
Hunting Password Leaks in Android
Applications

Johannes Feichtner

Institute of Applied Information Processing and Communications (IAIK)
Graz University of Technology

Inffeldgasse 16a, 8010 Graz, Austria
johannes.feichtner@iaik.tugraz.at

Abstract. A wide range of mobile applications for the Android ope-
rating system require users to input sensitive data, such as PINs or
passwords. Given the ubiquitous and security-critical role of credentials,
it is paramount that programs process secrets responsibly and do not
expose them to unrelated parties. Unfortunately, users have no insight
into what happens with their data after entrusting it to an application.
In this paper, we introduce a new approach to identify and follow the
trace of user input right from the point where it enters an application. By
using a combination of static slicing in forward and backward direction,
we are able to reveal potential data leaks and can pinpoint their origin.
To evaluate the applicability of our solution, we conducted a manual and
automated inspection of security-related Android applications that process
user-entered secrets. We find that 182 out of 509 (36%) applications
insecurely store given credentials in files or pass them to a log output.

1 Introduction

A multitude of mobile applications perform security-critical tasks and require that
user inputs are processed reliably. For this to achieve, a correct implementation
is indispensable, ensuring that no sensitive data can be leaked within the data
flow and that cryptographic systems are applied correctly, in case their use is
appropriate. Sadly, there is little information on how responsibly applications
treat critical user inputs. Usually, it is unknown whether an input undergoes
a cryptographic transformation and if it is safe for a user to enter secrets.
If the source code of a mobile application is not made available, the correct
implementation can only be verified by reverse-engineering the final product.

The analysis of security aspects on mobile platforms has attracted a lot of
attention in the past years. A majority of publications in this field focus on
the Android ecosystem where the openness of the platform promotes program
inspection. Supported by the fact that Dalvik bytecode in Android applications
can be decompiled to Java code, existing tools for static analysis are easily
applicable [1, 2]. Unfortunately, even state-of-the-art analysis solutions miss
the opportunity to trace user inputs statically. Self-contained implementations
and specific output formats make it difficult to extend existing tools with new



capabilities. In experiments, we also noticed that many solutions are powerful in
general but each present different drawbacks when it comes to aiming them at a
specific purpose, such as following the trace of user-entered secrets.

In this work, we bridge this gap and present a new static analysis framework
that focuses on identifying and tracking user input fields in Android applications.
By implementing a combination of forward and backward slicing for use with
reverse-engineered Dalvik bytecode, our solution aligns to inspecting the data
flow of input fields for sensitive user data. Starting at predefined lookup patterns,
the automated analysis first aims to derive concrete slicing criteria. We then
follow the data flow throughout an application and obtain all execution paths that
influence an input field under consideration. To determine whether user-provided
secrets are passed to potentially problematic functions, it is verified whether the
encountered statements comply with predefined security checks. After checking
several hundred security-related applications, we find that 36% of them process
secrets insecurely. Our insights stress the need for a framework to automatically
analyze applications regarding the leakage of sensitive user input.

2 Background And Related Work

Most publications in the field of Android application security involve either
dynamic or static analysis. Dynamic approaches work by monitoring the live
execution of an application after hooking into the Dalvik virtual machine. Resilient
to dynamic code loading and code obfuscation, solutions like TaintDroid [3]
or Mobile Sandbox [4] can analyze and detect privacy leakage in the current
execution path. Nevertheless, they inherently miss code paths that are not visited
at runtime. Leaks of password inputs would, thus, only be detectable for input
fields where a password was actively provided by the user. The solution of Cox
et al. [5] mimics this task and inspects the flow of sensitive data in a sandbox.
Other works, also based on TaintDroid, uncover privacy leaks based on used
permissions [6] or by enforcing previously elaborated policies [7].

