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Abstract—Near Field Communication (NFC) is used for a wide
range of security-critical applications such as payment or access
control. Although such applications require secured data transfer,
the NFC protocol does not include transport layer security.
Other protocols that are built on top of NFC, such as the NFC
data exchange format (NDEF), only provide insufficient security
measures. Therefore, implemented security solutions are often
application specific and do not follow well-established standards.
To facilitate NFC usage in the Internet of Things (IoT) where
millions of devices need to be secured, an efficient and sufficiently
secured NFC-based protocol needs to be developed. In this paper,
we present the Quick and Secured NFC (QSNFC) protocol. Our
protocol is capable of performing more efficient key agreements
for recurring connections, and thus, can be used as an efficient
alternative to the Transport Layer Security (TLS) protocol.

Index Terms—Near Field Communication; Internet of Things;
Secure Communication; Transport Layer Security.

I. INTRODUCTION

The Internet of Things (IoT) is rapidly growing due to
devices being used in a wide range of domains such as smart
homes, transportation, healthcare, or industrial scenarios. To
assist the rapid growth in the number of application domains
as well as in the number of IoT devices, several enabling
technologies are required. Al-Fuqaha et al. [1] identify the
latest developments in Radio Frequency Identification (RFID),
smart sensor technology, and communication technologies
and protocols as such enabling technologies. Together with
RFID, the authors also mention Near Field Communication
(NFC) as a very promising technology for the IoT since many
smartphones nowadays are equipped with NFC-enabling tech-
nology. In the context of IoT related communication protocols,
security is an often neglected aspect as highlighted by the
increase in IoT related security breaches [2]. Such security
breaches can be fatal if IoT devices are used in domains
where malicious functionality could harm human lives such
as industrial settings [3], or in healthcare applications [4].
To provide secured communication for IoT devices, protocols
that are well known from the traditional Internet cannot be
used due to their performance requirements. Especially, if
considering NFC, protocols based on the Transmission Control
Protocol (TCP) entail a large communication overhead and
thus, are infeasible for most devices and scenarios.

Although it is often believed that the limited communication
range of NFC obviates the need for dedicated security mea-
sures [5], Haselsteiner and Breitfuß demonstrate that eaves-
dropping data is possible up to 10m [6]. If transferred data
is protected by weak security measures or even transferred
unprotected, attacks are threatening the confidentiality of crit-
ical information [7], [8]. Plósz et al. [9] compare the provided
security of various wireless communication technologies with
NFC. The authors state that although there are several security
related mechanisms defined in the NFC standard, many attacks
are possible despite these mechanisms. Chen et al. [10] and
Chatta et al. [11] list a large number of attacks that are
feasible for attackers to perform due to weak or insufficient
security in the NFC protocol. To mitigate such problems,
many approaches for secured NFC communication have been
proposed (see Section III Background and Related Work).
However, the drawback with these approaches is that no
standardized protocols are used. On the one hand, this fact
complicates the use of NFC in IoT applications since the
security of each application specific protocol needs to be
proven separately. On the other hand, applying protocols with
proven security features that where designed for the Internet
to NFC communication entails a large overhead.

Contributions. We make the following contributions in this
paper. We demonstrate Quick and Secured NFC (QSNFC), a
protocol that is suited for NFC-equipped IoT devices. The
provided security features are similar to TLS, while the
protocol will require fewer messages to be exchanged during
key agreement. Thus, the presented protocol will be suitable
for any NFC-based IoT scenario, while allowing easy security
proofs. To the best knowledge of the authors, no comparable
protocol for NFC has been presented yet.

Outline. The remainder of this paper is structured as fol-
lows. We define our system model and list corresponding as-
sumptions in Section II. In Section III, background information
on involved technologies as well as related work for secured
communication are given. Our QSNFC approach is presented
in Section IV and evaluated regarding its performance and
security in Section V. Section VI discusses example use-cases.
This paper is then concluded with Section VII where also
future work will be discussed.
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Fig. 1: System model in our proposed QSNFC approach: Over
time, clients are capable to connect to an arbitrary number
of servers. Servers can manage connections from an arbitrary
number of clients (not simultaneous).

