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Abstract. The increasing prevalence of soft errors and security concerns
due to recent attacks like rowhammer have caused increased interest in
the robustness of software against bit flips.
Arithmetic codes can be used as a protection mechanism to detect small
errors injected in the program’s data. However, the accumulation of prop-
agated errrors can increase the number of bits flips in a variable - possibly
up to an undetectable level.
The effect of error masking can occur: An error weight exceeds the limi-
tations of the code and a new, valid, but incorrect code word is formed.
Masked errors are undetectable, and it is crucial to check variables for
bit flips before error masking can occur.
In this paper, we develop a theory of provably robust arithmetic pro-
grams. We focus on the interaction of bit flips that can happen at differ-
ent locations in the program and the propagation and possible masking
of errors. We show how this interaction can be formally modeled and
how off-the-shelf model checkers can be used to show correctness. We
evaluate our approach based on prominent and security relevant algo-
rithms and show that even multiple faults injected at any time into any
variables can be handled by our method.

Keywords: Formal Verification · Fault Injection · Error Detection Codes
· Arithmetic Codes · Error Masking

1 Introduction

A typical assumption when writing software is that registers and memory content
do not change unless the software performs a write operation on these locations.
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However, in practice, this assumption is challenged in several ways. On the one
hand, the feature size of transistors in processors and memories keeps shrinking
and shrinking, which allows natural phenomena like cosmic radiation to sporad-
ically flip bits in memories and processors [4]. On the other hand, there exist
attack techniques that aim at overcoming security mechanisms of systems by
inducing targeted faults into a system. There is a wide range of publications
on how to induce faults in systems using for example voltage glitches [3] or
lasers [29]. The rowhammer effect [15] even allows attackers to cause bit flips
remotely without any physical access to the target device.

Independent of whether a fault is caused by a natural phenomenon or an
attacker, we refer to any change of a system state that is not caused by the
software itself as a fault. Faults have huge implications on the security and safety
of a system. Even a single bit flip, can lead to a critical system failure or reveal
secret cryptographic keys (e.g. [7], [1]). Consequently, appropriate mechanisms
for detecting and handling faults are necessary.

The first error detection codes have been invented by Golay [13] and Ham-
ming [14]. They proposed to add redundancy to every number, to increase the
Hamming Distance [14] between encoded numbers. The higher the size of redun-
dancy, the more bit flips can be detected. In the subsequent years, a special form
of error detection codes have been discovered: Arithmetic codes do not only de-
tect up to a fixed number of bit flips, the code words also remain valid over a cer-
tain set of arithmetic operations, e.g. encode(a)+enc encode(b) = encode(a+ b).
The number of detectable bit flips depends on the minimum arithmetic distance
between valid code words [17], referred to as dmin. Examples for arithmetic error
detection codes are AN, AN+B and residue codes ([10], [22], [9]).

1.1 Error Masking

In this work, we build up on the theory of arithmetic distance between arithmetic
code words [17] and extend it to describe the propagation of errors and their
arithmetic weights over an arithmetic program.

Listing 1.1. Copy of an invalid code word, resulting in two faulted variables a and b.

1 a := encode (0)

2 a := flip(a, 0th bit)

3 b := a

Every typical program contains data dependencies. If a value depends on a
faulted one, it is influenced by that fault and is unlikely to be correct – the error
propagated to the new variable. Listing 1.1 shows a simple example of an error
propagating from one faulted variable to another one.

Listing 1.2. The sum of two invalid code words a and b, yields a faulted code word c

containing two flipped bits.

1 a := encode (0)

2 a := flip(a, 0th bit)

3 b := a + a

4 c := a + b
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As soon as an instruction has two faulted operands, the arithmetic weight of
the errors can accumulate, and as a result the new error’s weight can exceed the
detection limit dmin of the code. In Listing 1.2, the flip of the 0th bit in a results
in a flip of the 1st bit in b. Both errors accumulate to two bit flips in c.

Definition 1 (Error Masking). Error masking is the effect of a new, valid,
but incorrect code word emerging from an operation with two faulted operands.

Listing 1.3. The injected fault is detected before errors can accumulate.

1 a := encode (0)

2 a := flip(a, 0th bit)

3 b := a + a

4 check(b)

5 c := a + b

A countermeasure for error masking is to check variables for errors at in-
termediate program locations, like in the example in Listing 1.3. However, it
is non-trivial to determine where to place these checks: on the one hand, too
many checks increase the run time of a program significantly, on the other hand,
missing checks can lead to error masking.

1.2 Contribution

Within this work, we present a technique to prove that a program is robust
against error masking. The following three points summarize our contribution:

1. We introduce the theory behind the effect of error masking based on the
concept of error propagation over arithmetically encoded programs.

2. We use these insights to define the property of error masking robustness
and present a novel technique to prove that the checks inside a program are
sufficient to prevent error masking.

3. We demonstrate the capabilities of our approach based on real world pro-
grams. We were able to detect error masking vulnerabilities in cryptography
algorithms and propose verifiable robust adaptions of these algorithms con-
taining intermediate checks.

The core idea of our proposed method is the translation of an input program
into a model of its worst-case error propagation, and to evaluate the model using
an off-the-shelf model checker. With our method, we are not limited to detect
robustness violations, but also receive indications of the problematic statements.
Furthermore, our approach is generic for all arithmetic encoding schemes, as long
as there is a minimum arithmetic distance dmin between valid code words.

