 
upcoming vehicle development projects. For this purpose, 
the authors have already published concepts of new 
experimental and/or simulative methods, e.g. [12, 13, 14]. 
 
It is only natural that comprehensive creep groan 
investigations, which lead to a vast amount of data, 
require reasonable and efficient data assessment tools. 
This kind of signal analysis task is addressed here via an 
innovative creep groan classification method based on 
pattern recognition ANNs. 

  

1.5. Article Structure 
  

Representative brake component acceleration signals of 
creep groan appearances, which were recorded with two 
different setups in similar operational parameter studies 
at corner test rig level, are discussed in section 2. The idea 
behind the simplification of characteristic creep groan 
signatures in order to synthesise a high amount of more 
or less realistic acceleration frequency spectra generically 
is presented in chapter 3. These specifically synthesised 
data sets are used to develop differently elaborated 
pattern recognition ANNs which are content of section 4. 
Then, a data set of synthetic spectra including noise is 
processed to check the well-considered framework of 
conditioned ANNs. In addition, sets based on measured 
acceleration data get involved to assess the framework’s 
capabilities in a more realistic way. Both verification 
strategies with previously unseen spectra are discussed in 
section 5. Summary and conclusion of the new application 
method are drawn in chapter 6. Eventually, prospects on 
feasible refinements and further research steps are 
content of section 7. 
 

           
2. REPRESENTATIVE CREEP GROAN SIGNATURES 

  
2.1. Corner Test Rig Experiments with Two Setups 

  
Typical signatures of creep groan vibrations are discussed 
here via brake component acceleration signals. The 
accelerations were gauged at the disk brake callipers of 
two dissimilar automobile front corner setups. Design 
models of these excluding the wheels are shown true to 
scale together in Fig. 3 and [14] respectively. 

  

 
  

Fig. 3. Calliper accelerometer positions “acc-x-I” and 
“acc-x-II” on front corner systems type “I” and type “II”, 

adapted from [14]. 
  

The design on the left, named type “I”, belongs to a sporty 
grand tourer, whereas type “II” on the right illustration is 
implemented in a compact van. As one can see, type “I” 
follows the double wishbone suspension principle with 
fixed calliper brake module. Type “II” on the right is built 
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with a MacPherson suspension assembly including 
floating calliper brake construction. Both setups had, 
among other sensors, a miniature triaxial accelerometer 
glued to the upper surface of the calliper. Nevertheless, 
only the signals according to vehicle x-direction, named 
“acc-x-I” and “acc-x-II”, are actually of relevance. 
 
Creep groan of both setups was investigated at a drum 
driven suspension and brake test rig. It is pictured with an 
exemplary front corner setup of the left vehicle side in 
Fig. 4 and [14] respectively. 

  

 
  

Fig. 4. Drum driven suspension and brake test rig for 
creep groan parameter matrix experiments, adapted 

from [14]. 
  

Information about the test rig’s sophisticated structure 
with adaptable functionalities as well as its interface 
constructions for the mounting of automobile corners, 
and furthermore, the test rig’s capabilities regarding main 
operational parameters and basic environmental 
conditions under control can be found in [12]. The 
previous work also describes an innovative systematic 
creep groan investigation approach with its well-defined 
sensitivity experiments in detail. This test matrix 
procedure leads to rather extensive acceleration data 
sets. Basically, these data sets allow comparisons of 
defined combinations of brake pressure and drum 
(vehicle) velocity for different mechanical and/or 
tribological component variants. 
 
The two mentioned operational parameters were gauged 
and adjusted via the test rig’s control management with a 
given rate of 100 Hz, whereas “acc-x-I” and “acc-x-II” have 
been recorded separately with 10 kHz. 

  
2.2. Calliper Acceleration Signal Patterns 

  
In the following, a diagram with an acceleration recording 
including its computed Fast-Fourier-Transform (FFT) is 
presented for each of three distinctive brake creep groan 
vibrations of type “I” and type “II” respectively. The FFT 
with an upper calculation limit adjusted to 2 kHz applies a 
Hanning window of 50 % overlap to an 1 s time segment 

which contains the depicted short segment of 0.18 s in 
each case. This results in an appropriate frequency 
resolution of exactly 1 Hz up to the practically chosen 
boundary of 1 kHz. 
 
Detailed explanations of creep groan phenomena with 
extensive interpretations of similar self-measured calliper 
accelerations have already been documented in [12, 13, 
14]. Apart from that, Akay [1] showed and explained 
comparable time plots and frequency spectra related to 
other friction-induced vibration mechanisms. 
 
The two diagrams without creep groan show comparable 
acceleration patterns, see Fig. 5 and Fig. 6. It makes no 
difference that dissimilar setups were tested regarding 
opposed oriented drum rotations with velocities unequal 
by the factor 4. Thus, both comparable time signals 
contain low fluctuations which are just related to small 
corner setup oscillations as well as subordinate test rig 
vibrations and/or unproblematic measurement noise. A 
FFT leads to spectra with flat broadband bumps and 
relatively low and narrow decibel (dB) peaks.  

  

 
  

Fig. 5. Acceleration “acc-x-I” without creep groan,     
4 bar / 0.04 km/h. 