II. SYSTEM MODEL AND ASSUMPTIONS

The system model we are considering when designing the
QSNFC protocol is shown in Fig. 1. As shown in that model,
the protocol is supposed to support an arbitrary number of
QSNFC clients as well as an arbitrary number of QSNFC
servers. Although the notion of server-client is not common
in NFC solutions, we use these terms here to be compatible to
other network related protocols such as TLS. Thus, we identify
the following four entities in our system model:

QSNFC client: The QSNFC client is the entity that tries to
establish a secured communication channel with the QSNFC
server. Since this entity is initiating the NFC communication,
it can be seen as the active component in NFC terms.

QSNFC Server: The QSNFC server is contacted by the
QSNFC client in order to establish a secured communication
channel. In NFC terms, the QSNFC server would be denoted
as the passive component.

Communication channel: The communication channel that
we assume in our system model is an NFC channel with the
potential presence of an undetected adversary.

Adversary: The adversary present in our system model
is assumed to be capable of eavesdropping and modifying
ongoing NFC data. There is no assumption regarding the range
in which these malicious activities are feasible.

III. BACKGROUND AND RELATED WORK

A. Key Agreement and Transport Layer Security (TLS)

If two or more parties need to agree on a shared secret in the
potential presence of an adversary, key agreement protocols are
used. Usually, key agreement is performed between two parties
over an unsecured channel such as the Internet. The final
shared secret that is used as a key is composed of influences
from all involved parties without revealing the key to any
potential adversary that is capable of eavesdropping the key
agreement process. One of the most widespread key agreement
protocols is the Diffie-Hellman (DH) protocol [12] that is
used for key agreement in the TLS protocol [13]. TLS uses
TCP as transport protocol and is used to secure connection
oriented applications such as web browsing, emails, or instant
messaging. Due to its connection oriented nature, it introduces
a lot of overhead which might not be suitable for resource
constraint devices. Therefore, the Datagram Transport Layer
Security (DTLS) protocol [14] was introduced, which uses the

User Datagram Protocol (UDP) as its transport protocol. Both
protocols have in common that at least one communication
round trip time (RTT) is required for the key agreement
process when establishing a secured channel.

B. Authenticated Encryption (AE)

AE is capable of providing data confidentiality, integrity,
and authenticity by combining symmetric cryptography with
Message Authentication Codes (MAC) in a secured way [15].
The widespread Advanced Encryption Standard (AES) pro-
vides modes of operation (e.g. AES-CCM, which is used in
TLS) that are capable of providing AE [16].

C. Zero Round Trip Time (0-RTT)

The Internet Engineering Task Force (IETF) is currently
working on the new TLS 1.3 standard that also includes a
0-RTT requirement [17]. The requirement specifies that the
key agreement for recurring connections should not require
a traditional handshake and thus, no round trip communi-
cation. Recurring connections are specified by the IETF as
connections where the two communication partners previously
already have established a secured channel, including the 1-
RTT handshake required by the key agreement. Protocols that
meet the 0-RTT requirement are, for example, OPTLS [18]
and Google’s Quick UDP Internet Connections (QUIC) pro-
tocol [19] that is designed for UDP connections.

D. Quick UDP Internet Connections (QUIC)

QUIC is a protocol presented and developed by Google
to enable the transfer of websites via Hypertext Transfer
Protocol (HTTP) over UDP instead of TCP [20]. The main
goal of QUIC is to improve the perceived performance of web
applications, compared to HTTP over TCP. This improvements
are achieved by relying on multiplexed UDP connections
and by using 0-RTT secured connections that are capable
of providing the same level of security as TLS [21]. To
make the protocol robust while using unreliable UDP packet
transfer, QUIC also includes mechanisms to deal with packet
loss, congestions, and error corrections. QUIC is integrated in
current versions of Chrome and Chromium and according to
Google deployed on thousands of their servers [22]. Also, an
IETF working group for QUIC was founded in 2016.

E. Secured Near Field Communication (NFC)

NFC is a contactless communication technology that is
based on several Radio-Frequency Identification (RFID) stan-
dards. Similar to High Frequency (HF) RFID, NFC operates
at a frequency of 13.56MHz and has a relatively short
communication range of typically up to 10 cm with a bit rates
of up to 848 kbps. NFC is used in a very diverse range of
fields, the most well known and widespread of them being
payment applications. The IoT is believed to be a new major
field for NFC applications [23] that will post new challenges
for NFC technology, such as standardized secured protocols.

Although security is not a major topic in RFID related
research, some promising approaches have been presented.