Methods for static analysis, as an alternative, typically apply taint tracking
on a reverse-engineered representation of Dalvik bytecode. Smali is a mnemonic
language to represent Dalvik bytecode in a parseable format. As it keeps the
semantics of code very close to the original, it is often a preferable choice over
a more intricate decompilation, e.g. to Java code. Having a source-code like
representation, the primary challenge then is to follow arbitrary execution traces
as sound and precisely as possible. This objective is tackled both by fully-fledged
frameworks, such as FlowDroid [8] and IccTA [9], as well as solutions for individual
issues like Implicit Control Flows [10]. Unfortunately, the general design of these
tools prevents them from being specifically applicable on input fields for sensitive
data. More targeted solutions for similar challenges [11, 12] are tailored to their
specific use case and cannot handle the characteristics of both XML resources
and dynamically generated input fields. The same applies to the subsequently
conducted analysis of potential security-relevant problems where all possible
execution paths have to be checked individually.



Tracking the data flow of program statements is commonly referred to as
program slicing. The concept can be used to determine all code statements of
a program that may affect a value at a specified point of execution (slicing
criterion). The resulting program slices cover all possible execution paths and
allow conclusions to be drawn about the functionality of the program. In our
work, we adopt the algorithm of Weiser [13] to create slices of Smali code in order
to find paths from the origin of an input field to its use in the application code.
Technically, our solution for forward slicing is inspired by Hoffmann et al. [14]
who proposed a general approach for static backtracking on Smali code.

3 Static Slicing of Smali Code

The ability to trace information in both forward and backward direction is a core
component of our framework in order to isolate those parts of an application that
are relevant with regard to a specific slicing criterion. In the following, we present
the implemented techniques for static slicing and highlight practical challenges.

3.1 Slicing Patterns

The slicing process naturally depends on a slicing criterion referencing a specific
line of program code. Considering our objective to track arbitrary input fields
matching predefined criteria, a more generic representation is needed. Therefore,
we propose so-called slicing patterns that conceptually describe a type of resource
or object to track in XML format.

Since a pattern includes no reference to a specific program statement, it does
not represent a slicing criterion by itself. Instead, it comprises all necessary data
to dynamically build slicing criteria corresponding to the pattern. Assuming that
the data of interest occurs multiple times within an application, a multitude of
slicing criteria is deduced and subsequently tracked. Depending on the defined
focus and level of granularity, a pattern might be applicable to either only one
specific application, or be generally suited for a large set of targets. In order to
comply with different requirements, patterns support the description of different
types or features that can be tracked.

Method Invocations To follow the trace of dynamically generated input fields,
we need to be able to address particular method invocations. In the default
behavior, slicing criteria are determined by searching for all invoke statements
matching the given pattern. Therefore, all code lines of an application are scanned,
looking for the provided method signature. For each match, the appendant
program statement is considered as a starting point for slicing. Subsequently, the
name of the register to track is located by associating the index of each occurring
register with the given parameter (index) of interest. As a result, a set of suitable
slicing criteria is delivered.



Resource Objects Resources in Android applications, such as the user interface,
layouts and strings, are usually externalized from the program code. For every
outsourced element, the developer has to assign a unique resource ID which can
later be referenced in code. Tracking concrete IDs would require us to manually
modify the slicing pattern for every inspected application. As a remedy, we
propose to address specific resource objects using generalized XPath queries.

As Android resources are typically denoted in XML format, XPath comes in
handy to select elements by means of their node type and a variety of predicates.
Accordingly, it is feasible to assemble slicing patterns that focus on particular
resources in a multitude of applications. In contrast to tracking specific resource
IDs, the used XPath queries are intended to cover one or multiple resource
elements. By leveraging the flexibility of XPath, queries can be adapted to select
arbitrary resource elements that match given properties. In practice, this benefit
enables slicing patterns to be generalized to such an extent that the characteristics
of individual applications become entirely extraneous.

3.2 Static Slicing

By performing static slicing on Smali code, our framework is capable of determi-
ning the control and data flow of relevant code segments in Android applications.
Based on a given pattern, an analysis is conducted in forward or backward
direction, storing the results in an object-based graph representation.

Having derived one or multiple slicing criteria from a given pattern, they
are initially added to an internal FIFO queue. This to-do list serves as input
for both the forward and backward slicer and collects all registers, fields, return
values, and arrays that are subject to tracking. Moreover, it holds a reference
to all objects that have already been followed and excludes them from being
reprocessed. When requested by the slicer, the queue returns the next object to
track, which includes the register to track and the location of the corresponding
opcode. On the basis of this approach we are effectively able to control the slicing
process and prevent the repeated analysis of already investigated data flows.