The flexibility of the technique allows us to use fault specifications of varying
complexity. In contrast to other approaches, our method allows us to evaluate a
program in the presence of multiple faults distributed over all possible locations!
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1.3 Outline

The remaining sections are structured as follows: First, section 2 describes the
state of the art and related work. Then, section 3 explains the concept of arith-
metic codes as preliminaries and describes the most prominent examples. The
main method is described in section 4 and section 5, where the former describes
the input language and fault model, while the later describes the process to cre-
ate an verifiable abstraction of the program under verification. section 6 proves
the correctness of this approach and section 7 evaluates our method on a series
of algorithms. Finally, section 8 provides an discussion of (dis-)advantages and
an outline of future work, and section 9 summarizes this work.

2 Related Work

As section 1 illustrates, the detection of faults during program execution poses
an important challenge. During the past decades, several interesting articles on
this topic have been published.

The first papers on arithmetic codes can be dated back to the 1950’s and
1960’s [9,10,17,22]. They describe a class of error detection codes that natively
supports arithmetic operations without decoding the code word. While arith-
metic codes have been developed to detect and correct bit flips during data
transmission, they turned out to be also well suited as protection mechanism
against a more recent concern: Using modern technology, adversaries are able
to intentionally inject faults during program execution and thus reveal secret
information [18].

In the recent years, researchers developed methods to automatically encode
programs at compile time [11, 25, 26]. Although some of the required checks
can be identified automatically, they are insufficient for the prevention of error
masking, and the user needs to specify further check locations himself. However,
there is currently no exact theory to decide where necessary checks are required.
This paper addresses this problem by introducing a method to automatically
evaluate the placement of checks inside a program.

The idea of applying formal methods to verify the robustness of programs
against faults is shared with multiple related papers:

Pattabiraman et al.([21]) and Larsson and Hähnle([16]) both propose to use
symbolic execution. The first of these two papers describes a method, where
registers and memory locations are symbolically tagged with an err label, and
errors propagate through duplication of this label. The framework runs user
defined error detectors to identify and report problems. However, the authors
do not consider the exact number of bit flips on a variable, which prevents
the tool from identifying error masking. The second publication focuses on the
symbolic injection of multiple bit flips at fixed fault locations. In contrast to
our work, it proposes a method tailored to the principle of code duplication as
countermeasure. This method compares the result of two versions of the same
code, where one is based on faulted data. The effectiveness of code multiplication
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requires a strict independence of all redundant data paths. Walker et al. [31]
introduce a method to identify such dependencies inside programs.

The idea of using LLVM bitcode transformations to add explicit fault injec-
tions to the source code is shared with the papers [30] and [12]. The idea of the
first is to execute two versions of a program - the original and a faulted version
- and to evaluate the user defined predicates. Every combination of program
counter and state of these predicates form a node in a transition diagram. If an
execution ever reaches a node unreachable in the fault-free transition diagram
it reports an error. In the second paper, mutated binaries are model checked
against a given specification. The results are then compared with the results of
a fault-free verification run to identify differences.

All those papers share similarities with our work, but they apply to different
countermeasures and are not designed to detect error masking.

On the side of formal verification of programs using error detection codes, as
to our knowledge, only few publications exist so far. Meola [20] formally proved
the robustness of a small encoded program using Hoare Logic, and Schiffel [27]
investigates the soundness and completeness of arithmetic codes using formal
methods. Schiffel posits that the formal verification of AN-encoded programs
using model checkers is impossible due to the exponential increase of verification
time. We address this challenge by creating an abstraction of the program, only
considering the error’s weight instead of the complete variable’s value.

3 Arithmetic Error Detecting Codes

Error detecting codes are a well-known way to detect errors during storage or
computation. They can be divided into multiple sub-classes, among them the
class of arithmetic error detection codes. These codes do not only guarantee an
detection of all errors with an arithmetic weight smaller a constant dmin, they
also remain valid over certain arithmetic operations, like additions.

3.1 Examples for Arithmetic Codes

One prominent example for an arithmetic code is the AN-code [9, 10, 26]. All
valid AN code words are multiples of a user-defined constant A, with encode↩

(x) = x ⋅ A. To check a code word for validity, the remainder of the code word
divided by A is calculated. For all valid code words, this remainder must be 0,
otherwise the check detected an error. The check macro for AN-codes is given
in Listing 1.4.

Listing 1.4. Checks for AN encoded programs.

1 #define check(x) assert(x % A == 0)

A second class of arithmetic codes are residue codes [17]. A residue code
word is defined by x concatenated with x mod M , given a constant modulus M ,
encode(x) = (x ∣ x mod M). This code separates the redundancy part from the
functional value x, thus the name separate code. Although the robustness of the
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code is defined by the modulus M , residue codes only guarantee detection of a
single bit flip. To overcome this limitation, the redundancy part can be increased
by using more than one residue [23,24], yielding a multi-residue code.

3.2 Arithmetic Weight and Distance

Both, AN-codes and (multi-) residue codes, use the arithmetic weight and the
arithmetic distance to quantify the robustness of the instantiated code. These
properties are similar to the Hamming weight and Hamming distance [14] used
for binary linear codes.

The arithmetic weightW (∣x∣) of the integer value x is defined as the minimum
number of non-zero coefficients in the signed digit representation of x.