TABLE I: Comparison with related work. We compare the
security attributes confidentiality, integrity, and authenticity. In
addition, we state if a standardized protocol is used and if the
used protocol is efficient in terms of communication overhead.
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Secret sharing [24] 7/3 7 7/3 7 7
Secure UHF-RFID Tag [25] 3 7 3 7 7
Mobile payment [26]–[28] 3 3 3 7 7
Healthcare [29], [30] 3 3 3 7 7
Car immobilizer [31] 3 3 3 7 7
TLS over NFC [32] 3 3 3 3 7
QSNFC [this work] 3 3 3 3 3

For instance, Toyoda and Sasase [24] present a secret sharing
mechanism that aims at confidentialiy distributing keys. Li
et al. [25] present authentication and authorization mecha-
nisms between tag and reader such that a trust relationship
between these two devices can be established. However, due
to the more powerful communication capabilities of NFC,
more complex algorithms can be realized compared to RFID.
Especially in the payment sector where security is of ut-
most importance, many application specific security solutions
are presented [26]–[28]. Also in healthcare, where security
weaknesses could directly impact the health of users or even
threaten their lives, concepts for secured NFC communication
are presented [29], [30]. Of course, there are also many other
useful application scenarios for secured NFC communication,
such as, for example, an NFC-based car immobilizer [31].
All of these approaches have in common that they implement
application specific security mechanisms which is critical
regarding the use of NFC in IoT devices since no general
security assessment for the technology can be made. Urien and
Piramuthu [32] try to mitigate this problem by proposing to
use TLS over NFC. However, the TLS protocol was designed
for TCP-based connections, and thus, entails a large protocol
overhead. A comparison is given in Table I.

IV. QUICK AND SECURED NFC

A. Classification in Layer Model

Before specifying our proposed QSNFC protocol in detail,
we are going to classify it according to the TCP/IP protocol
architecture layer as shown in Fig. 2. In that figure, the
similarities to TLS and DTLS are highlighted. Similar to TLS
and DTLS our QSNFC protocol resides directly underneath
the actual application and provides capabilities for secured
data transfer to the upper layer. As a transport protocol,
the NFC Data Exchange Format (NDEF) that is based on
application protocol data unit (APDU) packets is used. NDEF
itself provides limited security measures, such as signature
records. However, these security measures are shown to be
vulnerable to certain attacks [33]. Therefore, we use NDEF as
a transport protocol for QSNFC only, without relying on any
of the available security features of NDEF.

IP

TCP/UDP

TLS/DTLS

APDU

NDEF

QSNFC

LAN, WiFi, ... NFC Link Layer

Network Layer

Transport Layer

ApplicationApplication Application Layer

Fig. 2: Protocol stacks for TLS/DTLS and QSNFC re-
spectively, layered according to the TCP/IP model. Both
TLS/DTLS and QSNFC reside underneath the application
layer and provide their functionality to higher layers, while
relying on lower-layer protocols to perform data transfer.

TLS Client TLS Server QSNFC Client QSNFC Server

Fig. 3: Round trips required for TLS and QNFC. The TLS
connection setup requires two round trips, while the QSNFC
connection setup requires one round trip the first time two
devices establish a connection and zero rount trips after that.

B. Connection Establishment

Since data transfers using QSNFC rely on secured data
channels, key agreement needs to be performed. To meet the
0-RTT requirement for recurring connections, the client needs
to cache information about the server if a successful initial
handshake is performed. The performance of subsequent
handshakes can then be improved by using this cached
information. Fig. 3 demonstrate the handshake process in
comparison to TLS. To identify cached information, QUIC
uses a set of URI, hostname, and port number. Since this
information is not available in NFC, unique identifiers will
be used to identify entities. However, the handshake process
itself that comprises of initial and subsequent handshake is
not modified.

Initial handshake. Since on the first connection attempt the
client has no cached information about the respective server,
an initial handshake needs to be performed. To initiate this
handshake, the client sends a so-called inchoate client hello
(CH) message to the server, which recognizes the inchoate
information and replies with a reject (RJ) message. This RJ
message contains the following information:

(i) The server’s long-term DH public value. This public key
is used for the generation of subsequent keys and thus,
needs to be cached by the client.