Forward and backward slicing are conceptually separated components that
process the input from the to-do list and output slicing results to a dynamically
built tree. Initially, the slicing criterion is set as root node, followed by all code
statements that are contained in the slice. The generated graph is suited for
further analysis, such as security checks for password fields.

3.3 Graph-Based Output

The initial idea consisted in visualizing all data flows in one graph per slicing
pattern. Due to the fact that a pattern can lead to multiple slicing criteria, this
approach would cause incoherent flows of various criteria to be collated into a
single representation. Aside from impeding the meaningfulness of the resulting
graph, it would also lead to inconsistent results since overlapping data flows
might occur multiple times. As a remedy, one graph is generated per slicing
criterion. The top node is always the criterion, deduced from the pattern, since it



represents the root of all possible execution paths that can be modeled. Subjacent
nodes stand for all code lines which are contained in the slice. In case there
are multiple execution paths, e.g. an if-else statement, a slice node might
have links from multiple predecessor nodes. When code statements are iterated
multiple times, e.g. via for or while, loop cycles are induced between vertices.
Each (intermediate) node involves a list of all predecessor nodes, including the
originating registers and the registers, related to the current program statement.

A slice tree can comprise one or multiple leaf nodes whereas each describes
either a constant or indicates an abruptly ended slicing process. Assuming that a
constant value, such as an integer, an array, or a string, is copied into the tracked
register, slicing may stop since the register value is redefined. For backward slicing
this signifies that the tracking process has led to one or more values that affect
the slicing criterion. In contrast, for forward slicing it means that the currently
tracked register will not affect any subsequent operation and, thus, the data
flow has reached an endpoint. Leaf nodes are also inserted in case slicing loses
track. This happens, for instance, when registers are set as parameters in calls to
unresolvable methods.

3.4 Slicing Accuracy

The aforementioned queue ascertains accurate analysis results by filtering registers
that exceed a predefined threshold of fuzziness. Each tracked register is assigned
a fuzzy level which indicates its accuracy in accordance with the slicing criterion.
In other words, it expresses the likelihood that the value of the currently tracked
register still equals the value of the initial register. Accordingly, the fuzzy level
is also attached to found constants and nodes within the slice tree in order to
highlight their relevance with respect to the slicing criterion. A value of 0 means
that the result is completely accurate and has not been modified on its way to
the slicing criterion. Higher values indicate less accurate results and a reduced
expressiveness of the results.

Although the fuzzy level enables us to measure uncertainty in analysis results,
it makes no indications about the quality of found constants. For example, a high
value does not necessarily imply that a constant has only marginal impact on a
slicing criterion. Similarly, it is probable that a register has a low value but does
not correlate with the initial register at all.

4 Passwords on Android

The analysis of data flows from input fields for passwords starts with the definition
of a suitable slicing pattern. Based on the provided parameters, concrete password
field usages are searched in program code, added to slicing criteria and can then
be tracked in forward direction. In view of our analysis objectives, the following
case study illustrates the derivation of an eligible pattern. With the intention
of tracking any password field occurring in practice, we also identify possible
shortcomings of an elaborated pattern.



Basically, password fields in Android applications are either statically defined
as XML resources or generated from program code during runtime. Since both
options refer to the same implementation internally, their capabilities and pro-
duced outputs are identical. As an initial trigger for slicing, however, it is not
feasible to cover both forms by a single slicing pattern. This is also reflected by
our slicing patterns’ types which focus either on resource objects or invocations.
In the following, we will examine both cases and highlight their characteristics.

4.1 XML Resources

Password input fields in XML resources typically make use of the element class
EditText that enables editable input fields to be displayed. Depending on the
provided attributes, differently shaped fields and keyboards are presented to
the user during interaction. Concise XPath queries facilitate the selection of
corresponding input fields for analysis purposes.