  

 
  

Fig. 6. Acceleration “acc-x-II” without creep groan,    
4 bar / -0.16 km/h. 
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The two typical examples of creep groan within the 
deeper frequency area, depicted in Fig. 7 and Fig. 8, reveal 
strong accelerations with more or less pronounced 
non-linear characteristics. 

  

 
  

Fig. 7. Acceleration “acc-x-I” with 18 Hz creep groan, 
10 bar / 0.16 km/h. 

  

 
  

Fig. 8. Acceleration “acc-x-II” with 14 Hz creep groan, 
10 bar / -0.04 km/h. 

  
Moreover, the two calliper x-accelerations concerning 
creep groan vibrations within the upper frequency area, 
shown in Fig. 9 and Fig. 10, also represent distinctive 
non-linear signatures. 
 
All four acceleration time data plots have a relatively steep 
and rather high amplitude (amp.) peak which is followed 
by some less intense fluctuations or damped natural 
oscillations respectively. This striking signal pattern 
repeats accurately with a specific interval according to the 
dominant stick-slip transition. The tribological switch-over 
appears in the shown instances with 18 Hz, 14 Hz, 107 Hz 
and 86 Hz respectively. If applying a FFT on such kind of 
periodic non-linear signal, prominent Root Mean Square 
(RMS) dB peaks of usually different heights will result at 
multiple intervals of the basic frequency. This can be seen 
in the spectra of all four creep groan phenomena. 

Therefore, the characteristic spectral behaviour is found 
to be an appropriate criterion within the introduced AI 
approach. Accordingly, the observable regular patterns of 
the spectra are of relevance. 

  

 
  

Fig. 9. Acceleration “acc-x-I” with 107 Hz creep groan, 
7 bar / 0.08 km/h. 

  

 
  

Fig. 10. Acceleration “acc-x-II” with 86 Hz creep groan, 
7 bar / -0.08 km/h. 

  
All shown instances of “acc-x-I” and “acc-x-II” refer to 
differently combined operational parameters which were 
representatively chosen out of the existing test matrices. 
Further comparable experimental and/or simulative creep 
groan signatures regarding both setups can be found in 
[12, 13, 14]. The related master thesis by Huemer-Kals [8] 
contains additional experimental examples. 

  
2.3. Operational Parameter Sensitivity Studies 

  
Although friction at micro- and macroscopic scale with 
respect to vibro-acoustic effects has been intensively 
studied by many authors, e.g. reviewed in [1], there are 
open questions on specific friction-induced mechanisms 
in various engineering fields. To a certain extent, this 
applies to the non-linear behaviour of creep groan 
vibrations. However, the systematic investigation 
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approach published in [12] enables already a better 
detection of other non-linear influences apart from the 
evident tribological interface, e.g. those of axle elastomer 
bushings. Therefore, changing subsystem oscillations with 
specific component participations are also identifiable. 
 
The non-linear influences due to operational parameter 
variations can be recognised in the form of zonally 
switching basic creep groan frequencies in the so-called 
Creep Groan Map (CGM). It was introduced in [12] with 
190 operational parameter combinations of brake 
pressure and drum velocity. An adapted CGM with merely 
49 test matrix entries and reduced complementary 
information is illustrated in Fig. 11 for type “I” and in 
Fig. 12 for type “II” respectively. 

  

 
  

Fig. 11. CGM of type “I” with 49 test matrix entries of 
brake pressure / forward drum velocity. 

  

 
  

Fig. 12. CGM of type “II” with 49 test matrix entries of 
brake pressure / reverse drum velocity. 

  
Both evaluations are based on comparable operational 
parameter spans with identical brake pressures regarding 

opposed drum rotations. As one can see, each chart 
reveals two different frequency areas for the basic 
stick-slip interval which is indicated via a certain colour 
and the corresponding numeric frequency value. 
Moreover, a relative occurrence (rel. occ.) of each 
enabled basic frequency is reported. Since comparable 
frequency areas have evinced for all automobile front 
corner setups tested so far, the adjusted frequency 
window between 9 Hz and 119 Hz results just from the 
authors’ experience. A presence of two prominent 
stick-slip frequency areas in each CGM becomes especially 
clear, if brake pressures higher than 10 bar are 
considered, compare to [12, 13]. Nevertheless, the shown 
test matrices contain all relevant subsystem interactions 
which are potentially activated during creep groan 
appearances. Note that the previously discussed 
x-acceleration examples are bordered with dotted circles. 
 
In order to derive a CGM, the evaluation algorithm 
presented in [12] is applied. It rests upon spectral analyses 
with well-considered adaptable queries. Thereby, the 
method is fairly well able to distinguish x-accelerations 
with creep groan vibrations from those without. As 
depicted before, the deterministic algorithm is also 
intended to categorise the basic frequency of creep groan. 
Because only if it is determined, the brake NVH issue is 
treatable holistically. Of course, also super-harmonic 
spectral contents of the friction-induced excitation are 
examinable via the algorithm. In prospective development 
steps, source-drain properties towards a passenger’s 
perception, according to a vibro-acoustic chain of effects 
such as pictured by Marschner et al. [9], might be 
calculated and improved. Independent of that vision, an 
evaluation of the exact frequency contents supports the 
interpretation of design benchmarks and/or material 
studies and gives feedback on potentially switching 
subsystem interactions from the upper to the deeper 
frequency area or vice versa. 
 