W (∣x∣) = min{
∞

∑
i=0

∣bi∣ ∣bi ∈ {−1,0,1}, x =
∞

∑
i=0

bi2
i
}

The arithmetic distance d between the the two integer values x1 and x2 is
equal to the arithmetic weight of the absolute difference between the values x1
and x2.

d(x1, x2) =W (∣x1 − x2∣)

The constant dmin is the only information about the encoding of a program
our method requires. It is defined as the minimum arithmetic distance between
any two valid code words xc1 and xc2. All errors with a weight up to dmin are
guaranteed to be detected by a properly implemented check. This property is
essential to verify the error masking robustness, as described in the subsequent
sections.

dmin = min
xc1≠xc2

d(xc1, xc2)

4 Error Masking Robust Programs

In this section, we describe the kind of programs we target and explain the
concept of robustness against error masking. We define the error model and show
a new method on how to apply this fault model to the program to transform it
to a new program, where all potential faults are explicitly injected. Finally, we
present a formal definition of robustness against error masking based on these
explicitly faulted programs.

4.1 Programs

Our robustness verification method is applicable for arithmetic programs of the
following form.
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Definition 2 (Input Programs). An input program P is a directed graph
P = (V,E,λ, v0,Var) where V is a set of vertices, E ⊆ V × V is a set of edges,
λ ∶ V → S is a mapping of vertices to statements, v0 ∈ V is a start vertex, and
Var = Varloc ∪Vararg is a set of local variables and program arguments.

All variables var ∈ Var are arithmetically encoded, and all constants c ∈ N
are natural numbers. Values val ∈ Var ∪ Encc are either encoded variables or
encoded constants Encc = {encode(c) ∣ c ∈ N}, where encode(c) is the arithmetic
encoded version of an integer constant c. All statements are either arithmetic
instructions or control-flow directives S = Sarith ∪ Scf.

Arithmetic instructions can either be assignments s ∈ Sassign, additions s ∈
Sadd, or subtractions s ∈ Ssub; Sarith = Sassign ∪ Sadd ∪ Ssub.

∀s ∈ Sarith ∶

s =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

var ∶= cenc if s ∈ Sassign

var ∶= var1 + var2 if s ∈ Sadd

var ∶= var1 − var2 if s ∈ Ssub

Control-flow directives include direct jumps s ∈ Sjump, conditional branches
s ∈ Scbranch, runtime assertions s ∈ Scheck and terminators s ∈ Sret; Scf = Sjump ∪

Scbranch ∪ Scheck ∪ Sret.

∀s ∈ Scf ∶

s =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

goto v if s ∈ Sjump

if (cond) goto v1 else goto v2 if s ∈ Scbranch

check (var) if s ∈ Scheck

return var if s ∈ Sret

The runtime assertions check (var) check a code word var for validity, abort
execution, and enter a safe state once it detects any fault on this variable. How-
ever, checks cannot detect masked errors and only guarantee to disclose errors
with a maximum arithmetic weight of dmin −1. Their actual implementation de-
pends on the encoding scheme of the program and is both possible in hardware
or in software.

Boolean conditions cond are either comparisons vali op valj , with op ∈ {<,≤
,=,≠,≥,>} or boolean combinations of comparisons.

Every conditional branch performs an implicit check on its operands. To
avoid the flipping the boolean value of cond itself, we propose to use branch
protection algorithms like [28]. The execution of a conditional branch can fall
into one of three cases: One, every operand is correct, and the execution continues
with goto v1, if cond evaluates to true or with goto v2 otherwise. Second, any
operand in the condition is faulted, but contains a detectable fault. In this case,
the conditional branch statement aborts execution and enters a safe state. Third,
the error weight on the compared operands exceed dmin − 1, where a branch
protection mechanism could miss the fault. The statement continues with any
of both goto statements and executes a possibly invalid path. The last case is a
consequence of error masking and will be detected by our method.
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Every vertex v1 with a statement λ(v1) ∈ Sarith ∪ Scheck ∪ Sjump has exactly
one successor v2. If λ(v1) = goto v2, the destination vertex v2 must be the single
successor of v1. For every vertex and its successor E contains a directed edge
(v1, v2) ∈ E. All vertices v with conditional branch statements λ(v) = if ↩

(cond) goto v2 else goto v3 have exactly two outgoing edges to v2 and v3, and
all vertices v with return statements λ(v) ∈ Sret have zero outgoing edges.

Our method requires the whole program to be encoded using the same en-
coding scheme, and the same encoding constants. As a consequence, there is a
value dmin > 1, which is smaller or equal to the arithmetic distance of any two
valid code words. The constant dmin − 1 forms the upper limit for the number
of guaranteed detectable bit flips and needs to be known in order to evaluate a
program using our method. The programmer is responsible for choosing an ap-
propriate encoding scheme, such that all operations in the program are possible
in the encoded domain and no overflows can occur.

As running example we use our small toy program from Listing 1.2 and
Listing 1.3. The flip in this example was not intended by the programmer, it
occurred due to either an attacker or environmental influences during execution.
Listing 1.5 contains the original program, as it was written by the programmer.

Listing 1.5. Running example toy program.

1 myProgram ()

2 a := encode (0)

3 b := a + a

4 check(b)

5 c := a + b

6 return c

4.2 Fault Model

This work focuses on faults in memory, where bits of variable values are flipped.
Every fault consists of an (possibly negative) error E of an arithmetic weight
W (∣E∣) < dmin added to an integer variable var at any point in time during
program execution. A special case of faults are bit flips. A single bit flip in the ith

bit corresponds to an error E = bi2
i, with bi = 1 if the flip sets the bit, and bi = −1

otherwise. Therefore, the arithmetic weight of a single bit flip is W (∣E∣) = 1. All
faults injected into a variable var remain present until a new value is assigned
to var and overwrites the fault. In this work, we do not consider control-flow
attacks as there are already promising countermeasures [28, 32] to protect this
attack vector. We assume that such an integrity mechanism is present such that
all instructions as well as the control-flow of the program are protected.
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4.3 Explicitly Faulted Programs

In order to verify the robustness of a program, we need to make faults in the input
program visible to the model checker. Therefore, we define a derived program
with explicit fault injections.

