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Abstract. The efficient protection of security critical

devices against side-channel analysis attacks is a funda-

mental need in the age of Internet of Things and ubiq-

uitous computing. In this work, we introduce a config-

urable hardware design of KECCAK (SHA-3) which can

be tailored to fulfill the needs of a wide range of different

applications. Our KECCAK design is therefore equipped

with generic side-channel protection capabilities. The

design can thus be synthesized for any desired protec-

tion level by just changing one design parameter.

Regardless of its generic appearance, the introduced

KECCAK design yields the smallest (15.7 kGE) first-

order protected KECCAK implementation published to

this date. Furthermore, it is to the best of our knowledge

the first higher-order side-channel resistant implementa-

tion of KECCAK. In total, we state results for four differ-

ent KECCAK variants up to the ninth protection order.

Keywords: Keccak, SHA-3, masking, domain-oriented

masking, threshold implementations, DPA

1 Introduction

The resistance to side-channel analysis (SCA) attacks is a very

important requirement for many security-critical devices. If no

appropriate countermeasures are implemented, an attacker can

easily reconstruct sensitive data from physical observations like

the power consumption [15] or the electromagnetic emana-

tion [19].

Masking has proven to be a very effective countermeasure

against SCA and was extensively researched over the last fifteen

years [11, 14, 22]. Many of the earlier schemes were shown to

be insecure for hardware implementations, because signal prop-

agation effects (glitches) were not considered in their construc-

tion. The first scheme that achieved first-order security under con-

sideration of glitches is the so-called threshold implementation

scheme (TI) by Nikova et al. [16]. This work has been extended

to achieve higher-order security in the univariate setting by Bil-

gin et al. [4]. Reparaz et al. [20] extended this approach to achieve

security in the multivariate setting, and lowered the sharing com-

plexity by requiring only d+1 input shares for a dth-order secure

circuit. Gross et al. [12] demonstrated that the randomness cost

for d+1 TI can be lowered from (d+1)2 to d(d+1)/2 by using

a domain-oriented masking (DOM) approach.

However, fitting masked hardware implementations to the re-

quirements of specific applications is a difficult task that often

requires extensive redesigning effort when a design needs to be

adapted to meet the given constraints.

Our contribution. In this work, we introduce a very versatile

KECCAK design, that can be configured to fit many different

use cases and requirements, from high-throughput to small-area

applications. In addition, our KECCAK design can be fully cus-

tomized in terms of SCA protection to meet the desired level of

security. Therefore, we built upon the work of Gross et al. [13]

that introduced a generic DOM AES implementation which al-

lows synthesis for arbitrary protection orders.

To increase the efficiency of the protected implementation, we

investigate different optimizations for our design and evaluate

their impact. As a result, our smallest first-order protected KEC-

CAK variant requires only 15.7 kGE of chip area.

It is thus the smallest and least randomness demanding SCA

protected KECCAK implementation that has been reported to this

date. We demonstrate the genericity of our design by stating re-

sults of four variants of our KECCAK design up to the ninth pro-

tection order. The source-code of our design is published online

to make our results reproducible and better accessible for future

research [21]. We round off our contribution with a side-channel

evaluation of our protected designs based on a Welch’s t-test [10].

This paper is organized as follows: In Section 2 we discuss the

basic structure of KECCAK . In Section 3 we give a brief overview

of the used DOM scheme. Section 4 introduces optimizations that

help to reduce the chip-area and randomness overhead of our im-

plementations. In Section 5 we describe our implementation and

compare it to existing ones in Section 6. In Section 7 we evaluate

the side-channel resistance of our implemented designs. Section

8 concludes the paper.

2 KECCAK

KECCAK is a family of sponge functions, from which several in-

stantiations have been standardized by NIST as SHA-3, SHAKE

and KECCAK-p in [17], as a result from the SHA-3 hash com-

petition. The SHA-3 specification describes four different instan-

tiations of the KECCAK-f [1600] hash function. The KECCAK

family [17] consists of seven permutations KECCAK-f [b], for

b ∈ {25, 50, 100, 200, 400, 800, 1600}, where b denotes the width

of the permutation. These permutations are organized in a sponge

construction, which also allows to express the KECCAK permu-

tation in terms of rate r and capacity c as KECCAK [r,c], for

b = r + c. The rate in the sponge construction corresponds to

the block size and can be a multiple of a lane size, while its ca-

pacity determines the security level as c/2.

Although the seven permutations of KECCAK-f [b] have differ-

ent permutation widths, their underlying round function is always

the same. A full round of KECCAK consists of the five steps θ, ρ,

π, χ and ι, which operate on the three-dimensional state in this

order. A full permutation is defined as the repeated application of

these five steps.



– θ is a linear diffusion step. It calculates the parity of each

column in a slice and adds it to a neighboring column in the

same and the next higher slice.

– ρ and π are also linear diffusion steps, most often imple-

mented directly by wiring in a hardware implementation.

– χ is a degree-2 non-linear mapping. It operates on each row

of the state independently and is implemented as xi ← xi +
(xi+1 + 1)xi+2.

– ι is a simple addition of a round constant to a lane.

3 Domain-Oriented Masking

The basic idea of masking is to make the power consumption of

a hardware implementation independent from the processed data

in order to mitigate side-channel analysis attacks. Therefore, the

sensitive data is first split into a number of so-called shares which

we denote by capital letters with the name of the shared variable

in the index. Accordingly, a variable a is split into to a bundle of

shares named Aa, Ba, Ca, et cetera, which are picked uniformly

at random. There exist an additive relation over GF (2n) between

these shares so that a = Aa + Ba + Ca + . . . is always valid.