Nevertheless, reliability and accuracy of the currently 
applied deterministic evaluation method suffer, if fuzzy 
acceleration time signals such as depicted in Fig. 8 appear, 
or even if the adaptable queries are improperly chosen. 
The proposed AI approach aims to deliver step-by-step 
advancements in order to overcome these present 
deficiencies. Whether and how this is realisable is under 
investigation within this study. 
 

           
3. GENERIC SYNTHESIS OF ACCELERATION DATA SETS 

  
3.1. Functionality Set-Up: Input Signals / Output Targets 

  
Besides the capabilities of the Pattern Recognition app 
within the ANN Toolbox provided by MATLAB R2016a, the 
presented approach’s principle rests upon comprehensive 
data sets of different acceleration frequency spectra in 
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particular. These are relevant to generate an integrated 
framework of 112 autarchic ANNs (see also chapter 4.2.) 
in total. 
 
Since not enough measurements regarding possible creep 
groan manifestations (between 9 Hz and 119 Hz) were 
available in order to do so, an acceleration generation 
formalism has been designed. It evolved from subjective 
inspections of hundreds of frequency spectra with and 
without creep groan vibrations. Additionally, it has 
similarities to the evaluation algorithm proposed in [12]. 
As hinted, the generic formalism enables a reproducible 
creation of extensive data sets of synthetic x-accelerations 
or input spectra respectively. To this end, typical creep 
groan signatures are simplified via 10 adjustable spectral 
attributes which are visualised in Fig. 13. 

  

 
  

Fig. 13. Attributes of the generic spectra. 
  

By means of these well-considered attributes, 112 
separate data sets of input signals have been processed. 
Of course, related output targets were defined alike. It 
should be noted that the basic concept in terms of 
synthesised data sets for the elaboration of pattern 
recognition ANNs has already been followed in the broad 
area of automotive NVH, e.g. by Lee and Chae [15]. 
 
The so-called “primary-ANN” (see also chapter 4.4.) deals 
with the basic frequency categorisation. It refers to a 
reproducible data set of 242.757 input spectra. The 111 
so-called “secondary-ANNs” (see also chapter 4.5.), which 
are meant for creep groan judgement, are based on 
82.944 reproducible input spectra per relevant basic 
creep groan frequency. All synthetic x-acceleration signals 
have a frequency resolution of 1 Hz up to the useful 
boundary of 1 kHz. The demanded acceleration amplitude 
peaks are achieved via addition of super-harmonic 
in-phase sine oscillations below a given limit of 1 kHz. To 
this end, a time domain resolution of 10 kHz is provided 
and the basic frequency of the fundamental sine wave is 
varied stepwise from 9 Hz to 119 Hz. The superimposition 
is followed by a FFT similar as described in the previous 
chapter. Thus, all equally spaced peaks are realistically 
supported from adjacent frequencies. An adaptable 
bandwidth of white noise as well as an amplitude 
attenuation, which diminishes super-harmonic orders 
above an initial attenuation frequency equal to the 
seventh acceleration amplitude peak with 1 dB/octave, 
are both implemented in the frequency domain. 

The values for each of the 10 spectral attributes used to 
compile the 242.757 unique input spectra for the only 
“primary-ANN” can be extracted out of Table 1. Note that 
eight of these attributes are actually varied. 

  

 
  

Table 1. Attributes of 242.757 generic input spectra to 
obtain one “primary-ANN” for basic frequency 

categorisation. 
  

As one can read on the right side of the lowest table row, 
2.187 spectrum options per creep groan frequency are 
available. This quantity is broken down in the listed 
combinatorial calculation. In the following, four examples 
illustrate the considered amplitude range limits. Fig. 14 
shows the two borderline cases of all 9 Hz input spectra 
and Fig. 15 those of 119 Hz respectively. Even though both 
instances at the lower range would not be rated as creep 
groan vibrations in the end, it has no relevance for the 
determination of a basic frequency which is the exclusive 
task of the “primary-ANN”. 

  

 
  

Fig. 14. Amplitude range limits of 2.187 generic input 
spectra to describe 9 Hz basic frequency. 

  

 
  

Fig. 15. Amplitude range limits of 2.187 generic input 
spectra to describe 119 Hz basic frequency. 

  
The values for each of the 10 attributes used to compile 
the 9.206.784 singularly combined input spectra for the 
111 alternative “secondary-ANNs” can be seen in Table 2. 
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Once again, merely eight of these spectral attributes are 
actually varied. 

  

 
  

Table 2. Attributes of 9.206.784 generic input spectra to 
obtain 111 autarchic “secondary-ANNs” for creep groan 

judgement. 
  

The attribute values are different compared to those of 
Table 1. On one hand, tighter range limits for the 
x-acceleration amplitude peaks are taken into account 
here in order to create more realistic input spectra. On the 
other hand, the relevant attribute values have smaller 
increments in unequal intervals which results from an 
intended relation to the original evaluation algorithm 
introduced in [12]. However, this input signal mixture is 
supposed to provide “secondary-ANNs” which are able to 
recognise the requested regularities of creep groan 
vibrations within typical acceleration spectra. 
 