QSNFC Connection Establishment

Client Server

inchoate CH: idc

(pkl, skl)←$KGen(1n)

t← Encskl(ids, time)
RJ: pkl, certs, Sig(pkl), ids, t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(pkc, skc)←$KGen(1n)

ski ← (skc, pkl)
complete CH: idc, pkc,Encski(data), t

ski ← (skl, pkc)

(pks, sks)←$KGen(1n)
SH: ids, pks,Encski(data)

sk← (skc, pks) sk← (sks, pkc)

Fig. 4: Connection establishment in QSNFC. All message types are inherited from QUIC [22]; only the content of these
messages is adapted to be better suited for NFC. The messages above the dotted line represent the initial handshake. The
messages underneath the dotted line represent the subsequent handshake only. The parameters are: the client’s and server’s id
(idc|s), the long-term DH public and secret value (pkl, skl), the server’s and client’s ephemeral DH public and secret value
(pks|c, sks|c), the server’s certificate (certs), the initial key (ski) and the final shared key (sk).

(ii) A certificate chain that authenticates the server and that
needs to be verified during the initial handshake.

(iii) A signature of the long-term DH public value that is
signed using the private key from the provided certificate
chain’s leaf certificate.

(iv) A source address token that contains the server’s unique
ID and a nonce from the server. This information is pro-
tected using AE. The client needs to send this token back
to the server in subsequent handshakes to demonstrate
ownership of the server’s identity.

After the client has received this information, it can
authenticate the server’s long-term DH public value using
the provided certificate chain and signature. In addition, the
certificate chain is validated using a higher-ranking certificate.
After that, the client sends a complete CH that contains the
client’s ephemeral DH public value as well as an optional
payload that can already be encrypted using a key generated
from the server’s long-term DH public value and the client’s
ephemeral DH public value.

Subsequent handshake. Since the client already is in
possession of the server’s long-term DH public value, it can
calculate a shared key using its own ephemeral DH public
value. The client can then send a complete CH, without first
sending a inchoate CH message as is done in the initial
handshake. Thus, the first RTT from the initial handshake is
not required and encrypted data can be sent to a known server
instantly.

If the handshake is successful, a server hello (SH) message
is sent by the server as response to the complete CH. The SH
is encrypted using a key generated from the server’s long-term
public DH public value and the client’s ephemeral DH public

QSNFC Message
(NDEF Text Type)

Unsecured 
Payload

Secured
Payload

Fig. 5: Basic structure of QSNFC messages. A text record type
NDEF message comprises unsecured and secured payload.

value. The SH message also contains the server’s ephemeral
DH public value. The complete connection establishment is
shown in Fig. 4. After both involved entities are in possession
of each others’ ephemeral DH public value, a forward-secure
key can be calculated for the connection. Thus, after the SH
message is sent and received, both communicating entities
switch to encrypting packets with the forward-secure keys.

C. Connection Tear Down

Although there is no connection concept in NFC, we
previously discussed connection establishment. During this
connection establishment, keys between server and client
are exchanged and stored at the communication partners. In
addition, also information regarding the other communication
partner, such as a source address token need to be cached.
However, since there are no concepts such as out-of-order
packet reception or multiple streams that are known from TCP-
based connection, also no connection tear down is needed in
our QSNFC protocol. Methods regarding the replacement of
cached keys and information will be discussed in Section IV-E.



D. Packet Structure

The basic packet structure of each QSNFC message is
shown in Fig. 5. As can be seen there, any QSNFC message
comprises unsecured as well as secured payload inside a text
record type NDEF message. Similar to TLS and DTLS that
use TCP and UDP as their transport protocols, we build
QSNFC on top of NDEF messages for the following two
reasons: (i) NDEF is a standardized data exchange format for
NFC. Similar to TLS over TCP and DTLS over UDP we can
utilize it as transport protocol without any modification to the
underlying protocol. (ii) The security aspect of data transfer
is cleanly separated from the data transfer aspect. That is,
limitations such as maximum APDU size do not need to be
considered in our proposed QSNFC protocol.

The handshake protocol shown in Fig. 4, comprises four
different message types: CH messages, RJ messages, SH
messages, and standard data messages (SD) that are shown
in Fig. 6. The specified field lengths are calculated for 128 bit
keys. All of these four message types contain three unsecured
message attributes that are common to all of them.
• Type: The message’s type with allowed options 0b00

CH, 0b01 RJ, 0b10 SH, and 0b11 SD.
• LenP: Specifies the length of unsecured payload con-

tained in this message. The length of this field is 2Byte.
• LenE: Specifies the length of secured payload contained

in this message. The length of this field is 2Byte.