Until the release of Android 1.6 (API level 4), the default way to declare
password input fields consisted in adding the property password=true to an
EditText element. Although considered deprecated now, the technique can still
be found in applications that maintain compatibility with the eldest versions
of Android. Referring to the previous section, an XPath statement is suited
to specifically match this password input field description. The first-mentioned
slicing pattern in Listing 1.1 illustrates the assembled XPath query.

On current versions of Android, password fields are declared by setting a
corresponding constant value to the EditText element property inputType.
Alongside with other input types, the change also introduced more fine-grained
descriptors for password input fields. For instance, developers can specify the type
numberPassword in order to restrict possible user input to numerical values only.
For the subsequent static slicing process, this implies that the initially tracked
value is also numeric and, hence, likely to be subject to integer transformations.
If the property maxLength is also set, conclusions about the achievable security
grade could be drawn even without slicing.

The most obvious descriptor for an arbitrary password combination is the
input type value textPassword. Considering the previously formulated pattern,
the same scheme is applicable to the input type property. The resulting adaptation
is depicted in Listing 1.1. In the current state the XPath statement is designed to
match exactly the given predicate and fail for any deviation. Although it is suited
for practical application, the precision is comparably low as other relevant and
legitimate input type values are not taken into account. In particular, this concerns
all other descriptors, designated for password input, such as textWebPassword,
textVisiblePassword, and numberPassword. A possible remedy is to add the
listed options to the XPath statement accordingly. The resulting query is now
capable of delivering all elements with an exactly matching input type value.

Another possible application scenario is the combined use of multiple input
types. For example, the value textNoSuggestions|textPassword causes the
user-shown keyboard to omit the display of any dictionary-based suggestions.
Without adaptation to this circumstance our XPath query would not match input



type combinations at all. A pragmatical approach to this issue consists in refining
the pattern in a way that it focuses on verifying the occurrence of a password type,
disregarding further options. This can be achieved by simply checking whether
the property contains a known value. In contrast to the previously stipulated
exact conformity, we weaken the statement to a containing match. The final
slicing pattern is denoted in Listing 1.1. It covers all relevant forms of password
types while refraining from matching unrelated values.

Listing 1.1. Forward slicing pattern: Password fields

1 <forwardtracking-pattern enabled="true" type="XPATH_QUERY"
pattern="//EditText[@password='true']" description="EditText XML fields with attribute
'password'" />

2

3 <forwardtracking-pattern enabled="true" type="XPATH_QUERY" pattern="//EditText[@inputType,
'textPassword']" description="EditText fields with inputType = textPassword" />

4

5 <forwardtracking-pattern enabled="true" type="XPATH_QUERY"
pattern="//EditText[

6 contains(@inputType, 'textPassword') or
7 contains(@inputType, 'textWebPassword') or
8 contains(@inputType, 'textVisiblePassword') or
9 contains(@inputType, 'numberPassword')]"

10 description="EditText fields with password inputType" />

4.2 Generated Input Fields

Another possibility to display password fields is to generate them dynamically
during runtime. Rather than embedding monolithic EditText elements in XML
resources, editable fields can also be defined using program code. Accordingly,
a variety of properties and actions is assignable on each instance of the class
EditText. A slicing pattern should, hence, be suited to identify generated pas-
sword fields reliably and to convey slicing criteria for the subsequent tracking
process. In order to achieve this, we have to cope with three essential problems:

– How is it possible to distinguish between ordinary EditText elements and
those that are configured for password input?

– What are the implications of tracking the entire element instead of the
password value only?

– Are we able to design a slicing pattern that adapts to the given constraints?

These questions were equally relevant for password fields in XML resources.
Nevertheless, in the former case it has shown to be fairly simple to derive a pattern
that matches particular properties of one corresponding XML element. With
generated input fields, more complex prerequisites apply since password fields
cannot be reduced to a single program statement, enclosing all relevant attributes.
In the following, we will gradually answer the previously listed questions by
examining the sample code provided in Listing 1.2.