Basically, at least one consistent output target 
formulation is necessary if an ANN for pattern recognition 
is elaborated. In case of the “primary-ANN”, each 
equivalent output target contains the prescribed 
information about the associated spectrum’s embedded 
basic frequency. This is realised via an 111 times 242.757 
data matrix containing zeroes or ones, whereby a correct 
column entry is indicated by means of the value one. By 
contrast, the 111 output target data matrices used to 
define the “secondary-ANNs” have the sizes 2 times 
82.944 respectively. The unique value one in a first 
column entry implies absence of creep groan for the 
related input spectrum. The single value one in the second 
column entry indicates contrary terms. Eventually, creep 
groan is prescribed in each of the 111 equivalent set-up 
data clusters for approximately 55 % of the input signals 
which is not a mandatory share. 

  
3.2. Functionality Check: Unseen Noisy Verification  
        Signals 

  
In order to examine operability and capability of the 
designed framework with 112 self-sufficient ANNs at a 

later stage, also a generic verification data set is designed. 
Its mixture made of 909.312 unique input signals is 
gathered in Table 3. 

  

 
  

Table 3. Attributes of 909.312 generic verification 
spectra including different white noise bandwidths to 

check framework of 112 ANNs. 
  

The chosen attribute values are meant to be different 
compared to those of Table 1 and Table 2. Even though 
this applies neither to the described basic frequencies of 
the first column nor to the considered amplitude 
attenuation of the last column, there are still previously 
unseen verification spectra provided for the purpose of AI 
examination. This is even more true in view of three 
optional bandwidths of white noise superimposed to each 
of the 227.328 unique synthetic spectra, see Fig. 16. 

  

 
  

Fig. 16. Optional white noise variants superimposed to 
227.328 generic verification spectra. 

  
Each reproducible white noise spectrum is adjusted up to 
a limit of 1 kHz in order to reach a summarised overall 
RMS of 25 dB re 1 m/s² respectively. This also counts for 
the initial option without noise at all. Independent of that, 
the procedure to obtain the output targets concerning the 
more or less noisy verification signals is the same as 
discussed in the prior section. Note that output target 
values related to Table 3 are only necessary to examine 
the predictions of the proposed AI approach. 
 

           
4. ELABORATION OF PATTERN RECOGNITION ANNs 

  
4.1. Basic Model and Practical Implementation 

  
As explained in the fundamental book of Hertz et al. [20], 
the basic scheme of a multilayer feed-forward pattern 
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recognition ANN commonly contains a passive input layer 
which is followed by a number of active hidden layers and 
a mostly active output layer in the end, see model in 
Fig. 17 and literature sources [15, 19, 20]. 

  

 
  

Fig. 17. Exemplary multilayer feed-forward ANN model, 
adapted from [15, 19, 20]. 

  
In simple terms, the number of hidden layers determines 
whether the ANN adapts the philosophy of either shallow 
or deep learning, whereby this distinction is not strictly 
defined. Each of these hidden layers accommodates a 
manually predefined amount of the substantial neurons, 
see neuron model explanations in [15, 20]. Accordingly, 
the neurons of the first hidden layer receive a stimulating 
signal via the input variables, manipulate the obtained 
values pursuant to specific inherent functions and then 
forward differently weighted values to the neurons of the 
next hidden layer or to those of the output layer 
respectively. If this output layer is active, the values get 
altered once more. The obtained result is a list of 
confidence values for each prescribed output variable. 
 
It should be noted that the external connectors at input 
layer and output layer are often equivalently named input 
neurons and output neurons or just simply input and 
output, and furthermore, neurons are sometimes 
designated as nodes just like layers as units. A couple of 
these specialised terms are used within the referenced 
works [15, 17, 19, 20]. 
 
During an ANN’s creation procedure, each active neuron’s 
specific function is continuously adapted in order to 
minimise misallocations. For the topical implementation, 
this prefabricated process refers to supervised learning 
which means that output targets with preferable solutions 
are available for a comparison to predictions of the ANN. 
Of course, this pertains to the available algorithm for 
training/validation/testing in particular. 
 
ANNs implemented within this work have been created by 
means of several modified scripts derived from the 
Pattern Recognition app within MATLAB R2016a. 
 

Due to high data volumes provided for the creation 
process, out-of-memory issues appeared for the authors’ 
premature plan to combine all set-up data clusters 
simultaneously in order to build one comprehensive ANN 
with abilities in basic frequency categorisation as well as 
creep groan judgement. However, this data volume 
problem of MATLAB R2016a, which was running here on 
Windows 10 Pro 64 Bit either at a dual core i7 or at a 
quad core i7 including 8 GB RAM respectively, has already 
been resolved by the software’s developers via the 
so-called tall arrays. These allow the additional use of 
out-of-memory data, see description in [21] concerning 
more recent software releases. Nevertheless, the faced 
data volume restrictions made a workaround necessary. 

  
4.2. Integrated Framework of 112 ANNs 

  
The workaround is based on the separation of basic 
frequency categorisation and creep groan judgement. 
Therefore, an integrated framework including one 
“primary-ANN” and 111 autarchic “secondary-ANNs” has 
evolved. Due to this strategy, the memory requirements 
for training/validation/testing were strongly reduced. 
Certainly, the overall data volume was approximately the 
same, or even larger. However, the framework’s task 
distribution and information flow can be seen Fig. 18. 

