
Using Gazebo to Generate Use Case Based
Stimuli for SystemC

Thomas W. Pieber, Thomas Ulz, and Christian Steger

Graz University of Technology - Institute for Technical Informatics, Graz, Austria
{thomas.pieber, thomas.ulz, steger}@tugraz.at

Abstract. Realistic simulations of new hardware are of utmost impor-
tance to achieve good results. The current approach to such simulations
is that the Device under Test is exposed to stimuli that are either gener-
ated randomly, or that are generated by engineers reverse engineering the
use cases and extending the inputs by some extreme cases. In this paper
we describe an approach to generate useful stimuli for a SystemC simu-
lation directly from a simulation of the use case. In this approach the use
case is simulated using the Gazebo simulator. The stimuli for the Device
under Test are then extracted and sent to the SystemC simulation.

1 Introduction

In the development of new systems simulations need to be performed to find
errors early. With such simulations the developed system (or Device Under Test
”DUT”) can be tested extensively and optimizations and error corrections can be
implemented quickly and inexpensively. These simulations are usually stimulated
with events that occur in the expected use case as well as some extreme cases.
These tests are designed by engineers reworking the scenarios and defining the
inputs and the expected behaviour. In addition to these tests, random input
sequences can be applied to test the DUT’s reactions to faulty or unexpected
inputs as random input is unlikely to be valid. All together that means that the
current test procedure consists of valid inputs designed by the system engineers
and (mostly) invalid inputs generated by random testing. We therefore propose
an architecture for a generator that can produce valid inputs to the DUT design
which can also be evaluated according to the expectations of the engineers. Such
system can decrease the effort needed to design tests for the DUT, as only the
valid scenarios need to be described. These will then automatically generate valid
input data and the expected output.

For such simulation the environment in which the DUT should operate can
be simulated. This environmental description only needs to describe the essen-
tial parameters that can affect the DUT. Such simulations can be performed
in a simulator such as the Gazebo simulator [6, 13]. This simulator is designed
for robotic use cases and is designed to handle complex systems and generate
accurate sensor information of any kind. This open source simulator also allows
modifications to be as useful and accurate as we want it to be. These modifica-
tions are done by implementing plugins for the environment (world), the models,



2 Thomas W. Pieber, Thomas Ulz, and Christian Steger

the sensors, the simulation core, the visuals, and the GUI. This simulator oper-
ates in discrete time steps of 1 ms. This degree of simulation accuracy is enough
to simulate the movement of robots and sparse enough that the robot’s operating
system can handle most commands in this time step.

To simulate our DUT another tool such as SystemC [1] can be used. With
this tool a complex microsystem can be designed and tested. Furthermore, the
component parts of the system can be modelled in various degrees of detail. This
allows for accurate simulations or even synthetization of the newly developed
parts and efficient simulation of existing hardware. SystemC operates in discrete
time intervals as small as 1 fs.

When combining these two simulations, this difference in simulation speed
poses a major problem. The execution of a test scenario can last for many min-
utes. In combination with the fine grained simulation time steps of SystemC
this can generate huge amounts of data which need to be handled. This problem
needs to be considered when choosing the traced signals and information that
should be transferred between the simulations. Additionally, the testbench of
the SystemC simulation must be altered to include the communication between
the simulations.
This leads to the issue of the communication itself. The simulations need to
exchange data such as the generated input and output of the simulation step,
as well as status information about the simulations itself. The difference in time
steps also introduces the problem that SystemC requires data in more detail
from the Gazebo simulation. This data is to be estimated and extrapolated from
the existing inputs. It also produces output data that is filtered to allow Gazebo
to work with the resulting data.

This paper is based on the work done by Pieber et al. [15]. It expands the ideas
behind that publication, gives more detail on the design and implementation of
the combination of the simulations. It furthermore expands the evaluation by
constructing a detailed simulation run and interpreting the results.

The remainder of this paper is structured as follows: In Section 2 other works
that combine SystemC or Gazebo with other simulators are described. Section
3 explains the motivation for our design, states the requirements that need to
be implemented, and gives details on the solution for the requirements. An eval-
uation of the design is described in Section 4. This is done by constructing and
analyzing a sample simulation run. Following that, Section 5 mentions ideas on
how to further improve the proposed design. This paper concludes with Section
6.