Definition 3 (Explicitly Faulted Program Pfaulted).
Given a program P = (V,E,λ, v0,Var), we can derive an explicitly faulted

program Pfaulted = (Vf ,Ef , λf , v0f ,Varf), where Vf = {v′ ∣ v ∈ V } ∪ {v′′ ∣ v ∈ V },
Ef = Ef1 ∪ Ef2 is a set of edges with Ef1 = {(v′′, v′) ∣ v ∈ V }, Ef2 = {(v′1, v

′′

2 ) ∣

∃v2 ∈ V ∶ (v1, v2) ∈ E}, v0f = v′0, and Varf = {varf ∣ var ∈ Var}.

An input program P is transformed into an explicitly faulted program Pfaulted,
P ↝ Pfaulted by the following modifications. The new program Pfaulted is cre-
ated by inserting an additional vertex v′f before every vertex in a copy of V ,
{v′′f ∣ v ∈ V }. Every statement of a vertex in the original program remains the
same ∀v ∈ V ∶ λf(v

′′

f ) = λ(v)[var / varf ], with variables replaced by their explic-
itly faulted version. The statements on the new vertices λf(v

′

f) inject faults on
every variable read by the statement λ(v) of the original program.

λf(v
′

f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

varf ∶= varf +E
v
1 if λ(v) = return varf

varf1 ∶= varf1 +E
v
1

varf2 ∶= varf2 +E
v
2

if
λ(v) = varf3 ∶= varf1 + varf2∨

λ(v) = varf3 ∶= varf1 − varf2

ε else

In this formula, Evi denotes the error injected before execution the statement
λ(v) into the ith operand of λ(v).

The explicitly faulted version of our toy example is depicted in Listing 1.6.

Listing 1.6. Pfaulted of the toy example in Listing 1.5.

1 myProgram ()

2 a := encode (0)

4 a := a + E
v1
1

5 a := a + E
v1
2

6 b := a + a

8 check(b)

10 a := a + E
v2
1

11 b := b + E
v2
2

12 c := a + b

14 c := c + E
v1
3

15 return c
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4.4 Robustness Condition

The explicit faults in Pfaulted allow us to name the errors on every variable
during execution. Therefore we can introduce the following terms and define the
condition for robustness of a program against error masking.

Definition 4 (Execution Path). A path π = π[0], . . . , π[k] is a sequence of
vertices π[i] ∈ V , where the program graph P has a directed edge between any
two subsequent elements (π[j], π[j + 1]) ∈ E.

Definition 5 (Execution Trace). An execution trace πexec = π[0], . . . , π[k] of
a program P is an execution path through the program starting at π[0] = v0 and
ending with a vertex π[k], with λ(π[k]) ∈ Sret.

Definition 6 (Feasible Execution Trace). An execution path π′ is contained
in an execution trace πexec, if all elements of π′ are also included in πexec, and
their order is preserved. An execution trace πexec of a program P is also feasible
in an explicitly faulted program Pfaulted, iff there is an execution trace πexec

f , such
that πexec is contained in πexec

f .

Definition 7 (Fault-Free Program). Given a program Pf , the fault-free pro-
gram P 0

f is defined as Pf with no errors injected at any vertex, ∀v ∈ Vf∀i ∶ E
v
i = 0.

Definition 8 (Program State). Given a deterministic faulted program Pfaulted

and fixed values for every program argument and injected errors, there is only
one feasible execution trace π. We define the program state Π[t] at step t of π
as the mapping from all variables to their value at execution step t. JΠ[t] ∣ varK
returns the value of the variable var in this execution state, and JΠ[t]Kπ returns
the execution path π[0], ..., π[t].

Definition 9 (Error on a variable). Given an execution state of Pf , and the
corresponding execution state of P 0

f , the error JΠ[t] ∣ E(varf)K on a variable

varf is the difference between JΠ[t] ∣ varf K and JΠ[t] ∣ var0f K.

Definition 10 (Correctness of an explicitly faulted program). A faulted
program Pf is correct if every feasible execution trace is also feasible in the
fault-free program P 0

f , and all its executions return either the fault-free value

JΠ[k] ∣ var0f K or any fault on the returned value JΠ[k] ∣ varf K is detectable
(W (∣E∣) < dmin).

Definition 11 (Robustness of an input program). A program P is robust
against error masking, if and only if the explicitly faulted program Pfaulted is
correct.

To guarantee the robustness against error masking, the defined properties
of Definition 10 are required to hold in the explicitly faulted program. The first
condition can be ensured by preventing error masking on any variables compared
in a branch condition, while the latter requires the absence of error masking in
the return value. Both problems are detected by the method described in the
next section.
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5 Proving a Program Robust against Fault Masking

This section describes, how to formally prove that a program fulfills the robust-
ness condition described in section 4. The work flow of the verification of error
masking robustness is depicted in Figure 1. Starting from a program P , we cre-
ate the explicitly faulted program Pfaulted and derive an abstract model of the
error weight propagation Pweights. This model contains assertions for the error
masking robustness, and a model checker evaluates them for violations. In the
case of a violation, the generated counterexample can be used to improve P , and
insert additional checks. Once the model checker reports no errors any more, the
program is guaranteed to be error masking robust.

