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1. Introduction 

Flow instability is the onset of heterogeneous flow intensifying flow localization and leading to further damage in alloys 

during hot deformation. Some phenomenological approaches in the literature do not account for the microstructure changes of the 

material. In order to overcome this problem, we introduce a dissipation potential approach as a function of the plastic strain rate, 

the evolution rate of dislocation density and the heat flux, 𝐷(𝜀𝑝̇, 𝜌̇, 𝑞), to describe the flow instability during hot deformation. This 

approach considers the principle of orthogonality proposed by HANS ZIEGLER and describes large plastic flow with far-from-

equilibrium thermodynamics. Moreover, the evolution rate of dislocation density 𝜌̇is involved and the transient energy dissipation 

comprises mechanical part due to dislocation movement and thermal part by heat transfer. The necessary condition for stable flow 

is that the dissipation potential 𝐷(𝜀𝑝̇, 𝜌̇, 𝑞)is convex, i.e. the associated Hessian is non-negative. This approach connects the 

continuum mechanics, non-linear non-equilibrium thermodynamics and microstructure evolution when dealing with hot 

deformation problems. In this work, the approach was applied to describe the behavior of Ti6Al4V during hot deformation, and 

using a Kocks-Mecking type model to describe the flow stresses as a function of the dislocation density.  

2. Dissipation potential model 
Large plastic deformation of materials is irreversible and in the non-linear non-equilibrium state, especially during hot 

deformation. And the relative system entropy is increasing presented by dissipation energy. The rate of dissipation energy is 

introduced as a function of the plastic strain rate𝜀𝑝̇, the evolution rate of dislocation density𝜌̇ and the heat flux𝑞 in the work. A 

dissipation potential function 𝐷(𝜀𝑝̇, 𝜌̇, 𝑞) was developed and which comprised three parts: 1) the plastic work 2) the stored energy 

and 3) the heat transfer. The three parts are constructed as following equations. 

2.1. The flow stress described by Kocks-Mecking model 

The Kocks-Mecking model was developed to describe the flow stress of a material by considering one hardening term and 

one recovery term [1, 2]. The flow stress can be expressed as a function of the total dislocation density 𝜌, and the associated 

constitutive equations are given by:  
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Where: 𝑀– Taylor factor; 𝛼1– Numerical constant; 𝐺(𝑇)– Shear modulus; 𝑏– Burgers vector; ℎ1– Hardening coefficient; 

ℎ2– Recovery coefficient; 𝜎𝑌𝑆– Measured yield stress; ℎ1,0– Ahardening coefficient; ℎ2,0– A constant forrecovery coefficient; 

𝑚ℎ1
– Strain rate sensitivity for ℎ1; 𝑚ℎ2

– Strain rate sensitivity for ℎ2; 𝑄ℎ1
– Activation energy for ℎ1(J/mol); 𝑄ℎ2

– Activation 

energy for ℎ2(J/mol); 𝜀̇– Strain rate (1/s); 𝑅– Universal gas constant (J/mol·K); 𝑇– Temperature (℃).  

2.2. The stored energy described by Helmholtz free energy 

The amount of energy stored as crystal defects inside of material after deformation can be presented by Helmholtz free 

energy 𝛹(𝑇, 𝜀𝑒 , 𝜌) as a function of the temperature, elastic stain and dislocation density [3]. For rigid viscoplastic materials, the 

elastic strain was ignored and the Helmholtz free energy 𝛹(𝑇, 𝜌)is given by  

𝛹(𝑇, 𝜌) = 𝐸𝜌𝜌 = 𝛼2𝐺(𝑇)𝑏2𝜌    (4) 

Where 𝐸𝜌is the unit length energy of the dislocation. 

2.3. The heat transfer described by heat flux and temperature gradient  

The gradient of temperature 𝛻𝑇is the driving force for the heat flow [4], and the heat transfer of the system is given by  

𝐷𝑇 = −
𝛻𝑇

𝑇
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Where 𝑞 is the heat flux, and the negative symbol means the heat flow is flowing from higher temperature to lower 

temperature. 

2.4. The dissipation potential model  

The general dissipation potential function is given by: 

𝐷(𝑥̇𝑘) = ∑ 𝑋𝑘 ∙ 𝑥̇𝑘    (6) 



Where 𝑥̇𝑘 is the rate of variables, and 𝑋𝑘 are the corresponding thermodynamic forces [5]. According to the coupled 

interactions among the variables, the dissipation potential can be summarized as two different forms. 

(1) The coupled dissipation potential function  
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Where 𝐹(𝜀̇, 𝜌̇; 𝜀, 𝜌, 𝑇),𝐹(𝜀̇, 𝑞; 𝜀, 𝜌, 𝑇) and 𝐹(𝑞, 𝜌̇; 𝜀, 𝜌, 𝑇)are thermodynamic coupling forces with theassociated variables.  

(2) The non-coupled dissipation function 
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Where: 𝜌̇– Dislocation density rate; 𝛻𝑇– Temperature gradient; 𝑞– Heat flux. The evolution of dissipation potential with regards 

to dislocation density rate (𝜌̇), strain (𝜀) and strain rate (𝜀̇) were presented in Figure1 and Figure 2 respectively.  

3. The Hessian matrix of dissipation potential function  
The convexity of the dissipation potential assures the stability of the thermodynamic system [5]. This is as saying that its 

Hessian 𝐻(𝜀̇, 𝜌̇, 𝑞; 𝜀, 𝜌, 𝑇)is definite positive.  

4. One special case of the non-coupled dissipation potential function: 𝜵𝑻 = 𝟎 
When it considers the adiabatic condition, the dissipation potential function is simplified by ignoring the heat transfer effect. 

The dissipation potential function for Ti64 with single βphase is given by  

𝐷(𝜀̇, 𝜌̇; 𝜀, 𝜌, 𝑇) = 𝜎𝜀̇ − 𝛼2𝐺(𝑇)𝑏2𝜌̇ = 𝑀𝛼1𝐺(𝑇)𝑏𝜀̇
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The Hessian matrix of the above non-coupled dissipation potential function 𝐷(𝜀̇, 𝜌̇; 𝜀, 𝜌, 𝑇) is given by 
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For the special case, the Hessian of its dissipation function is always zero, meaning stability of the thermodynamic system. 

5. Modelling results  

 

Figure 1. Evolution of dissipation potential with respect to dislocation density rate at different temperatures and strain rates. 

 

Figure 2. Mesh maps of the dissipation potential with respect to strain and strain rate at different temperatures. 
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