2 Related Work

As Gazebo is an open source simulator for robotics it is primarily combined with
a robot operating system such as ROS [19] or YARP [9] to control the simulated
robots [10].
There are approaches to combine the Gazebo simulator to software for robotics
and computational intelligence [21]. There are further works that connect other



Use Case Base Stimuli for SystemC 3

tools that can simulate hardware [8], but the main approach in these works is
to use the interface from Gazebo to ROS and implement ROS nodes to connect
to the rest.

A design process for SystemC is given by Panda [14]. With this language
a model for complex systems can be described and executed. There are many
publications that implement interfaces to SystemC as it provides a good basis
for simulations [3, 4, 11, 16]. In these approaches the functionality of SystemC is
extended to provide the functions needed by the researchers.
An interface from SystemC to Matlab/Simulink was designed by Bouchhima et
al. Here the SystemC simulation was stimulated by a continuous environment
simulation written in Matlab/Simulink. SystemC was also connected to analog
circuit simulators like SPICE [5] and VHDL [2] to improve on flexibility and
simulation performance.
Mueller-Gritschneder et al. developed a robot simulation platform in SystemC
[11]. They simulate the behavior of the robot on the transaction layer and forward
the results to an environment simulation written in Java. They do this in order
to simulate the movement of the robot as accurate as possible. In this paper the
robot is simulated in SystemC, while in this proposal the robot’s behavior is the
input to the SystemC simulation to simulate parts of the environment.

In summary SystemC was connected to many other simulations. It is then
used as core for other simulations or to generate more accurate results. In the
context of robotics, SystemC has been used to simulate the movement of the
robot. In contrast to that, this publication uses the robotic simulation to stim-
ulate SystemC components with inputs from the environment to automatically
generate valid stimuli.

In this paper, a use-case is evaluated where a sensor measures data from the
environment, and is read out and charged via Near Field Communication (NFC)
by a robot. Some publications describe the techniques used to transmit data
alongside energy and storing the excess energy in small batteries or capacitors
[7, 17, 20].

To connect simulations a common interface must be created over which data
can be exchanged. In this approach the common interface used is a POSIX
(Portable Operating System Interface) pipe where XML (Extensible Markup
Language) formatted data is sent. Another possibility to format data efficiently
is the JSON (JavaScript Object Notation) format. This would be more efficient
than XML [12], but due to other reasons, explained below, the XML format is
chosen. Gazebo uses Googles Protocol Buffer (ProtoBuf) as formatting method
to transmit data internally. Sumaray and Makki compare the efficiency of this
protocol to XML and JSON [18].

Based on [15], this publication expands on the detail of the design and im-
plementation of the developed connection of the simulations. Main focus of the
expansion is on details concerning the Gazebo plugin. Additionally the evalua-
tion of the system is expanded. Here, detailed information on the traces produced
by SystemC is given.



4 Thomas W. Pieber, Thomas Ulz, and Christian Steger

Fig. 1. States of the execution of the implemented plugin.

3 Design and Implementation

The goal of the presented design is to find a method to generate stimuli for
a SystemC simulation automatically and being able to see how the simulated
system behaves in the specific use-case. To enable this, a connection between
SystemC and a high-level simulation is established. This high-level simulation
(in this approach the Gazebo simulator) represents the surroundings of the newly
developed system (a sensor in this use-case). Using the data from the Gazebo
simulator, stimuli for the sensor can be created. That means that the environ-
ment of the sensor becomes the de-facto testbed. With this method the stimuli
for the SystemC simulation are generated by the interaction of the sensor with
the environment. This generates the stimuli not only faster than an engineer
could, but also only small variations in the environment can generate a wide
variety of different test scenarios such as more noise in the communication or
energy fluctuations due to movements of the reader or changed mutual induc-
tance due to small changes in the distance between the antennas.