CH messages can be either an inchoate CH message or a
complete CH message. The packet structure for both of these
two types is shown in Fig. 6a. If a client initiates the initial
handshake by sending an inchoate CH message, the Client ID
is set accordingly with each other attribute being empty.
• Client ID: A unique ID identifying the client. The Client

ID is contained in inchoate CH as well as in complete
CH messages. The size of this attribute is 8Byte.

• Public Key Client: The client’s ephemeral DH public
value according to the handshake protocol shown in
Fig. 4. This attribute is only set for complete CH mes-
sages and is 16Byte in size.

• Source Address Token: Only sent by the client for com-
plete CH messages. The value is obtained in the server’s
RJ message during initial handshake and stored at the
client, for instance, in an SE. This attribute’s size 16Byte.

• Encrypted Payload: In case of complete CH messages,
also an encrypted payload is contained (see Fig. 4). The
size of this field is determined by the LenE attribute.

RJ messages are sent as a response to inchoate CH messages.
The message contains information from the server that is
required to perform connection establishment and key agree-
ment. In contrast to other message types, no additional arbi-
trary payload can be included in RJ messages. The structure
of RJ messages is shown in Fig. 6b.
• Server ID: A unique ID identifying the server. The Server

ID is used by the client to match cached information to
the correct server. This attribute has a size of 8Byte.

Type
2 Bit

Client ID
8 Byte

LenP
2 Byte

Public Key Client
16 Byte

Source Address Token
16 Byte

LenE
2 Byte

Encrypted Payload
(LenE – 16) Byte

(a) CH message structure.

Type
2 Bit

LenP
2 Byte

Long Term Public Key
16 Byte

LenE
2 Byte

Source Address Token
16 Byte

Signature
8 Byte

Certificate Chain
(LenP – 34) Byte

Server ID
8 Byte

Encrypted Payload
0 Byte

(b) RJ message structure.

Type
2 Bit

LenP
2 Byte

LenE
2 Byte

Encrypted Payload
LenE Byte

Server ID
8 Byte

Public Key Server
16 Byte

(c) SH message structure.

Type
2 Bit

LenP
2 Byte

LenE
2 Byte

Encrypted Payload
LenE Byte

S/C ID
8 Byte

(d) SD message structure.

Fig. 6: Message structures for CH, RJ, SH, and SD messages.
The specified field lengths are are calculated for 128 bit keys.

• Long Term Public Key: The long-term DH public value
that is used for key agreement and to calculate initial
keys. Using this key, the client is capable of sending
encrypted payload inside complete CH messages. The
Long Term Public Key has a length of 16Byte.

• Signature: A signature of the Long Term Public Key that
is used by the client to validate the integrity of that key.
The signature has a size of 8Byte.

• Certificate Chain: The certificate chain that is used by the
client to authenticate the server. Also, the private key of
the certificate chain’s leaf certificate is used to create the
previously mentioned Signature. The Certificate Chain
has a variable length, depending on the issued certificates.

• Source Address Token: This token is used by the client in
subsequent handshakes. It includes the server’s identifier
and a nonce, and is protected by AE using the server’s
private key. The attribute has a size of 16Byte.

• Encrypted Payload: In RJ messages, only the Source
Address Token is contained in the encrypted payload.

SH messages are sent by the server in response to a successful
connection establishment. The structure of this message type
is shown in Fig. 6c.

• Server ID: A unique ID identifying the server. The Server
ID is used by the client to match cached information to
the correct server. This attribute has a size of 8Byte.

• Public Key Server: The servers’s ephemeral DH pub-



lic value according to the handshake protocol shown
in Fig. 4. After reception of this attribute, server and
client can calculate a forward-secure key to protect data
transferred with subsequent SD messages. The size of this
attribute is 16Byte.

• Encrypted Payload: SH messages can contain arbitrary
payload that needs to be transferred from the server to
the client. This information is protected by AE using the
previously established initial keys.

SD messages are exchanged between server and client after
successful handshakes. Thus, after a forward-secure key was
established between these two entities, SD messages with
minimal protocol overhead can be used to transfer arbitrary
payload in an efficient but secured way.
• S/C ID: The respective ID of either server or client is

included to identify the sender of an SD message. The
length of this attribute is 8Byte.