Password Field Identification Initialized within the corresponding appli-
cation context, a dynamically created input field is an instance of the class



EditText. In order to hide the user-entered text by asterisks, an input field
has to be assigned an appropriate password transformation method. Similar to
XML resources, an optionally added input type property restricts the possible
input value to a predefined set of characters and advises the keyboard not to
save the password for spelling correction. Although not recommended from a
security-aware perspective, specifying the input type may be omitted. Conse-
quently, we can conclude that the only irrevocable indicator for a password field
(with asterisks) is the assignment of a PasswordTransformationMethod class
instance. In order to identify an employed transformation object and input type
constant, the arguments of setTransformationMethod() and setInputType()

have to be tracked in backward direction.
With visible (non-hidden) password input fields, an entered text undergoes

no transformation and, hence, in that case the value of the input type property
remains the sole indicator for a password input field. As illustrated in Listing 1.2,
the type is declared by a constant value which first points to the possible user-
entered values (e.g. text or number) and secondly specifies the particular type of
the input field. Accordingly, for visible passwords the second descriptor would
be TYPE TEXT VARIATION VISIBLE PASSWORD. The constant states whether an
input field is designed to handle passwords and indicates the processed type.

Being assembled at runtime, it might occur that the input type is not im-
mediately assigned to the EditText instance upon initialization. Similarly, it
is probable that the transformation method changes during execution. This is
likely the case with Android applications that offer users the option to toggle the
password visibility by clicking on a button. Internally, this is achieved by swit-
ching the transformation method, e.g. from PasswordTransformationMethod

to HideReturnsTransformationMethod (or any other non-hiding option) and
vice-versa. Unless the password transformation is already registered upon initiali-
zation, it is evident that all transformation method assignments to an EditText

instance need to be backtracked in order to determine whether the element acts
as an input for passwords at any point of execution. Of course, this process
becomes redundant and can be skipped if an input type is set, already referring
to a password or PIN code. Overall, the workflow to find generated password
input fields can be summarized as follows:

1. Find instances of EditText objects and, using forward slicing, verify whet-
her the methods setTransformationMethod and setInputType are invoked
directly upon initialization.

2. Based on the obtained results, backtrack the arguments passed to the found
methods. An input field for passwords is found if at least one of the following
conditions is met:
(a) The tracked transformation method is an instance of the class

PasswordTransformationMethod.
(b) The tracked input type constant value indicates a matching field type for

a visible, numeric, web, or general password.
3. If still undecided, track all transformation method or input type assignments

appendant to a particular EditText instance and perform the evaluation as
outlined in the previous step.



Listing 1.2. Example of a dynamically generated input field.

1 AlertDialog.Builder alert = new AlertDialog.Builder(context);
2

3 final EditText input = new EditText(context);
4 input.setTransformationMethod(PasswordTransformationMethod.getInstance());
5 input.setInputType(InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_PASSWORD);
6

7 input.addTextChangedListener(new TextWatcher() {
8 @Override public void onTextChanged(CharSequence s, int st, int before, int ct) {
9 String password = s.toString();

10 }
11

12 @Override public void beforeTextChanged(CharSequence s, int st, int ct, int af) {}
13

14 @Override public void afterTextChanged(Editable s) {
15 String password = s.toString();
16 }
17 });
18 alert.setView(input);
19

20 Button submitButton = new Button(this);
21 button.setText("Submit credentials");
22 button.setOnClickListener(new View.OnClickListener() {
23 public void onClick(View view) {
24 String password = input.getText().toString();
25 }
26 });

Tracking Passwords Having successfully identified an EditText element as a
container for password input, the subsequent task consists in tracking the data
flow of a user-entered password. Beforehand, a suitable slicing criterion is needed
in order to trigger this process. In the following, we highlight the available options
and point out possible implications on slicing results.

Basically, it is conceivable to compose a criterion from the previously found
EditText instance and track the object in forward direction. The resulting slice
would, in theory, comprise all code statements that refer to the input field or any
of its properties. Applied to the sample code provided in Listing 1.2, the result
should include the code lines 9, 15, 18, and 24 since they reference the input field
object or a derivative. However, as opposed to the directly visible data flow from
the EditText instance to the AlertDialog in line 18, the affiliation with the
other code lines is not immediately obvious. To resolve these traces, our slicer is
aware of implicit control flows, internally handled by the Android framework.