To connect two simulations successful, both must support the interfaces nec-
essary. To do so, an overall structure for the communication was developed. This
structure is shown in Figure 1. This plan visualizes how the simulations are con-
nected, how they communicate and when operations are performed. This figure
also shows the minimum requirements that this approach needs to work. In this
example the SystemC process is forked from the Gazebo simulation. Here some
initial configuration concerning the communication can be set up. One step of
the Gazebo simulation then invokes one from SystemC. A return message from
SystemC informs Gazebo that the simulation step of SystemC is properly exe-
cuted. During the execution of the SystemC step additional messages for Gazebo
may be sent that need to be captured from the Gazebo environment.

Gazebo can be extended by the use of plugins. To apply the input of the
Gazebo environment to a SystemC simulation, one such plugin that handles the
communication needs to be developed. The structure for that plugin can be seen
in Figure 2. This structure implements the following five operations.



Use Case Base Stimuli for SystemC 5

Fig. 2. States of the execution of the implemented plugin.

O.1 The required data must be collected from the environment. That includes
data that the sensor can measure as well as communication data.

O.2 The collected data needs to be packed into messages that can be sent to the
SystemC simulation.

O.3 The plugin needs to halt the simulation of the environment until the SystemC
simulation step finishes.

O.4 During the execution of the SystemC step, all messages needed for the re-
maining simulation(s) need to be received, stored, and ordered.

O.5 The collected information needs to be distributed to the remaining simula-
tion(s). This can be communication data, visual data, or status information.

The operation defined in O.1 is needed to generate valid input to the sen-
sor that can be evaluated. To generate this information a world plugin may
be needed to gather the information. This operation can then be achieved by
generating a Gazebo internal communication from this plugin to the plugin con-
necting the SystemC simulation. Additionally a communication path between
the communicating entities must be established. This communication may also
be altered in order to simulate the effect of the channel.



6 Thomas W. Pieber, Thomas Ulz, and Christian Steger

To send the gathered information to SystemC operation O.2 is required. This
operation formats the data in a way suitable for transport to SystemC. To send
arbitrary data the data items are converted into string format and packed using
an XML structure.
To properly synchronize the two simulations Gazebo needs to be able to wait
for SystemC to finish calculating the current time step. That implies that the
plugin needs to be able to halt the Gazebo simulation until it receives the signal
indicating the completion. This operation is referred to as O.3.
While Gazebo is waiting for SystemC to finish, SystemC may send different mes-
sages that are needed for the rest of the Gazebo simulation. This information
needs to be processed and stored until Gazebo can simulate the next time step.
When this happens, the plugin needs to forward the information received from
SystemC to the rest of the simulation. This operation is described in O.4.
Operation O.5 describes the correct distribution of the gathered data. As SystemC
can send different data (e.g.: visual updates such as LEDs, or data for commu-
nicating with other entities), the information needs to be split into the topics
and sent to their destination using an internal communication mechanism.

The difference in simulation speeds is one of the biggest hurdles in connect-
ing the two simulations. As a tool for simulating interactions and movements of
robots, Gazebo works with time steps of 1 ms. On the other hand, SystemC can
handle steps as small as 1 fs. This is needed for simulating hardware components
as also a “slow” computer which only works with 50 MHz performs 5 · 104 oper-
ations in one time step of Gazebo. This difference of twelve orders of magnitude
of the simulations can result in massive amounts of data generated by SystemC
which is hard to evaluate in Gazebo. Therefore, some measures to limit the
amounts of data that are transferred need to be implemented. This can be done
best when defining the requirements for the connection between the simulators.

As the two simulations must be compatible in their interfaces to each other,
the structure of a SystemC simulation needs to be adopted. Figure 3 shows the
overall structure of such SystemC simulation. The messages coming from the
Gazebo simulator are received and analyzed. If some parameters need changing,
the adaptations are done. To reduce the simulation time, it is evaluated if the
changes require instant action. Should that not be the case, the time that should
be simulated is added as a debt in comparison to the Gazebo simulation. An
action is required if the time debt is too large or if the sensor receives messages
that require an answer. To simulate these actions in the correct order, the old
parameters and commands are reset and the simulation is run to balance the
time debt. In this run the conditions at the current time instance are estimated.
After that the new parameters are set and the simulation is started for this
time step. When a stable condition is reached the simulation is halted and the
conditions for the end of the step is calculated. Should the calculations need
more time than one time step, the checking if action is required evaluates to
“yes” in the next time step.