Fig. 1. The work flow of the verification process.

The main idea is to keep track of the maximum error weight on every variable
and assert that it always remains below dmin. When this is the case, errors cannot
mask each other and are always detectable.

Our technique to prove robustness involves three main steps: (1), we derive
the explicitly faulted program P ↝ Pfaulted from the input program P , as de-
scribed in section 4. Afterwards, (2) transforms the faulted program Pfaulted into
an error weight counting program Pweights. This program models the propagation
of error weights through the explicitly faulted program Pfaulted and contains as-
sertions for ensuring its correctness. (3), we apply an off-the-shelf model checker
to evaluate the new program Pweights. The model checker proves the absence
of error masking or provides a counterexample in case of any violations of the
correctness assertions.

5.1 Adaption of the Input Language

The language of weight counting programs Pweights is an adaption of the original
language of P and Pf in subsection 4.1. Every statement λw(vw) on a vertex vw
is restricted to one of the following forms.
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λw(vw) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ew ∶= ∗

ew ∶= 0
ew ∶= ew1

ew ∶= ew1 + ew2

ew ∶= ew +W i
v

goto v′

if (∗) goto v1 else goto v2
return

assume (cond)
assert (ew < dmin)

In this syntax, the ∗ symbol denotes non-deterministic choice. The task of
the model checker is to prove that for any value as ∗ the assertions ew < dmin

are never violated, given that all conds provided to assume calls are fullfilled.

5.2 Fault Specification

The fault specification is provided by the user and constraints the maximum
arithmetic weight of any injected error.

Definition 12 (Maximum Injected Error Weight). The maximum injected
error weight W v

i denotes the maximum number of errors injected over all visits
to a vertex v in the ith operand.

Definition 13 (Fault Specification). The fault specification FSpec is a Boolean
expression over predicates E op c, with op ∈ {<,≤,=,≥,>,≠}, E as a sum of max-
imum injected error weights W v

i , and c ∈ N, such that it restricts every injected
error weight to an upper limit < dmin:

∀W v
i ∶ FSpec Ô⇒ W v

i < dmin

.

A simple example for a fault specification would be to limit the sum of all
maximum injected error weights to a constant C < dmin:

∑W v
i < C.

5.3 Translation of the Explicitly Faulted Program Into a Weight
Counting Program

The error weight counting program Pweights can be derived from an explicitly
faulted program Pfaulted, via the transformation Pfaulted ↝ Pweights. The error
weight counting program is an abstraction of the program Pfaulted, storing only
the upper bound of the error weight on the corresponding variables’ value. The
set of error weight counters WE = {we ∣ varf ∈ Varf} is a set of unsigned variables
0 ≤ we.
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As a start, the program Pweights initializes ever error weight counter to 0. The
vertex vew init

w is the first vertex of the program with the following statements:

λw(v
ew init
w ) = {ew ∶= 0 ∣ varf ∈ Varf}

Next, within the node vW init, every maximum injected error weight W v
i is

set to a non deterministic, positive integer:

λw(v
W init
w ) = {W v

i ∶= ∗ ∣ Evi }

As final initialization step, the node vfs limits the maximum injected error
weights according to the fault specification.

λw(v
fs
w) = assume(FSpec)

For every vertex vf ∈ Vf of Pfaulted, there is a vertex vw ∈ V prog
w , with a

statement λw(vw) as follows:

∀λf(vf) ∈ Sarith ∶

λw(vw) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ew ∶= 0 if λf(vf) = varf ∶= cenc

ew ∶= ew1 if λf(vf) = varf ∶= varf1 + varf1
ew ∶= ew1 + ew2 if λf(vf) = varf ∶= varf1 + varf2
ew ∶= ew1 + ew2 if λf(vf) = varf ∶= varf1 − varf2

∀λf(vf) ∈ Scf ∶

λw(vw) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

goto v′w if λf(vf) = goto v′f

assert(⋀ ewi < dmin)

assume(⋀ ewi = 0)
if (∗) goto v′w
else goto v′′w

if λf(vf) =
if (cond goto v′f
else goto v′′f

assert(ew < dmin)

assume(ew = 0)
if λf(vf) = check(varf)

return if λf(vf) = return varf

λw(vw) =
ew ∶= ew +W v

i

W v
i ∶= 0

if λf(vf) = varf ∶= varf +E
v
i

In Pweights every conditional branch is transformed into a non deterministic
branch, regardless of the previous branch condition. This transformation guar-
antees independence of actual variable values, and brings along both advantages
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and restrictions. These matters are further discussed in section 8. As all variables
accessed by cond are implicitly checked by a branch protection algorithm (see
subsection 4.1), the new statement begins with the transformed version of these
checks.

Like in Pfaulted, all fault injections are explicit. A fault injection in Pweights

is represented by an increment of the error weight counter by the maximum
injectable error weight. After the error has been injected, there are no bit flips
left for this location, and the remaining error weight is set to 0.

Finally, a model checker requires a definition of the correctness for a program.
As defined in Definition 10, the correctness of the program can be guaranteed if
all variables’ error weights remain below dmin. If there is any chance this property
is ever violated, the model checker should prompt a warning and give a violating
counterexample. Within the program Pweights, the correctness is assured by calls
to the assert function.