As depicted in Listing 1.2, EditText objects support the registration of event-
triggered methods. They enable a predefined callback to be invoked whenever
the event is signaled. The sample code demonstrates this feature by means
of the addTextChangedListener listener. In practice, it causes the method
onTextChanged (line 9) to be called with the current input field text wrapped as
a CharSequence, as soon as the text of the input field changes. Another listener
method is attached to a button (line 22) and brings the method onClick to
access the value of the input field (line 24), once the button is clicked. The
actual control and data flow in these two examples is carried out internally
and beyond the scope of the underlying program code. For static slicing, this
means that neither a consecutive nor a coherent data flow is determinable due to
missing links in the execution chain. For instance, without being able to track



into Android’s TextWatcher class, a slicer cannot know that the CharSequence

encloses the value of the input field. More generally, the slicer will miss all
information flows that are handled within a listener-callback system, leading to
considerable imprecision and false negatives in the overall output.

One way to address the shown issue consists in statically linking callbacks and
their registrations. For instance, assuming that a call to addTextChangedListener
is encountered by the slicing process, a previously learned mapping could dis-
close that the actual input value is made available through a CharSequence

or Editable parameter. The downside of this approach, however, is that all
probable associations have to be known in advance. Considering the extensive
amount of possible listeners and callbacks on the Android ecosystem, a manually
managed database is likely to cover only a subset of all implicit control flows.

Instead of tracking EditText instances, another approach is to track methods
that are known to access the password value. E.g., by defining invocations of
EditText->getText() as slicing criterion for forward tracking, it can safely
be assumed that the initially sliced register holds the actual password value.
Employing the same criterion for backward slicing reveals whether the originating
EditText instance sets an appropriate transformation method or input type.
Compared to the formerly described method, this combination of slicing into
both directions enables the resulting slice to start with the password value itself
(instead of the input field) and ascertains that it is not influenced by unrelated
properties of the originating EditText object. However, the focus on specific
methods, such as getText(), also causes other accessors to be excluded a priori.

The following key points can be concluded from the described approaches:

– The slicing criterion has to be assigned an EditText element or an access
method, such as getText(), in order to track password input fields.

– Depending on the initial trigger, the slicing results may include code state-
ments that are not related to the input field value at all.

– User-entered passwords are typically passed to event-triggered callbacks.
– By implicitly referring to an EditText instance, password values are made

available via different data types and access descriptors. The slicing process
has to know these characteristics in advance.

5 Finding Password Leaks

Evaluating the data flow of passwords regarding security aspects is challenging
since the severity of problems may depend on the context of an application. For
example, it might be inappropriate to flag an application insecure due to the fact
that a password does not undergo a cryptographic transformation. Of course, the
opposite can be true for applications where cryptography is inevitable in order
to protect sensitive data.

Considering passwords as sensitive information, our security rule focuses on
general misconceptions that substantially affect its secrecy. For instance, one
paradigm states that passwords must not be written to a logging function. This
emerges from the fact that the mandatory confidentiality is no longer given as



soon as an unintended party is able to learn secret credentials. By analyzing the
data flow between a password field and one or multiple endpoints, we aim to
answer the following questions:

– Is an entered password written to an output file?
– Is a password leaked to a logging function / logfile?
– Is a cryptographic transformation applied to an input?

If one of the first two conditions is satisfied, the security of an entered password
is clearly impaired. The latter question specifically depends on the investigated
application. For example, under normal circumstances there is no need for a
Mobile Banking application to transform a password in order to login to the
service behind. In contrast, a program intending to securely store data protected
by a user password undoubtedly should apply cryptography for key derivation
and data encipherment.

5.1 Detection Strategy

Using the following workflow, we intend to evaluate the questions listed before:

1. Identify available password fields by applying the patterns, elaborated in
Listing 1.1. For each occurrence, track all resource usages in forward direction.

2. From each computed slicing graph, extract all feasible execution paths and
evaluate the following conditions:
(a) Raise an alert if the data flow includes calls to write(...) methods of

the (sub)classes of java.io.OutputStream and java.io.FileWriter.
Also detect when passwords are exposed using java.io.PrintWriter.