To send arbitrary messages between the two simulation environments, an
easy-to-implement approach is used. As the SystemC simulation gets forked from



Use Case Base Stimuli for SystemC 7

Fig. 3. Structure of the SystemC simulation.

the Gazebo plugin (Figure 1) the standard input and output can be redirected
to a POSIX pipe. The Gazebo plugin uses that pipe to exchange messages with
the SystemC simulation. This interface allows the transmission of string-type
messages. So the commands and parameters need to be packed in a format that
can be sent as string and the string received needs to be parsed in order to get
the information back. An easy to implement method is the use of XML (Exten-
sible Markup Language) data structure to pack the information in strings. That
means that the interesting values are encased in XML-style tags. With these
tags the string can be split in parts containing different types of data, which
are then evaluated. The use of XML also allows the SystemC components them-
selves to send their information as soon as it is available and Gazebo can receive
and process the data in the order it was produced. Although JSON would be
more efficient than XML, XML was chosen because this makes the composing
of messages inside SystemC more easy. With XML the messages can be sent



8 Thomas W. Pieber, Thomas Ulz, and Christian Steger

whenever the information is available, with JSON on the other hand the Infor-
mation needs to be packed in smaller JSON objects which can be sent. This can
introduce additional computational overhead, leading to JSON loose its better
performance.
The data sent by the SystemC simulation is received by the Gazebo plugin
and parsed. The incoming data stream is split into data chunks according to
the XML-tags, preprocessed and stored in a fitting datastructure. When the
SystemC simulation halts for the time step, a tag for synchronizing the simula-
tions is sent to Gazebo. The reception of this tag signalizes the Gazebo plugin
to transmit the collected data to the rest of the simulation and resume its work.
Gazebo is capable of using many types of communication, but Google’s Protocol
Buffer (Protobuf) is the most efficient communication it supports [18]. To fully
use this method, custom messages can be defined that can hold various types of
data. The messages from the sensor that are intended for the robot (in this sce-
nario) are for example transmitted to a simulation of the transmission channel.
There environmental information is used to simulate signal degradation due to
free space loss and multi-path interference. The channel is simulated separately
from the rest to be able to test different communication channels such as WiFi,
Bluetooth, Zigbee, or in this case NFC. The calculations of the transmission
statistics are based on [7, 20]. The channel then modifies the transmitted data
and forwards it to the robot, where it can be accessed.
Communication from the robot to the sensor follows the same rules. The robot
sends the data to the channel simulation. There, errors are introduced and the
signal strength and received energy is calculated. This information is then sent
to the sensor plugin which also collects the data for the sensor system itself. The
collected data is packed in an XML message and sent to the SystemC simulation.
The SystemC simulation receives the commands, parses the XML data and
performs the actions needed to simulate the sensor accurately. To accomplish
this, the original testbed must be modified to accommodate the interface to the
Gazebo simulation. In order for that to work properly, the following requirements
need to be fulfilled:

R.1 Gazebo must be able to transfer information about the simulation, com-
mands and parameters for the DUT to SystemC.

R.2 To be able to react to changes in the environment, the SystemC simulation
needs to operate in steps. Between the steps the information exchange can
occur.

R.3 The SystemC interface for the communication must be able to parse and
distribute the received information.

R.4 To support different types of simulation, the simulation time step of SystemC
should be variable at each step.

R.5 Parts of the SystemC simulation that need special information need to be
able to get it directly.

R.6 Commands received from the Gazebo simulator need to be executed in the
order they arrive.

R.7 The two simulations need to be synchronized during the execution.



Use Case Base Stimuli for SystemC 9

R.8 To reduce the memory required to run the simulation for extended periods,
traces from the simulation should be able to be deactivated.

(R.9 The simulation should be done as quickly as possible, while maintaining the
accuracy where needed.)