V assert
w = {vasserterr ∣ λf(v

′

f) = varf ∶= varf +E
vf
i }

∪ {vassertarith ∣ λf(vf) = varf ∶= var1 + var2

∨ λf(vf) = varf ∶= var1 − var2}

λp(v
assert

) = assert(ew < dmin)

The assertion statement λp(v
assert
w ) of each new vertex vassertw ∈ V assert

w checks
that the error weight ew of the corresponding variable varf is less than the
minimum arithmetic distance.

In the resulting Pweights, the set of all vertices is Vw = {vew init
w , vW init

w , vfsw}∪

V prog
w ∪V assert

w , with an edge between the initialization vertices {(vew init
w , vW init

w ),
(vW init

w , vfsw )} ∈ Ew and edges between the copied program vertices and the asser-

tion vertices interleaved {(v
Pf
w , vassertw ) ∣ vf ∈ Vf}∪{(v

assert
w , v

Pf
w ) ∣ (vf , v

′

f) ∈ Ef}.

Finally, there is an edge from the last initialization vertex vfsw to the first vertex
of Vw, which corresponds to v0f

Definition 14 (Weight Counting Program).
Given Pfaulted = (Vf ,Ef , λf , v0f ,Varf), we define
Pweights = (Vw,Ew, λw, v0w ,Varw).

After performing the described steps, the transformation is complete. The
resulting program Pweights models the worst case error propagation and any
potential error masking in P is present as an assertion violation in Pweights.

The weight counting program of our toy example can be seen in Listing 1.7.

Listing 1.7. Weight counting version of the toy example.

1 myProgram ()

2 W
v1
1 , W

v2
1 , W

v1
2 , W

v2
2 , W

v1
3 := *

3 ew_a , ew_b , ew_c := 0

4 assume(∑v∈V ∑
∞

i=1W
v
i ≤ 1)
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6 ew_a := 0

8 ew_a := ew_a + W
v1
1

9 assert(ew_a < dmin)

10 ew_a := ew_a + W
v1
2

11 assert(ew_a < dmin)

12 ew_b := ew_a

13 assert(ew_b < dmin)

15 assert(ew_b < dmin)

16 assume(ew_b = 0)

18 ew_a := ew_a + W
v2
1

19 assert(ew_a < dmin)

20 ew_b := ew_b + W
v2
2

21 assert(ew_b < dmin)

22 ew_c := ew_a + ew_b

23 assert(ew_c < dmin)

25 ew_c := ew_c + W
v1
3

26 assert(ew_c < dmin)

27 return

5.4 Applying a Model Checker to Prove Correctness

As third step, we use a model checker to verify the resulting program Pweights.
For our running example we are able to verify its error masking robustness,
giving the fault specification ∑W v

i < dmin, with dmin = 2. However, without the
line check(b), the model checker successfully reports an vulnerability within the
instruction c := a + b, if a contains an error of weight 1. This result corresponds
to the expected outcome as illustrated in section 1.

The next section will give an proof of correctness of our method, followed by
an evaluation of the method using real world examples.

6 Proof of Correctness

We can show that for every potential error masking in P , Pweights contains an
assertion violation. For this, we use the following definitions.

Definition 15 (Mapping of a Program State). Given a program state of the
explicitly faulted program Pfaulted, Πf [t], we define Πw(Πf [t]) as the correspond-
ing program state of Pweights, where ∀Evi ∶ W (∣JΠf [0] ∣ Evi K∣) = JΠw(Πf [0]) ∣

W v
i K, and JΠw(Πf [t])Kπ is the smallest execution trace containing JΠf [t]Kπ.

Theorem 1. Given a program state Πf [t], where every variable is smaller or
equal to its corresponding error weight counter in Πw(Πf [t]), after any state-
ment λf(vf) ∈ Sarith, the error of the variable varf modified by λf(vf), is smaller
or equal the error weight counter ew belonging to this variable.
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Proof. All arithmetic statements fall into one of the following cases:
In the case of λf(vf) = varf ∶= encode(c), a variable is set to a encoded

constant, which originally contains no fault.

W (∣E(encode(c))∣) = 0 Ô⇒ ew = 0 ≥W (∣E(varf)∣).

For the addition of the same variable with itself, λf(vf) = varf ∶= varf1+varf1 ,
we get

D(varf1 + varf1 , var0f1 + var0f1) =W (∣2E(varf1)∣) =W (∣E(varf1)∣)

Ô⇒ ew =W (∣E(varf1)∣) =W (∣E(varf)∣).

If two different variables are added or subtracted, λf(vf) = varf ∶= varf1 ±
varf2 , the new error weight fulfills the following inequality:

D(varf1 + varf2 , var0f1 + var0f2) =W (∣E(varf1) −E(varf2)∣)

≤W (∣E(varf1)∣) +W (∣E(varf2)∣)

Ô⇒ ew =W (∣E(varf1)∣) +W (∣E(varf2)∣) ≥W (∣E(varf)∣).

Theorem 2. In any program state Πf [t] of Pfaulted with Πw(Πf [t]) fulfilling
all assumed conditions, the error of a variable JΠf [t] ∣ E(varf)K has at most the
arithmetic weight stored in the corresponding error weight variable ew, JΠf [t] ∣

E(varf)K ≤ JΠw(Πf [t]) ∣ ewK.

Proof. Every execution trace πf starts with the same vertex πf [0] = v0f , where
no errors could have been injected yet; Therefor it is correct to assume that all
variable’s error weight are 0.