  

 
  

Fig. 18. Task distribution and information flow within 
framework of 112 self-sufficient ANNs. 

  
Accordingly, the framework input reads a spectrum. It has 
a more or less embedded basic frequency which should be 
detected via the “primary-ANN” based on the highest of 
111 probabilities. After this initial categorisation is done, 
the developed script routine forwards the spectrum to the 
“secondary-ANNs”, whereby only the previously 
determined one is executed. It computes a probability 
approximation for both only possible states which means 
presence of creep groan or no occurrence. After all, the 
framework output includes the most likely stick-slip 
frequency of the imported spectrum and its related state 
concerning creep groan. 
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4.3. Split of Set-Up Data for Training/Validation/Testing 
  

The “primary-ANN” is based on an 1.000 times 242.757 
input signal data matrix and an 111 times 242.757 output 
target data matrix, whereas the other 111 autarchic 
“secondary-ANNs” rest upon 1.000 times 82.944 input 
signal data matrices and 2 times 82.944 output target data 
matrices. All 112 separate set-up data clusters were 
separately processed one after the other within the 
functionality generation phase. 
 
Therefore, a well-considered split of each data matrix 
affiliation according to training/validation/testing was 
necessary. Eventually, a training data package is used to 
adapt an ANN in order to let it comply with as many known 
output targets as possible with respect to given input 
signals. A validation data package is mainly applied in 
terms of generalisation of an ANN. It is necessary to 
systematically decide whether and/or when to stop 
training. This leads to a ranking of the varied designs. 
Moreover, testing is important to independently quantify 
the effectiveness of an ANN’s concluded design on 
previously unseen set-up data packages. Thus, it becomes 
feasible to avoid unfavourable data memorisation effects. 
 
In order to ensure a comparability of different versions 
and parameter settings, the initial set-up data split is done 
here via a predetermined index and not randomly. 

  
4.4. “Primary-ANN” for Basic Frequency Categorisation 

  
The “primary-ANN” is modelled with one hidden layer 
including 80 neurons of function type tan-sigmoid which 
is described in [15]. The data matrices of the already 
mentioned input signals and output targets determine the 
amount of 1.000 passive input neurons and 111 softmax 
function output neurons. This structure is shown in Fig. 19 
based on the standardised ANN visualisation provided by 
the Pattern Recognition app. 

  

 
  

Fig. 19. Refined MATLAB representation for 
“1000-80-111” structure of the “primary-ANN”. 

  
A percentual set-up data division of 80/10/10 for 
training/validation/testing and a regression value of 0.1 
within the well-considered Scaled Conjugate Gradient 
(SCG) backpropagation training method, which is treated 
in [19], have been applied. 
 
Compared to other options, the applied data split in 
combination with the mentioned regression value seem 
to deliver the best results while avoiding over-fitting on 

the given set-up data clusters. The main reason to choose 
SCG over other equally well performing training 
techniques is its memory efficiency. This correlates with 
the findings of Azhar Omar et al. [19] concerning an ANN 
for meteorological issues. 
 
The built-in stop criteria for training of the “primary-ANN” 
were set to 2.500 epochs, which is the maximum number 
of design iterations allowed for the entire layer 
composition, and moreover, to a limit of 500 consecutive 
validation checks which do not show improvements 
compared to the previously best. Only these two criteria 
are activated here in order to end the training iterations 
of the “primary-ANN”. 
 
The final training cycle of the “primary-ANN” results in less 
than 1 % misclassifications, if considering the testing data 
package not used for training or validation. Basically, all 
attempted layer compositions and optional parameter 
settings were varied largely automated until no further 
significant improvements regarding the minimisation of 
misclassifications occurred. 

  
4.5. “Secondary-ANNs” for Creep Groan Judgement 

  
Each of the 111 self-sufficient “secondary-ANNs” contains 
two hidden layers including 120 tan-sigmoid neurons 
respectively. The sizes of the data matrices according to 
Table 2 lead to the amount of 1.000 passive input neurons 
and two softmax output neurons. The consistent structure 
of each “secondary-ANN” is shown abstractly in Fig. 20. 

  

 
  

Fig. 20. Refined MATLAB representation for 
“1000-120-120-2” structure of each “secondary-ANN”. 

  
In light of positive experiences, the percentual set-up data 
split for training/validation/testing was adjusted to 
80/10/10 alike, and moreover, the SCG backpropagation 
training method and a regression value of 0.1 were chosen 
again. 
 
An extension from one towards two hidden layers, which 
can be interpreted as adaption from a shallow to a deep 
learning philosophy, was necessary due to a former share 
of around 20 % misjudgements on average, if considering 
the testing data package not used for training or 
validation. Based on trial and error, two times 120 
neurons achieved good results for this problem, whereby 
computational times were reasonable compared to ANN 
compositions with more extensive hidden layer numbers 
and/or neurons. Thus, the mentioned errors regarding 
both only possible states, which means presence of creep 
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groan or no occurrence, were reduced within all 111 
“secondary-ANNs” to less than 2 % on average. 
 