• Encrypted Payload: Payload of arbitrary length that
is protected by AE using the previously established
ephemeral forward-secure keys.

E. Cached Data Replacement

The 0-RTT capability of QSNFC entails that information
such as public keys and source address tokens need to be
cached at server and client side. Since many NFC-enabled IoT
devices are resource constraint in terms of memory capacity, a
mechanism for cached data replacement needs to be included
in our proposed QSNFC protocol. Depending on the use-case
scenario in which the protocol is used, different replacement
strategies might be better suited than others. Therefore, we
briefly discuss three cached data replacement methods that
are suitable for IoT devices due to their minimal overhead in
terms of complexity and resource requirements [34].
Least Frequently Used (LFU): In the LFU algorithm, an
access counter for each cached dataset is kept that counts the
number of usages of that respective cached dataset. After a
fixed number of connection establishments, all counters are
reset. If a dataset needs to be evicted from memory, the dataset
with the smallest access count is selected for replacement.

+ Only counters are needed which is a minimal overhead.
– The required regular reset of counters might lead to the

eviction of often used datasets.
Least Recently Used (LRU): The LRU algorithm is a special
variante of the LFU algorithm. Instead of counters, timestamps
are kept for each cached dataset. Whenever a dataset is
accessed, the timestamp is updated. If a datasets needs to be
evicted from memory, the dataset that was accessed the farthest
back in history is selected for replacement.

+ Frequently accessed datasets not falsely evicted.
– Resource constraint devices such as smart cards do not

provide the required timestamps.
First In First Out (FIFO): Cached datasets are kept in a
queue. Each new dataset is added at the front of the queue. If
a dataset needs to be evicted from memory, the last element
in the queue is selected for replacement.

+ Smallest overhead of all three methods.
– Dataset that gets cached first gets evicted first although

that element might be the most used one.

V. EVALUATION

A. Security Analysis

As shown in the packet structures (see Fig. 5), each
packet that is transmitted using our proposed QSNFC protocol
contains a section dedicated to secured payload. To protect
the confidentiality, integrity, and authenticity of this secured
payload, AE with either initial keys or ephemeral forward-
secure keys is used. Depending on which type of key is used,
two levels of secrecy can be provided: (i) Initial data that
is protected using initial keys is protected at a level similar
to TLS session resumption with session tickets. (ii) If the
forward-secure keys are used, even greater secrecy can be
provided since these keys are ephemeral. However, depending
on the application and use-case, probably only one message
round trip is needed. In this case, the initial keys only will
be used to protect the data, without ever using the forward-
secure keys. Any information that is transmitted unsecured in
QSNFC (e.g. server and client identifiers, or public keysis) is
considered non-critical. That means, an adversary would gain
no advantage by learning this information. To highlight the
provided security, we analyse the countermeasures provided
by QSNFC for each of the threats to NFC that were identified
by Haselsteiner and Breitfuß [6].
Eavesdropping: Since confidential information is transmitted
protected by AE at any step of QSNFC (during the handshake
and SD messages), an eavesdropper would only be able to
learn information that is considered public, such as server and
client identifiers, or public keys.
Data Corruption, Data Modification, Data Insertion: An
adversary would not be able to corrupt, modify, or insert data
in the secured payload section of QSNFC without such failures
being detected by the protocol since the secured payload is
protected by AE. However, denial-of-service (DoS) attacks
cannot be mitigated by QSNFC since an adversary can corrupt
transferred information at any time, and thus, cause data to be
invalid. Also, if an adversary is able to modify information
such as server or client identifiers, successful DoS is possible.
Denial-of-Service (DoS) attacks: DoS attacks cannot be
mitigated by QSNFC (and any other wireless or contactless
communication protocol since data corruption can only be
detected but not prevented.
Man-in-the-Middle (MITM) attacks: By relying on certifi-
cates for authentication, and on a DH based key agreement,
MITM attacks mitigated by QSNFC.
Physical attacks: Cryptographic operations that are required
for our proposed key agreement process can either be per-
formed in software, or in a dedicated hardware secure element,
such as SIM cards or security controllers. To provide a higher
level of security, tamper-resistant security controllers need to
be used, such that potential adversaries are not able to extract
confidential information using physical attacks [35].
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Fig. 7: Comparing three scenarios: initial and subsequent hand-
shake (HS), subsequent HS, and standard data (SD) messages.