Suppose all error weights in every program state Πw(Πf [i]) with i < t are
correct. ∀i < t.∀varf JΠf [i] ∣ E(varf)K ≤ JΠw(Πf [i]) ∣ ewK. We can show that
after any further step with πf [t + 1] = vf , the variable modified by λf(vf) has
an error weight JΠf [t + 1] ∣ E(varf)K ≤ JΠw(Πf [t + 1]) ∣ ewK:

The statement λf(vf) can be either an arithmetic statement, an control-
flow directive or an error injection. Theorem 1 proves, that this property is
fulfilled for every statement λf(vf) ∈ Sarith. In contrast to that, control-flow
directives do not modify the error weights directly. As long as the execution
follows the same path through the program ∀tΠf [t] = w(Πf [t]), the control-
flow directives will not influence any error weights. Finally, given Definition 15
defines that all ∀Evi ∶ W (∣JΠf [0] ∣ Evi K∣) = JΠw(Πf [0]) ∣ W v

i K. This guarantees
that JΠf [t + 1] ∣ E(varf)K ≤ JΠw(Πf [t + 1]) ∣ ewK.

This shows, that the weight of the error on all variables remains smaller or
equal the value of the corresponding weight variables.

Theorem 3 (Transformation of Checks). Every passed check(varf ) either
implies an violation of the assertion assert(ew < dmin), or that E(varf) = 0.

Proof. There are three cases for the execution of every check:
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1. 0 <W (∣E(varf)∣) < dmin In this case, the check is not passed and the execu-
tion is aborted. No further error masking can occur.

2. W (∣E(varf)∣) ≥ dmin If the error weight exceeds the minimum arithmetic
distance, Theorem 2 proves that ew ≥ W (∣E(varf)∣), and the assertion
assert(ew < dmin) is violated.

3. varf = 0 The only remaining case is the error free case, which can be assumed,
once the robustness assertion has been passed.

Theorem 4. Given a program Pweights containing loops, where all error weights
are injected in the first iteration, and a program P ′weights abstracting the same
program P , with all error weight injections distributed over all infinite loop iter-
ations, it is always true that if Pweights is correct, then P ′weights also is correct.

Proof. The value of an error weight counter in a program state Πw[t] can
be represented as the sum of multiple error weight injections. JΠw[t] ∣ ewK =

∑
∞

j=0 k
v
i [j]W

v
i [j], where the factor kvi indicates the number of times the injected

error weight has accumulated in an error weight counter, and W v
i [j] is the error

weight injected in loop iteration j. In the case of Pweights, W
v
i [0] = W v

i and
∀j > 0 ∶ W v

i [j] = 0, while all W v
i [j] of P ′weights are smaller or equal those of

Pweights. Furthermore, ∀j > 0 ∶ kvi [0] = 0 ∨ kvi [0] > k
v
i [j], therefore, the only way

that JΠw[t] ∣ ewK < JΠ ′w[t] ∣ ewK can be achieved is, if ew is overwritten after
injecting W v

i [0] (kvi [0] = 0), and j is the current loop iteration. However, in the
next loop iteration, this error weight will be overwritten again (kvi [j] = 0). The
maximum value during the first loop iteration will never be exceeded.

Theorem 5 (Correctness of Pweights). If Pweights is correct, Pfaults is correct
and P is robust against error masking.

Proof. Assume Pfaulted is incorrect. Let Πf [k] be the last execution state of
a program run violating the correctness of Pfaulted, and varret be the returned
value. A program run Πf can violate the correctness condition in two ways: (1),
the return value is a faulted code word JΠf [k] ∣ varretK ≠ JΠ0

f [k] ∣ varretK, with
its error weight undetectable JΠf [k] ∣W (∣E(varret)∣)K ≥ dmin, or (2), an invalid
path through the program is taken.

In case (1), Theorem 2 provides a proof, that JΠf [k],EvarretK > dmin Ô⇒

JΠw(Πf [k]) ∣ ewretK. Therefore, at least the last assertion in Pweights is violated
and Pweights is incorrect.

Case (2) can only be caused, if the execution of a statement of the form if

(cond) goto v1f else goto v2f continues with the wrong branch. An appropriate
branch protection mechanism will abort execution as long as it detects any fault
in either the compared operands or in the comparison result. This leaves the
remaining situations where (2) is possible, as those, where a fault on the com-
parison operands contains a masked error. However, Theorem 2 proves that the
assertions in Pweights detect this case as well, and therefore Pweights is incorrect
in this case, too.

This shows, that any violation of Pfaulted will always result in a violation of
Pweights, and Pweights correct Ô⇒ Pfaulted correct.
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Theorem 6 (Decidability). The correctness of every error counting program
Pweights is decidable, even in the case of an extended version with recursive func-
tion calls.

Every possible value range of the error counting variables is limited by the
constant dmin. After all modifications of all error counting variables, the model
checker evaluates the correctness assertions and returns a counterexample in
the case of a violation. Therefore, in every program Pweights no variable value
ever exceeds 2 ⋅ (dmin − 1). The domain of all variables is finite. Therefore, the
resulting programs are effectively Boolean programs and the problem is reducible
to solving a Boolean program. According to Ball and Rajamani [2] Boolean
programs are equivalent to push-down automatons and therefore decidable [8].

7 Evaluation

The former sections described our method to verify the error masking robustness
of encoded programs. Using this technique, we were able to identify real error
masking vulnerabilities of real world, security relevant algorithms.

Our set of algorithms under verification contains (among others) the following
algorithms, which we want to describe in further detail: (1) Fibonacci Number
Generator, (2) Euclidean Algorithm, (3) Extended Euclidean Algorithm, (4)
Square & Multiply Exponentiation Algorithm and (5) Exponentiation in Zn.