In addition to the changes in the testbed - now the interface to the Gazebo
simulation - some adaptations in the rest of the simulation have been made.
The most notable adaptation is the insertion of messages that are sent to the
Gazebo simulator. These changes need to be made as the bulk of information
is evaluated during the simulation by the Gazebo simulator instead of after the
simulation. These changes are made in a similar fashion as the changes needed
for requirement R.7.
Figure 3 additionally shows the parts of the SystemC simulation where the
implementations of the requirements are mostly located.

To be able to fulfill requirement R.1 a POSIX pipe can be used. This allows
the transport of information in string format between SystemC and Gazebo. For
that, the standard input and output of the SystemC simulation are rerouted.
An XML parser is needed to split the gathered information into the data chunks
needed for the different settings and commands. With the use of a global datas-
tructure the distribution to all parts of the simulation can be performed. These
measures fulfill requirement R.3.
The call of the start procedure for the SystemC simulation (“sc start(. . .)”) is
inside a loop. The loop is halted when the simulation waits for input from the
Gazebo simulator and the condition to exit the loop is sent from Gazebo when
exiting or resetting the Gazebo simulation.
To allow a multitude of simulations the time step size of SystemC may need to
be changed during runtime. This is represented in requirement R.4. To meet this
requirement two special commands are added. One to set the time unit and one
to set the numerical value of the time step.
To support requirement R.5 we modified not only the testbed, but also parts of
the simulation. For every module we want a direct communication path to, we
need a special tag to extract the data. This data is then written into a global
datastructure to be accessible by all modules. The interface from the module
itself retrieves the data from this datastructure and can perform the needed op-
erations without the need to communicate the information through the layers of
the module. The finished data is then stored in FIFO (fist in, first out) structures
to wait for the simulation to need it. This requirement is especially useful for
this scenario as we modeled a sensor system and the data the sensor measures
is represented in the Gazebo simulation.
Requirement R.6 can be met with the same strategy. This time the FIFO buffer
storage is located in the control unit of the sensor. Now the commands that have
arrived can then be loaded and executed in the order they should have arrived.
To properly execute the commands an additional field that stores the time when
the command should have arrived is needed to simulate a serialized channel.
To get a proper time synchronization (R.7) the SystemC simulation needs to
send a marker message back to Gazebo indicating that the step has been pro-



10 Thomas W. Pieber, Thomas Ulz, and Christian Steger

Fig. 4. Compression of idle-time.

cessed. This is done by declaring an extra XML-tag. After receiving this signal
the Gazebo simulation is allowed to execute another step - again triggering the
SystemC simulation.
To use a simulated environment as generator for system stimuli it is necessary
to simulate longer periods of time before the system is initially triggered. This
is done in order to generate different edge conditions on the simulated device.
As we do not know what exactly the sensor measures during this time, it is
necessary to also simulate this time in SystemC. Furthermore, the environment
simulations can be run for an extended period of time between stimuli. When
storing all generated data large files are created. Requirement R.8 refers to that
problem. This can be solved by activating only traces that are needed. The infor-
mation which traces are needed can be received during the initialization process.
This information does not only contain which traces are needed, but also if the
traces should be active at all, and what the file name should be.
To further decrease the need for memory, a detector system is be implemented
that determines weather a simulation step can be stopped prematurely, or even
needs to be started. This detector has the potential to reduce the simulation
time significantly and corresponds to the optional requirement R.9.

Such detector can only be implemented if detailed knowledge of the inner
workings of the simulation and the system it simulates is available. This also
requires some major appendices to the existing simulation.

When pausing the simulation prematurely, two challenges emerge. The first
one is the desynchronization of the two simulations. As SystemC offers no meth-
ods to change the simulation time when it is stopped, we introduced flag signals
that get triggered if the simulation time should get changed. With the help of
these signals and some post processing of the generated traces the synchroniza-
tion can be restored afterwards. Figure 4 shows a trace before (above) and after
the decompression of idle-times is performed. The markers between the traces
indicate the compression.



Use Case Base Stimuli for SystemC 11

Fig. 5. Concept of the Evaluation Design.