B. Protocol Overhead

To analyze the protocol overhead entailed by
additional security mechanisms, we analyze three different
communication scenarios: (i) Server and client have never
completed a handshake, so an initial handshake followed by a
subsequent handshake is required. (ii) Server and client only
need to perform the subsequent handshake. (iii) Standard
data transfer using SD messages that can be exchanged
after a completed handshake. An overview of the resulting
overhead for all three scenarios is shown in Fig. 7. The
resulting overheads that can be seen there are 1182Byte
for initial+subsequent handshake, 72Byte for subsequent
handshake only, and 24Byte for an exchange of two SD
messages. The largest part of the overhead required by
the initial handshake results from the included certificate
chain. For this evaluation, we used a self-signed certificate
that was generated with the following two commands:
openssl ecparam -name secp521r1 -genkey
-out key.pem and openssl req -new -x509
-key key.pem -out cert.pem -days 365. The
generated certificate already has a size of roughly 1000Byte.
Using a chain of certificates would result in an even larger
overhead. By not requiring initial handshakes for recurring
connections, roughly 90 percent of overhead can be avoided,
compared to traditional protocols such as TLS that involve
key agreements. Thus, it can easily be seen why introducing
a secured protocol for NFC that is capable of fulfilling the
0-RTT requirement is crucial.

C. Necessary Trade-off

Since most IoT devices are resource constraint, the adoption
of a secured communication protocol also entails drawbacks
for these devices in terms of complexity, energy consump-
tion, cost, and memory requirements. However, since we see
a secured communication channel as a given requirement,
we only compare our presented approach to other protocols
that involve key agreement, specifically TLS. While QSNFC
significantly reduces the protocol overhead for recurring con-

nections, additional, non-volatile memory is required to store
cached information. While the additional memory required
by QSNFC might be unproblematic for most IoT devices,
very constraint devices might require additional memory to be
added. This additional requirement will likely cause a slight
increase in complexity, energy consumption, and subsequently
device costs compared to using TLS. This means, a trade-
off between communication efficiency and device complexity,
energy consumption and costs needs to be considered.

VI. EXAMPLE USE-CASES

Depending on the use-case scenario, the roles of server and
client might be assigned differently, since a client must be
able to validate the certificate chain provided by the server
(see Section IV-B). For validation, the client either needs to
be in possession of a higher-ranking certificate or have an
active Internet connection. Therefore, we list three use-cases
that we see as the most common scenarios for our QSNFC
protocol and briefly discuss the role assignment.
Card and Reader: The reader in this scenario acts as active
NFC device and provides the required energy to power the
smartcard through its NFC field. Therefore, in this scenario
the reader should be assigned the client role and initiate
the connection establishment. Also, a reader will have the
capability to validate the server’s (smartcard) certificate chain
over the Internet in most cases.
Smartphone and IoT Device: In this scenario, the smartphone
should initiate the QSNFC handshake and thus, act as a client.
Since all modern smartphones are equipped with ample storage
and Internet connections, the required validation of the server’s
certificate chain is also feasible in such a setting.
Machine-to-Machine (M2M): In M2M communication set-
tings such as Robot-to-Machine, the assignment of client and
server role cannot be determined in general. The roles should
be assigned accordingly, such that the validation of the server’s
certificate chain is feasible for the client.

VII. CONCLUSION AND FUTURE WORK

To foster the use of NFC-technology in IoT devices and
use-cases, a standardized and secured, yet efficient proto-
col is required. Currently, either application specific security
solutions, or protocols that entail too much overhead such
as TLS are used to secure NFC-based data transfers. The
protocol presented in this publication, QSNFC, is designed
with both standardized security mechanisms and efficiency in
mind. The protocol fulfils the 0-RTT requirement to increase
the performance of recurring connections between devices.
Data confidentiality, integrity, and authenticity for transferred
data is provided by relying on AE, while the imposed protocol
overhead is kept at a minimum. As a trade-off compared to
traditional protocols that involve key agreement such as TLS,
our proposed algorithm requires more local memory to store
cached information. As future work, we plan to investigate
protocol improvements that further reduce the protocols over-
head. Thus, making secured NFC data transfer even more
efficient and suitable for IoT devices.
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