In order to achieve this optimisation while keeping the 
computational effort reasonable, the built-in stop criteria 
for training of each autarchic ANN concerning creep groan 
judgement were set to the upper limit of 10.000 epochs 
or training cycles respectively, to the maximum threshold 
of 500 consecutive validation checks without refinements 
compared to the previously best, to a demanded 
performance value lower than 0.00015 in terms of a 
cross-entropy calculation with a regularisation value of 
0.05, and furthermore, to the upper time limit of 2 hrs. An 
optional gradient criterion related to the performance 
value curve is not used in order to avoid premature stops 
at local minima. 
 
The additional stop criteria compared to those of the ANN 
for basic frequency categorisation were considered to 
ensure a predictable and manageable creation time across 
all 111 implementations. Accordingly, the cumulative time 
for training/validation/testing of the finally chosen layer 
compositions and parameter settings was approximately 
130 hrs. However, specific “secondary-ANNs” have been 
retrained due to significantly worse reliabilities than the 
majority of the others. This would make clear that the 
realised branched ANN approach allows a simple 
comparison of identically created ANNs with a quick 
retraining possibility, whereas this is more problematic in 
a single ANN architecture. 
 

           
5. VERIFICATION OF NEW CREEP GROAN PATTERN  
     RECOGNITION METHOD 

  
5.1. Check via Noisy Synthetic Input Signals 

  
In the first part of the verification, the four variants with 
227.328 unique synthetic spectra in each case are of 
relevance, see Table 3. Certainly, all prescribed output 
targets per variant are considered alike. Hence, each 
singular spectrum has a proper basic frequency as well as 
a preferable state whether creep groan should be 
allocated or not. Eventually, the elaborated framework’s 
reliability is quantified here in terms of pro-rata 
misevaluations per basic stick-slip frequency between 
9 Hz and 119 Hz. 
 
On one hand, “creep groan - underrated” means that the 
negatively signed percentual share, which is always 
normalised to roughly 65 % of all 2.048 spectra at a certain 
stick-slip frequency, is not judged by the “secondary-ANN” 
as creep groan, although it should be. 
 
On the other hand, the positive percentual value 
regarding “no creep groan - overrated” means that this 
share, which pertains to the other approximately 35 % of 

all 2.048 spectra at a certain basic frequency, is evaluated 
by the AI as creep groan, although the prescribed output 
targets of the related unseen verification spectra suggest 
contrary terms. 
 
Of course, this interpretation implies that the upstream 
“primary-ANN” performs very well. Indeed, concerning all 
four variants this counts for at least 99.70 % of the generic 
verification spectra, whereby the highest success rate is 
reached without white noise and the worst one with high 
white noise. Independent of that, the very small shares of 
incorrect basic frequency categorisations are primarily a 
result of misclassifications towards whole-numbered 
multiples or dividers, e.g. 9 Hz categorised as 18 Hz or vice 
versa. It should be noted that the ensuing judgement of a 
wrongly assigned “secondary-ANN” is possibly still correct 
in case of absent creep groan vibrations. However, the 
aftereffects based on errors of the “primary-ANN” are 
included in the four bar graphs hereafter. 
 
The AI misevaluations regarding the generic data set 
without white noise are shown in Fig. 21. As it can be seen 
via the left-most cumulative bars which are differently 
scaled by the factor 7, there is around -0.22 % underrating 
and 4.97 % overrating for the entire verification data set. 
However, the reliabilities of the 111 “secondary-ANNs”, 
which affect both cumulative percentual values much 
more than the “primary-ANN”, are very specific. An 
almost negligible underrating does not appear above 
35 Hz at all, whereas a widely more significant overrating 
tends to occur there instead in particular. By contrast, the 
tendency towards misevaluations of the subjacent 
frequencies is rather opposed, but with less intensity. 
Obviously, the basic frequencies with 10 Hz, 12 Hz, 20 Hz, 
114 Hz, 118 Hz and 119 Hz are a few exceptions of that 
rough rule of thumb. Hence, these “secondary-ANNs” 
have potentially stronger biases than the majority of the 
others. 

  

 
  

Fig. 21. AI misevaluations concerning 227.328 synthetic 
spectra without white noise. 

  
The AI misevaluations regarding the generic data set with 
low white noise are broken down in Fig. 22. In general, 
there is a very similar distribution across the entire 
frequency window between 9 Hz and 119 Hz as discussed 
before via Fig. 21. Thus, low white noise is not an 
additional challenge for the framework of conditioned 
ANNs. 
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Fig. 22. AI misevaluations concerning 227.328 synthetic 
spectra including low white noise. 

  
In comparison to both previous data sets, superimposed 
medium white noise leads already to slightly different 
verification results, see Fig. 23, whereby it is unfeasible to 
comprehend why just some basic frequencies are 
noteworthy affected. However, the main difference lies in 
an inferior success rate of the “secondary-ANNs” at 10 Hz, 
22 Hz, 26 Hz, 45 Hz, 61 Hz, 70 Hz and 102 Hz. This leads to 
an average underrating of approximately -0.26 %. The 
opposite situation concerns around 5.17 %. 