All of these iterative algorithms can be expressed in our toy language, with
multiplication, division and modulo replaced by repeated addition and all func-
tion calls inlined. For further details on the algorithms, we refer to [19].

In our experiments, we used algorithms in the form of C source code, compiled
them to LLVM bitcode, and generated the weight counting programs using a
tool based on the LLVM compiler framework. Afterwards, we evaluated both
a check-less and a version containing correctly placed checks using the model
checker CPAChecker [6]. Table 1 shows the verification time given different fault
specifications. As configuration, we choose an iterative bounded model checking
approach, where the loop bound is incremented if no error was found up to a
limit of 5 loop iterations. This allowed us to calculate the exact loop bound where
error masking occurs for the given specification. If the result is still unsound
after a bounded model checking with an unroll bound of 5, we run a predicate
analysis [5] algorithm to conclude the evaluation. Table 1 shows the verification
time of the first algorithm with a sound result, on a machine with up to 16
threads running in parallel.

As Table 1 shows, the complexity of the evaluation depends less on the num-
ber of injected bit flips, but more on the number of loop iterations necessary until
error masking occurs, as well as the complexity (number and depth of nested
loops) of P . Especially in the case of the last fault specification, dmin was greater
than three times the maximum injectable error weight. In practise such a ratio
and therefore this problem is quite unlikely, because a high dmin is costly (more
redundant bits are necessary) and will not be choosen as protection against the
injection of a way smaller number of bit flips.



Small Faults Grow Up 19

Therefore, more iterations were necessary to detect error masking and the
verification task was more difficult. More details about the programs under test
can be found in Table 2.

without checks with correct checks
dmin FaultSpec Program Ver. Time Iter. Robust? Ver. Time Robust?

2 ∑W v
i ≤ 1

(1) Fibonacci 1 s 2 7 1 s 3

(2) Euclid 1 s - 3 - -
(3) Extended Euclid 8 s 2 7 241 s 3

(4) Square & Multiply 16 s 2 7 152 s 3

(5) Exp in Zn 53 s 2 7 43 s 3

20 ∑W v
i ≤ 10

(1) Fibonacci 1 s 2 7 1 s 3

(2) Euclid 1 s - 3 - -
(3) Extended Euclid 11 s 2 7 271 s 3

(4) Square & Multiply 11 s 2 7 159 s 3

(5) Exp in Zn 48 s 2 7 43 s 3

300 ∑W v
i ≤ 100

(1) Fibonacci 1 s 3 7 1 s 3

(2) Euclid 1 s - 3 - -
(3) Extended Euclid 70 s 3 7 1497 s 3

(4) Square & Multiply 161 s 3 7 547 s 3

(5) Exp in Zn t/o (1800 s) ? ? 28 s 3

40 ∑W v
i ≤ 10

(1) Fibonacci 2 s 4 7 1 s 3

(2) Euclid 1 s - 3 - -
(3) Extended Euclid 1528 s 4 7 t/o (1800 s) ?
(4) Square & Multiply 1043 s 3 7 561 s 3

(5) Exp in Zn t/o (1800 s) ? ? 28 s 3

Table 1. Verification Times for Different Fault Specifications.

Program # Checks P # Instr. P # W v
i in Pweights # Instr. Pweights

(1) Fibonacci 1 70 12 219
(2) Euclid 0 68 11 186
(3) Extended Euclid 5 162 61 943
(4) Square & Multiply 2 136 51 765
(5) Exp in Zn 2 211 78 1126

Table 2. Comparison of Evaluated Programs.

As the results show, the complexity of the verification depends less on the
number of injected bit flips, than on the complexity of the programs. The high
number of bit flips is possible through abstracting the concrete variable values
away and comes with advantages and drawbacks alike. The next section further
discusses these challenges and gives ideas for future work.
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8 Discussion and Future Work

Our technique to prove the absence of error masking brings along advantages
but also holds potential for future work. Most important is the fact, that we
evaluate abstraction of the original program. There are two main drawbacks of
this: (1) Not every error with an arithmetic weight ≥ dmin automatically allows
to form a new valid code word, this also depends on the actual encoded data.
(2) Due to the discarded branch conditions, we might report spurious errors on
infeasible paths through the program.

Nevertheless, there are important reasons and advantages of this decision:
First, the abstraction gives us independence of the program argument’s values.
Therefore the search space for variable values is way smaller. Second, by storing
the weights instead of the exact errors, the model checker does not need to
calculate any arithmetic weight. This significantly reduces the complexity of
the verification problem. Furthermore, the abstraction of the branch condition
reduces the length of the path conditions and the algorithm Predicate Analysis
solves the tasks independently of loop iterations. All these advantages help to
decrease the verification effort.

However, this method just builds one step towards complete verification of
robustness against injected faults. Both, the language and the fault model can
be further extended. Including pointers and support for other encoding schemes
(e.g. linear codes) may introduce new challenges and poses an interesting problem
for the future.

9 Conclusion

In this article, we presented a novel method to verify the robustness against er-
ror masking of arithmetically encoded programs. This property guarantees that
all faults according to the predefined fault model are detectable. The described
technique applies formal methods to either prove the absence of error mask-
ing or calculate a counterexample. We provided a proof for the correctness of
our approach and evaluated it using the model checker CPAChecker. Finally,
a demonstration based on a real-world example multiplication algorithm shows
the feasibility of our method.
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tomotive - Safety & Security 2017 - Sicherheit und Zuverlässigkeit für automobile
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