The second challenge is the estimation of values that change during the skip-
ping of time, such as the remaining energy in the battery. To estimate the values
at the end of the time jump, detailed information about the process is required.
As the time between two activations can be arbitrary, the error is unbounded. To
mitigate that, a maximum time skip is defined. When linearizing the behavior
of these transient values in the last instant, we can estimate the new value after
the skip is completed. Depending on the maximum skip size, the final estimation
can be very accurate.

4 Evaluation

The evaluation of the developed system is performed using the simulation of a
smart sensor that charges the internal battery and communicates its information
using NFC technology. The Gazebo simulator provides the context of the simu-
lation. That is the environment in which the sensor is placed. During the startup
of Gazebo, the developed sensor plugin is loaded and starts the SystemC sim-
ulation. A robot is placed outside the communication range of the sensor. The
evaluation plan is to move the robot such that the sensor can be charged and
communication can occur. When this is done, the robot requests data from the
sensor.
For this evaluation we modeled the communication channel as a separate world
plugin that can calculate the noises and signal attenuation due to the environ-
ment. This also allows us to change the channel parameters by swapping the



12 Thomas W. Pieber, Thomas Ulz, and Christian Steger

plugin. This also allows the reuse of the system for other communication tech-
nologies.

The communication between the two simulation environments is performed
with strings encased in XML-tags. The received information is then stored in
a data structure that groups the data blocks by the XML tag and stores the
blocks in the order they arrive.

Different stimuli for the SystemC simulation can be combined, processed and
sent by the developed plugin. Figure 5 shows the concept for this evaluation. The
robot wants to send commands and data to the smart sensor via some channel
(in this case NFC). To do so, it approaches the sensor, thereby changing the envi-
ronment. This change influences the channel parameters. When the antennas are
in close proximity to each other, data and energy can be transferred. The channel
can, based on the parameters, change the data that is sent (e.g.: introducing bit
errors). This message is then transmitted to the developed plugin. Furthermore,
the plugin receives status information from the simulation, and parameters from
the environment that the sensor can measure. This information is relayed to
the SystemC simulation. The modified testbench processes the data to be used
in the simulation. The simulation returns the results to the plugin. This plugin
can manipulate the appearance of the sensor in the world (e.g.: switching on an
LED), and transmitting the return messages to the channel. The channel again
modifies the message according to the parameters and forwards it to the robot.

As the global simulation is done with a robotic simulator, a new test case can
be implemented by changing the start position of the robot or introducing some
randomness in the movement of the arm with the antenna attached to it. The
rest of the simulation does not need to be altered in order to get new results. This
simulation approach furthermore allows the testing of the interaction between
the newly developed system and an existing (robotic) system. The evaluation of
the correctness of the new system can also be done directly in the simulation as
the robot expects certain answers.

As mentioned before, Figure 4 shows the compression of the idle time of the
sensor showing the results of requirement R.9. Here the “advanceTime” trace is
used to restore the time synchronicity of the two simulations after the simulation
is finished. Whenever this trace peaks the simulation was stopped prematurely.
The height of the peak indicates the time that is skipped. In this trace the first
7.1 seconds are condensed to about 0.6 ms. This means a reduction of memory
and time usage of approximately 12000:1. Also the simulation can be stopped
prematurely if the needed operations are finished before the time step is passed.
This can be seen with the third drop of the “advanceTime” trace. This part is
stored in 16.5 ms but refers to 0.15 s. This is a reduction of approximately 10:1.

Figure 6 shows the results of one simulation. Here the robot approaches the
sensor until second 17. The antenna is activated from second 6.1 to 9. Here two
messages are received (recData) but no return is generated, indicating that the
channel has introduced errors in the sent message. This claim is substantiated
by the fact that the received energy (EnergyIntake) is low and fluctuates. The
fluctuation comes from the movement of the arm during the approach to the



Use Case Base Stimuli for SystemC 13

Fig. 6. Results of a completed simulation.

sensor.
The message at second 14.2 is being answered (DataUCToTrm). This means
that the antennas are in a range where the communication can be successful.
But the message at second 15.05 is not answered.
At second 21 the received energy is larger than before, indicating that the robot
is close enough to communicate efficiently. In second 24, two messages are ex-
changed.
After second 25 the robot moves away. To show this the antenna is activated.
During the retreat the received energy decreases.