  

 
  

Fig. 23. AI misevaluations concerning 227.328 synthetic 
spectra including medium white noise. 

  
Lastly, as indicated in Fig. 24, the synthesised data 
including high white noise leads to the largest percentual 
shares of misevaluations with rounded overall values 
of -0.56 % and 8.30 %. Once again, certain 
“secondary-ANNs” are more sensitive on noisy signal 
components than the majority of the others. 

  

 
  

Fig. 24. AI misevaluations concerning 227.328 synthetic 
spectra including high white noise. 

  
In summary, a clear bias towards overrating can be 
noticed within these four verifications. An interesting 
aspect is that “secondary-ANNs” with initially worst 
overrating, e.g. those of 10 Hz or 118 Hz, undergo no 
additional deterioration throughout all considered 
bandwidths of white noise. 
 

  

5.2. Check via Measured Creep Groan Accelerations 
  

In the second part of the verification, the integrated 
framework of conditioned ANNs is checked by means of 
measured calliper x-accelerations available from both 
automobile front corner test setups. Thus, the data sets 
applied for this are identical as discussed in section 2, and 
moreover, comparable visualisations as depicted in Fig. 11 
and Fig. 12 can be generated. Hence, an AI-based CGM 
with 49 test matrix items is illustrated in Fig. 25 for 
type “I” and in Fig. 26 for type “II” respectively. 

  

 
  

Fig. 25. AI-based CGM for test matrix of front corner 
system type “I”. 

  

 
  

Fig. 26. AI-based CGM for test matrix of front corner 
system type “II”. 

  
A numeric value at each test matrix item clarifies the 
decision of the “primary-ANN”. It corresponds to the 
calculated option of highest probability. For this purpose, 
frequency values from 9 Hz to 119 Hz are enabled 
exclusively. 
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Colour-filled circles refer to appropriately assigned 
“secondary-ANNs” in case of actually present creep groan, 
whereby the large ones indicate its proper approval and 
the small ones its incorrect denial. Uniformly grey-shaded 
small circular areas represent the adequate rejection of 
creep groan in case of its actual absence which makes the 
included numeric values somehow dispensable. However, 
it is interesting that 90 Hz is assigned for most of these 
instances without creep groan vibrations. 
 
Hexagons are used to illustrate faulty declared outputs of 
the “primary-ANN”. The larger ones in colour indicate a 
proper approval of creep groan. Unfortunately, always at 
inherently false basic frequencies. The smaller hexagons 
in grey show a false denial of creep groan. Even though it 
could be correct for wrongly assigned “secondary-ANNs”, 
these evaluation results are still errors in a holistic view. 
 
Consequently, large coloured circles just like small grey 
ones are the only items that show the requested 
verification results in a similar manner as in the initial 
evaluations, compare to Fig. 11 and Fig. 12. 
 
As one can see in Fig. 25 and Fig. 26, hypothetically correct 
test matrix entries are distributed rather patchy. Overall, 
around 59 % and roughly 71 % matches are reached. A 
further breakdown reveals that the “primary-ANN” 
performs appropriately for approximately 73 % of the 
considered test matrix x-accelerations of type “I”. For 
type “II”, this applies to about 86 % of the 49 items. 
Furthermore, the charts show that there is a conspicuous 
bias towards underrating of creep groan vibrations in case 
of correctly assigned “secondary-ANNs”, whereas 
overrating never occurred. Hence, all percentual values 
described most recently depend on the incidence of creep 
groan within the test matrix entries. Of course, this means 
that reliability and accuracy of the new evaluation 
approach are not objectively quantifiable based on 
measured creep groan accelerations. 
 

           
6. SUMMARY AND CONCLUSION 

  
This work’s main objective relates to the development of 
an integrated framework of pattern recognition ANNs in 
order to detect and separate potentially existing 
non-linear low-frequency brake creep groan vibrations 
within comprehensive measurements and/or simulations. 
 
On one hand, the method rests upon several millions of 
generically synthesised acceleration spectra which feign 
data with and without creep groan more or less realistic. 
 
The data sets have been synthesised in a well-considered 
manner after subjective analyses on thousands of 
available calliper acceleration spectra, see also examples 
in [12, 13, 14]. The frequency window for recognisable 

basic stick-slip intervals of creep groan vibrations was 
adjusted from 9 Hz to 119 Hz. However, these are not 
mandatory values 
 
On the other hand, the presented AI application method 
deploys the capabilities of the Pattern Recognition app 
within MATLAB R2016a in order to process the generic 
data in view of 112 self-sufficient ANNs in total. 
 
However, only the faced data volume restrictions within 
this available software version led to the need for a 
workaround by means of these 112 autarchic ANNs in a 
branched architecture. In a positive sense, the distribution 
allows a simple comparison of identically created ANNs 
with a quick retraining possibility, whereas this would not 
be possible in a single ANN approach. 
 
The so-called “primary-ANN”, which is used for basic 
frequency categorisation, has a form “1000-80-111”. By 
contrast, the other 111 so-called “secondary-ANNs”, 
which are used for creep groan judgement, are designed 
with more tan-sigmoid neurons and an additional hidden 
layer according to a form “1000-120-120-2” respectively. 
 
