

Dos and Don'ts

Coarse-Grained Models for Gas-Particle Flow

S. Radl^a

^aInstitute of Process and Particle Engineering, TU Graz

with contributions from Josef Tausendschön,^a Schalk Cloete,^b Henri Cloete,^b Shahriar Amini^b ^bSINTEF (NOR)

Direct and parcel-based simulation of a cohesive gas-particle mixture

Why Particles?

Radl et al., Powder Technology 200 (2010) 171–189

Why Particles?

Why Particles?

1 - Coarse Graining: A Review

Why do we need parcels? What is a parcel? What is NOT a parcel? What is a *"*filtered model"? ...particle coarsening

...fluid coarsening

2 - Choosing Coarse Graining Parameters

How shall we perform the particle-to-fluid mapping? The maximum permissible parcel size and cohesion What happens if the fluid cell size is increased?

3 - Future Improvement of Models & Closures

How shall we account for anisotropy? What about reactions?

1 - Coarse Graining: A Review

Phenomena to be modelled

Flow

- Particles: Contact + ٠ cohesive forces and torques
- Fluid & Fluid-• Particle interaction: (drag) forces and torques

Scalar Transport

- Heat and mass transfer rates • (fluid and particle phase)
- Filtration rates ٠
- Dispersion rates (fluid and • particle phase)
- Reactions •

Askarishahi et al., AIChE J (2017) 63:2569-2587

Phenomena to be modelled

Holloway, PhD Thesis, 2012.

The Parcel

Visualization of what can be interpreted as a "parcel"

Bo = 10

- "Particle filtering" considering a particle oarse graining ratio CG = 4
- Parcels expand and contract
- Parcels "collide gently" ٠
- Particles have a different speed, ٠ i.e., an "intra-parcel" fluctuation $v_{{\rm p},i}^{\prime\prime}$ of particle speeds exists:

$$v_{\rm p}^{\prime\prime} = v_p - \widetilde{v_p}$$

Thus, parcels develop a kinetic stress (pressure):

$$\Sigma_{p,meso} = \rho_p \overline{\alpha_p \vec{v_p}'' \vec{v_p}''}$$

Key observation: strong anisotropy of "intra parcel" velocityfluctuationsNon-cohesive (Bo = 0, CG = 4)

Key observation: cohesive flow shows higher coherence in particle speeds Bo = 10, CG = 4

The Parcel

A parcel:

- is a way to
 approximate an
 ensemble of particles
- represents a fixed
 number of particles
 (the "statistical weight"
 is fixed)
- approximates the
 average particle
 motion at a certain
 point in space

A parcel CANNOT:

- represent a fixed SET of particles, since
 particles "move into
 and out" of a parcel
- be used directly
 prediction particle particle collisions
- be assumed to be of fixed size (spatial extension)

The Parcel

What people made out of TDHS = time-driven hard sphere CGPM = coarse-grained particle method *it: the map of parcel* Filt-CGPM...Fluid-filtered CGPM modeling approaches MP-PIC = multiphase particle-in-cell S...time steps per reference time W...number of particles per parcel Accuracy CFD-Particle > Parcel TDHS DEM fine fluid grid \rightarrow coarse grid CG CG Filt-CG PM HS **Big increase in Speed** PM Little lose in Accuracy Skip Collision Little increase in Speed MP-**Big lose in Accuracy** PIC 1 S W^{1.5} SW^{1.5} Speed

Adopted from Lu et al., Ind. Eng. Chem. Res. 2017, 56, 7865-7876

2 - Choosing Coarse Graining Parameters

Fluid-To-Particle Mapping

Tausendschön et al., in preparation

Non-

Next question: how shall we scale the cohesive strength?

Scaling of Cohesion Parameters

Tausendschön et al., in preparation

Large Fluid Cell Size

20

• $\Delta_{Grid} = 3 d_p$

cohesive

Ozel et al., Chem Eng Sci 155 (2016), 258-267

Large Fluid Cell Size

Radl and Sundaresan, Chem Eng Sci 117 (2014), 416-425

Large Fluid Cell Size

Noncohesive

> A simple isotropic correction function for the drag coefficient improves the prediction a lot!

Radl and Sundaresan, Chem Eng Sci 117 (2014), 416-425

3 - Future Improvement of Models & Closures

Anisotropy

Anisotropy

Anisotropy

• Correction of drag force depends on direction

- The same is true for the meso-scale stress
- Can we increase performance of CG Euler-Lagrange models by including these effects?

Cloete et al., submitted

Chemical Reactions

Is the outcome of heterogeneous reactions affected as well? Let us consider the conversion of a solids-catalyzed reaction in an FB...

How does that impact the design of a reactor? Let us consider a multi-scale process intensification study...

- At the same methane feed rate (0.6 kg/s), the nano-structured material achieves much higher conversion
- High particle and CH₄
 concentration → low
 effectiveness factor
 (more solid reactant →
 more gas consumption)
- Lower effectiveness factors for nanostructured material (faster reaction → "meso-scale" mass transfer limitation)

Radl et al., ESCAPE28, Graz.

- We still have no clear explanation for the correct strength of smoothing. But it is clearly needed...
- Scaling of cohesion parameters up to CG = 5 helps a lot!
 - 1 / 125 of particles need to be tracked
 - Study cohesive fluidization with (almost) no simulation time penalty due to particle tracking
- Adoption of Euler-Euler closures in CG EL simulators suggested
- Polydispersity: does the stress-based scaling law for cohesion also hold for these systems?

Dos and Don'ts

Coarse-Grained Models for Gas-Particle Flow

S. Radl^a

^aInstitute of Process and Particle Engineering, TU Graz

with contributions from Josef Tausendschön,^a Schalk Cloete,^b Henri Cloete,^b Shahriar Amini^b ^bSINTEF (NOR)

THANK YOU

Direct and parcel-based simulation of a cohesive gas-particle mixture