The energy usage (EnergyLoad) of the sensor shows the combined energy
budged of the sensor. As the energy gathered by the NFC antenna is much
larger than the energy required for the calculations, it mirrors the energy intake.
This also shows that the charging of smart sensors using NFC can be effective.
The usage of the sensor itself can be seen in the trace of the remaining charge
inside the capacitor (Charge). During the phases where the antenna is active, the
charge rises, indicating that the capacitor is being loaded. In the mean time, the
charge is slowly depleted as the sensor performs its operations with the energy
stored in the capacitor.

Furthermore, the voltage available to the sensor (Voltage) is shown in this
figure. Because the module used to charge the capacitor supplies the system with
the maximum voltage allowed for this capacitor, the voltage rises rapidly to this
value. In times where no energy is harvested the voltage is calculated using the
charge of the capacitor, the energy currently used, and the serial resistance of
the capacitor.

5 Future Work

A possible expansion of this system is another world plugin comparing the mea-
surements of the sensor to the ground truth evaluated by the environment. This
can be done by combining the information of the environment, the measured
data from SystemC, as well as some of the messages received by the robot.
One drawback from forking the SystemC simulation from the Gazebo simulator
is that the two processes are running on the same computer. If a simulation is
created that encompasses multiple entities that are simulated using SystemC
the simulations may need to share the same processor core, further slowing the



14 Thomas W. Pieber, Thomas Ulz, and Christian Steger

simulation. A solution to this would be to spread the SystemC simulation over
a network and performing the communication using network sockets.

6 Conclusions

We presented an approach to connect SystemC simulations to the Gazebo simu-
lator in order to automatically generate stimuli. This paper shows the difficulties
that arise when connecting simulators that are designed to operate using different
time steps. We showed a mechanism that can connect the simulations, proposed
a mechanism that allows the interaction of the simulations, and formed require-
ments that need to be implemented on both sides to overcome the hurdles that
we were presented by the simulations.
There are some core requirements that need to be changed we want to emphasize
again. These include:

– Synchronization between the simulators is of utmost importance. SystemC
operates usually more detailed and therefore needs longer to simulate one
step. Gazebo must be halted while SystemC is running, otherwise the com-
munication between the simulations can have unbounded delay.

– Reduction of memory and time consumption is important on all computers.
Using our time reduction mechanisms, the realtime-factor of gazebo was
optimized by a factor of 103 and the memory footprint reduced by up to
102.

This approach was first described by Pieber et al. [15]. In this publication,
we extend the detail of the developed Gazebo plugin. Furthermore, we redefined
some of the requirements needed for the SystemC adaptions to emphasize their
purpose. Additionally, the evaluation describes how the systems interact and
gives a detailed example of a complete simulation and what the created traces
can look like.

Acknowledgements

This project has received funding from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement No 692480. This
Joint Undertaking receives support from the European Union’s Horizon 2020
research and innovation programme and Germany, Netherlands, Spain, Austria,
Belgium, Slovakia.
IoSense is funded by the Austrian Federal Ministry of Transport, Innovation and
Technology (BMVIT) under the program ”ICT of the Future” between May 2016
and May 2019. More information https://iktderzukunft.at/en/

References

1. Accelera: SystemC. http://accellera.org/downloads/standards/systemc (2000),
last accessed on Jan 17, 2017



Use Case Base Stimuli for SystemC 15

2. Bombana, M., Bruschi, F.: SystemC-VHDL co-simulation and synthesis in the
HW domain. In: 2003 Design, Automation and Test in Europe Conference and
Exhibition. IEEE Comput. Soc (2003)

3. Bouchhima, F., Briere, M., Nicolescu, G., Abid, M., Aboulhamid, E.: A
SystemC/simulink co-simulation framework for continuous/discrete-events simula-
tion. In: 2006 IEEE International Behavioral Modeling and Simulation Workshop.
Institute of Electrical and Electronics Engineers (IEEE) (sep 2006)