(b) Check if a password is sent to log output or leaked to a logfile using
methods of the android.util.Log API. Issue a warning if corresponding
calls have been found.

(c) Verify if a password is processed by security-related APIs, exposed in
java.security.* and javax.crypto.*. If found, emit a notification.

The detection workflow starts by obtaining the slicing graphs for all password
fields. Initially containing the offset of the password resource, the data flow of
an execution path models all program statements that are affected by the input
field. Inspecting the graph enables us to search specific accessors that are known
to implement the questioned behavior.

6 Evaluation

The goal of this evaluation is twofold. First, we intend to assess the practical
feasibility of our analysis solution. Therefore, we manually contrast the output
of our framework with the actual source code of real-world applications. This
helps us to identify possible weaknesses in our approach and implicitly highlights
the framework’s reliability. Second, by applying our tool on a larger number of
current applications that include password inputs, we gain a valuable insight into
the prevalence of potential security problems.



For the evaluation, we conducted both a manual and an automated analysis
on the same dataset. In the following, we explain the applied methodology, the
individual goals, and what applications were analyzed. Lastly, we combine both
approaches into a single representation and point out notable findings.

6.1 Methodology

Before testing the automated analysis, we manually reverse-engineered and
examined the source code of 522 applications that use input fields for secrets.
All of them were downloaded from the official Google Play Store and had at
least 10,000 installations. 206 applications were “password managers”, intended
to protect user-entered credentials by means of cryptography. The remaining
applications served different purposes: mobile banking (145), cloud storage (68),
secure data container (12), messenger functionality (91).

The idea of the manual analysis was primarily to collect a ground truth about
what our framework should later find automatically. Meanwhile, we repetitively
refined the implementation where we recognized deficiencies and ensured all
components would interact well enough with each other. Besides identifying
opportunities for future improvement, we also benefited from seeing what our
security checks would be able to (not) cover in a real-world scenario.

In the second step, we applied our framework on the dataset. For each
automatically inspected application, we obtained a generated report that included
all found input fields for secrets, for each of them the possible execution paths
and the result of the performed security checks.

6.2 Results

In total, we applied our framework to 522 selected Android applications. As
listed in Table 1, among the investigated programs, 10 could not be analyzed
automatically as the slicing process was either aborted after the defined threshold
of 25 minutes or it surpassed the limit of 80,000 tracked registers. The analysis of
another set of three applications failed due to limitations in the amount of usable
memory. Precisely, during the pre-processing step, the automated analysis ran out
of memory while parsing the Smali code into an object-oriented representation.
A manual review of the affected programs revealed that their Dalvik bytecode
contained tricks to hamper reverse-engineering. Apart from that, we could verify
that these apps process secrets safely. As a result, for 97% or 509 out of 522
applications the analysis workflow terminated successfully.

During our evaluation, we disclosed a total of 2,874 input fields for passwords
or PINs. The manual review revealed that the amount of fields used correlates
with the program’s category. While, on average, mobile banking applications
include 2, messengers provide up to 8 input fields for secrets.

Overall, we found that 41% or 1,181 entered secrets were processed by security-
related APIs. Clearly, it depends on the purpose of the individual input field
whether a cryptographic transformation is appropriate. However, of 206 inspected
password managers, we observed that in 38% or 78 applications none of the



Table 1. Framework evaluation with selected applications

Count [%]

Downloaded from Google Play Store 522

Failure during static slicing 10 2%

Out of memory 3 1%

Analyzable with password inputs 509 97%

Input fields for secrets 2,874

Secrets passed to crypto-related functions 1,181 41%

Secrets leaked through android/util/Log 577 20%

Secrets written to a file output 346 12%

Input fields leaking secrets 923 32%

Apps with unsafe input fields 182 36%

available input fields for secrets was linked to security-related APIs. Although
this does not immediately imply security issues in all affected programs, a further
inspection seems advisable.