Both multilayer feed-forward ANN types rest upon 
supervised learning, a reproducible index-based 80/10/10 
percentual data division for training/validation/testing 
and a regression value of 0.1 in combination with the SCG 
backpropagation training function. Iteration stop criteria 
were adjusted within an automated training procedure in 
order to ensure reasonable computational times while 
avoiding premature stops. 
 
As a whole, the computational times in terms of the finally 
chosen layer compositions and parameter settings 
including retraining of specific “secondary-ANNs” took 
nearly 200 hrs. Eventually, the final training cycles 
revealed for all 112 ANNs less than 2 % errors on average, 
if considering each testing data package not used for 
training or validation. 
 
The framework’s practical limitations are determined by 
means of four additional synthetic acceleration spectrum 
compilations including different reproducible white noise 
bandwidths, and moreover, via two independent data sets 
of accelerations gauged for two typical passenger car 
front corner setups at a drum driven suspension and brake 
test rig. Thus, 909.312 generic verification spectra just like 
98 measured ones have been considered in particular. 
 
Each unique verification spectrum has a proper basic 
frequency and a preferable state whether creep groan 
should be allocated or not. Since these prescribed output 
targets are based on the deterministic creep groan 
evaluation algorithm presented in [12], which can be 
questioned critically on its own, there are uncertainties 
involved in case of fuzzy acceleration spectra in particular. 
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Nevertheless, it is assumed here that Fig. 11 and Fig. 12 
reflect correct results. 
 
In terms of all 909.312 generic verification spectra with a 
prescribed proportion of roughly 35 % absent creep 
groan, a tendency towards “no creep groan - overrated” 
can be noticed. 
 
This overrating appears for 4.97 % to 8.30 % on average, 
whereas “creep groan - underrated” with respect to the 
other roughly 65 % counts for -0.22 % to -0.56 % on 
average. Both smaller values correspond to the data 
compilation without white noise and the larger values 
refer to high white noise respectively. The rounded overall 
success rates for these examples reach 98.12 % and 
96.73 % respectively. Since the “primary-ANN” classifies 
at least 99.70 % of the spectra within each data set of the 
four synthetic verification variants very well, the major 
share of the emerged AI misevaluations can be traced to 
misjudgements of the “secondary-ANNs”. 
 
A not fully understood aspect is that certain of these ANNs 
significantly change the reliability with increasing white 
noise bandwidths, whereas others do not show this 
behaviour, compare Fig. 21 with Fig. 24. Furthermore, it is 
interesting that underrating is rather omitted above 
35 Hz. 
 
In terms of the 98 examples of measured calliper 
x-accelerations with a known proportion of around 47 % 
absent creep groan vibrations, a clear bias towards 
underrating can be noticed via Fig. 25 and Fig. 26. 
 
By contrast, overrating never occurred. The investigation 
shows that the “primary-ANN” performs adequately for 
approximately 80 % of the 98 considered test matrix 
items. Subsequently, the elaborated framework of 
conditioned ANNs reaches an overall hit rate of around 
65 %. 
 
However, a major concern in this verification part is the 
fact that these percentual values described most recently 
depend on the incidence of creep groan within the test 
matrix entries. Hence, a slightly higher overall hit rate of 
approximately 70 % is reached in case of considering both 
creep groan parameter matrices of [12] with 190 items 
respectively. On the downside, matches for the 190 test 
matrix items of [13] emerge only for roughly 37 %. 
 
Based on verifications with these 570 additional items 
should be noted that potential for improvements seems 
to lie within a sophisticated treatment of typical 
misclassifications of the “primary-ANN”. These are often 
related to a detection of whole-numbered basic frequency 
multiples or dividers, and furthermore, to rounded basic 
frequency decimals which were not yet taken into 
account. 

7. OUTLOOK 
  

The developed approach’s principle rests upon not yet 
fully exploited capabilities of a specific software. 
Moreover, ANN models for pattern recognition can be 
adapted in many ways. Hence, more experienced 
software users and/or AI specialists probably detect 
potential for improvements. However, the fundamental 
set-up data clusters are always essential. 
 
Millions of generically synthesised acceleration spectra 
have been considered. Nevertheless, there could be a lack 
of information in the attempt to imitate the evaluation 
algorithm introduced in [12]. Further attribute values 
might be tested or realistic spectral noise could be added, 
whereby a higher amount of generic input spectra for 
more training/validation/testing options should not be a 
main aim. Of course, the dimensions of the input signal 
data matrices might be reduced in order to decrease the 
computational effort, e.g. to 500 Hz. 
 
Alternatively, measured creep groan accelerations could 
be considered during the set-up phase. Preliminary 
studies have shown a large potential with good matching 
rates around 90 % concerning this adapted single ANN 
strategy. Nevertheless, the available data pool from test 
rig measurements regarding different creep groan 
manifestations within the relevant frequency window is 
not yet enough. In view of upcoming creep groan 
experiments, or even with prospective transient 
simulations such as demonstrated in [13], this alternative 
approach with only one ANN is practicable at the soonest 
in a few years. 
 
Lastly, it should be noted that the principle of the devised 
AI application method could be suitable for similar NVH 
problems or signal analysis tasks in other engineering 
fields alike. However, refinements have to be made in 
order to enable an implementation. 
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