4. Huang, K., Bacivarov, I., Hugelshofer, F., Thiele, L.: Scalably distributed SystemC
simulation for embedded applications. In: 2008 International Symposium on Indus-
trial Embedded Systems. Institute of Electrical and Electronics Engineers (IEEE)
(jun 2008)

5. Kirchner, T., Bannow, N., Grimm, C.: Analogue Mixed Signal Simulation Using
Spice and SystemC. In: Proceedings of the Conference on Design, Automation
and Test in Europe. pp. 284–287. DATE ’09, European Design and Automation
Association, 3001 Leuven, Belgium, Belgium (2009)

6. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Institute of Electrical
and Electronics Engineers (IEEE) (2004)

7. Lee, W.S., Son, W.I., Oh, K.S., Yu, J.W.: Contactless energy transfer systems using
antiparallel resonant loops. IEEE Transactions on Industrial Electronics 60(1),
350–359 (jan 2013)

8. Mathworks: Get Started with Gazebo and a Simulated TurtleBot.
https://de.mathworks.com/help/robotics/examples/get-started-with-gazebo-
and-a-simulated-turtlebot.html (2016), last accessed on Jan 03, 2017

9. Metta, G., Fitzpatrick, P., Natale, L.: Yarp: Yet another robot plat-
form. International Journal of Advanced Robotic Systems 3(1), 8 (2006),
https://doi.org/10.5772/5761

10. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehen-
sive Simulation of Quadrotor UAVs Using ROS and Gazebo. In: Noda, I., Ando,
N., Brugali, D., Kuffner, J.J. (eds.) Simulation, Modeling, and Programming for
Autonomous Robots. pp. 400–411. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

11. Mueller-Gritschneder, D., Lu, K., Wallander, E., Greim, M., Schlichtmann, U.: A
virtual prototyping platform for real-time systems with a case study for a two-
wheeled robot. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2013. EDAA (2013)

12. Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C.: Comparison of json and xml
data interchange formats: A case study. Caine 2009, 157–162 (2009)

13. Open Source Robotics Foundation: Gazebo simulator. http://www.gazebosim.org
(2004), last accessed on Jan 03, 2017

14. Panda, P.R.: SystemC - A modelling platform supporting multiple design abstrac-
tions. In: Proceedings of the 14th international symposium on Systems synthesis -
ISSS. Association for Computing Machinery (ACM) (2001)

15. Pieber, T.W., Ulz, T., Steger, C.: SystemC Test Case Generation with the Gazebo
Simulator. In: Proceedings of the 7th International Conference on Simulation
and Modeling Methodologies, Technologies and Applications - Volume 1: SIMUL-
TECH,. pp. 65–72. INSTICC, SciTePress (2017)

16. Possadas, H., Adamez, J.A., Villar, E., Blasco, F., Escuder, F.: RTOS modeling
in SystemC for real-time embedded SW simulation: A POSIX model. Design Au-
tomation for Embedded Systems (2005)



16 Thomas W. Pieber, Thomas Ulz, and Christian Steger

17. Strommer, E., Jurvansuu, M., Tuikka, T., Ylisaukko-oja, A., Rapakko, H., Vester-
inen, J.: NFC-enabled wireless charging. In: 2012 4th International Workshop
on Near Field Communication. Institute of Electrical and Electronics Engineers
(IEEE) (mar 2012)

18. Sumaray, A., Makki, S.K.: A comparison of data serialization formats for optimal
efficiency on a mobile platform. In: Proceedings of the 6th International Confer-
ence on Ubiquitous Information Management and Communication. pp. 48:1–48:6.
ICUIMC ’12, ACM, New York, NY, USA (2012)

19. Willow Garage and Stanford Artificial Intelligence Laboratory: Robot Operating
System. http://www.ros.org/ (2007), last accessed on Feb 15, 2018

20. Wireless Power Consortium, et al.: System description wireless power transfer.
Volume I: Low Power, Part 1 (2010)

21. Zamora, I., Lopez, N.G., Vilches, V.M., Cordero, A.H.: Extending the OpenAI
Gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo.
arXiv preprint arXiv:1608.05742 (2016)