The secrecy of the user-entered data is only preserved if the associated data
flows do not allow an attacker to learn credentials. Unfortunately, we found that
in 20% or 577 input fields the secret was passed to a log output. Likewise, the
input to another 12% or 346 fields was written to files. Interestingly, as also
confirmed by the manual analysis, no credentials were leaked both to log output
and files. In summary, we observed that 32% or 923 out of 2,874 inspected input
fields leaked input data either to files or log output. With regard to the set of
509 investigated applications, it can be subsumed that 36% or 182 are subject to
an issue that substantially affects the secrecy of entered passwords.

Evidently, the precision of our analysis results is strongly linked to the accuracy
of the inspected data flow graphs. The manual analysis step ensured that there are
neither false positives, nor false negatives with regard to our dataset. Nevertheless,
from the obtained results we conclude that our solution qualifies for use with an
arbitrary dataset. Of course, this does not imply the security checks are complete
and there is no more room left for improvement. In fact, additional patterns and
checks could be suited to reveal further misconceptions.

7 Conclusion

In this paper, we presented a target-oriented approach to track the data flow of
input fields in Android applications by means of static analysis. Based on the
proposed concept of slicing patterns and a combination of static slicing in forward
and backward direction, our solution excels in following user-provided input right
from the point where it enters an application. We assessed our framework by
analyzing 509 applications manually and automatically. We detected that 36%
or 182 applications leak sensitive user input either to files or log output. This
result does not only highlight the viability of our solution but also underlines that
misconceived processing of secrets is a common issue in Android applications.



References

1. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot - a
Java bytecode optimization framework. In: Conference of the Centre for Advanced
Studies on Collaborative Research – CASCON, IBM (1999) 13

2. Bartel, A., Klein, J., Traon, Y.L., Monperrus, M.: Dexpler: converting Android
Dalvik bytecode to Jimple for static analysis with Soot. In: State of the Art in
Java Program Analysis – SOAP, ACM (2012) 27–38

3. Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., McDaniel, P.D., Sheth, A.:
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring
on Smartphones. In: Symposium on Operating Systems Design and Implementation
– OSDI, USENIX Association (2010) 393–407

4. Spreitzenbarth, M., Freiling, F.C., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-
sandbox: having a deeper look into android applications. In: Symposium on Applied
Computing – SAC, ACM (2013) 1808–1815

5. Cox, L.P., Gilbert, P., Lawler, G., Pistol, V., Razeen, A., Wu, B., Cheemalapati, S.:
SpanDex: Secure Password Tracking for Android. In: USENIX Security Symposium,
USENIX Association (2014) 481–494

6. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: Automatically
Detecting Potential Privacy Leaks in Android Applications on a Large Scale. In:
Trust and Trustworthy Computing – TRUST. Volume 7344 of LNCS., Springer
(2012) 291–307

7. Mann, C., Starostin, A.: A framework for static detection of privacy leaks in android
applications. In: Symposium on Applied Computing – SAC, ACM (2012) 1457–1462

8. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.D.: FlowDroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In: Programming Language
Design and Implementation – PLDI, ACM (2014) 259–269

9. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Traon, Y.L., Arzt, S., Rasthofer,
S., Bodden, E., Octeau, D., McDaniel, P.D.: IccTA: Detecting Inter-Component
Privacy Leaks in Android Apps. In: Conference on Software Engineering – ICSE,
IEEE Computer Society (2015) 280–291

10. Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M., Kruegel, C., Vigna, G., Chen, Y.:
EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through
the Android Framework. In: Network and Distributed System Security Symposium
– NDSS, The Internet Society (2015)

11. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of
cryptographic misuse in android applications. In: Conference on Computer and
Communications Security – CCS, ACM (2013) 73–84

12. Backes, M., Bugiel, S., Derr, E., Gerling, S., Hammer, C.: R-Droid: Leveraging
Android App Analysis with Static Slice Optimization. In: Asia Conference on
Computer and Communications Security – AsiaCCS, ACM (2016) 129–140

13. Weiser, M.: Program Slicing. In: Conference on Software Engineering – ICSE,
IEEE Computer Society (1981) 439–449

14. Hoffmann, J., Ussath, M., Holz, T., Spreitzenbarth, M.: Slicing droids: program
slicing for smali code. In: Symposium on Applied Computing – SAC, ACM (2013)
1844–1851