The resistance against side-channel analysis is then achieved by

keeping these shares separated throughout the whole circuit.

For the domain-oriented masking approach (DOM) [12] this

independence is achieved by splitting the circuit into d + 1 sub-

circuits called share domains (where d is the so-called protection

order). Each share of a circuit variable is then associated with one

specific domain indicated by the leading capital letter of the share.

The share Aa, e.g. , is associated with domain A, the share Ba ac-

cordingly with domain B. By keeping these domains independent

from the other domains, the data dependency of the overall power

consumption is shifted to a higher statistical moment. As it was

shown by Chari et al. [6], by shifting the leakage into a higher sta-

tistical moment, a successful attack requires exponentially more

leakage traces in relation to d which significantly hardens power-

analysis attacks. While a correct implementation of functions that

are linear over GF (2n) can be trivially implemented for each do-

main separately by keeping the shares in their respective domains,

non-linear functions require the secure exchange of information

between the domains. To still fulfill the independence require-

ment at all points in time, the introduction of fresh randomness is

sometimes required.

First-Order Protection. Figure 1 shows a first-order protected

example for a non-linear GF multiplier (calculating q = ab in

shared form) which corresponds in the case of GF (2) to a masked

one-bit AND gate. This masked multiplier is a fundamental build-

ing block in DOM and for our KECCAK implementation. The

depicted DOM multiplier uses two domains A and B, and is first-

order secure for two independent input sharings of the variables

a and b. The sharings are provided by the shares Aa and Ba, and

Ab and Bb, respectively. At all times the equation a = Aa + Ba

and b = Ab +Bb must be ensured.

The equations implemented by the multiplier are shown in

Equation 1 where the parentheses indicate registers. The fresh

random share Z (respectively Ac and Bc, for the optimization

explained in Section 4) is required to keep independence for the

multiplication terms that source different domains (red parts of

Fig. 1: First-order multiplier calculating q = ab, and with ran-

domness optimization for q = ab+ c calculation (grey)

the circuit). By adding Z to the cross-domain signals, these sig-

nals are made independent again from all other shares. The con-

nected register ensures that the Z share is added before the inte-

gration of the cross-domain signal is performed and so prevents

glitches.

Aq = AaAb + (AaBb + Z)

Bq = BaBb + (BaAb + Z)
(1)

Differences to MPC. Please note, even though the similarities

between masking and multi-party computation (MPC) are evi-

dent, their assumptions at some point are different. For example,

in MPC the assumption is that an attacker has only access to some

domains (up to a certain threshold) but inside these domains, the

attacker has access to all variables. In this sense the multiplier in

Figure 1 would be automatically flawed because all shares of b are

used for the calculation of Aq and Bq . In the probing model [14]

which is commonly used to formalize the security of masking, the

security is argued over the number of probing needles an attacker

requires to gain information on an unshared security-critical vari-

able. Probing a certain gate or wire thus only reveals the infor-

mation going in or out of the gate or the information on the wire.

The masked multiplier is secure because at no point during the

computation an attacker can get information on all shares of a, b,
or q by using d (= 1 for first-order masking) probes.

Higher-Order Protection. The construction of the secure GF
multiplier can be generalized to arbitrary protection orders [12]

as shown in Equation 2. Therefore, the domains are first enumer-

ated by A → 0, B → 1, C → 2, . . . using the indexes i or

j, respectively. The equation then states the domain function Qi

where 0 ≤ i ≤ d and Q0 → Aq , Q1 → Bq , Q2 → Cq , et cetera.

The variable ti,j refers to multiplication terms in which i is used

to address shares of the variable a and j as index of shares of the

variable b. The term t0,0, for example, is the multiplication term

AaAb, and t1,2 is the term BaCb.

Qi = ti,i+
d∑

j>i

(ti,j + Z(i+j∗(j−1)/2))+
d∑

j<i

(ti,j + Z(j+i∗(i−1)/2))

(2)
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Fig. 2: First-order protected S-box of KECCAK with the DOM

multiplier from Figure 1

The first term ti,i is a so-called inner-domain term which is as-

sociated with the ith domain. Inner-domain terms do not require

a fresh random Z share in DOM because, similar to linear func-

tions, here the shares are kept in the same domain. For the ti,j
cross-domain terms used inside the sums, a fresh random Z bit

is required before the integration into the targeted domain can be

performed. Splitting of the sums is required for the correct and

secure distribution of the Z shares. In this way it is ensured that

the term ti,j is masked by the same fresh random Z share as the

mirrored term tj,i which is used in another domain.

This generic multiplier construction allows to design generi-

cally masked hardware implementations that are secure for any

given parameter d. The area requirements of the generic multi-

plier increases quadratically with the protection order d and the

randomness costs are given as d(d+1)/2. This secure multiplier

design is the basis for the construction of our KECCAK designs.

4 Optimizations

In order to make our protected KECCAK implementation more ef-

ficient, we introduce different optimizations to decrease the over-

head in terms of area, delay, and required randomness.

Randomness Optimization. DOM was intended for the efficient

and generic higher-order protection of hardware designs. This

genericity, however, leads to an unnecessary overhead in terms

of fresh randomness for first-order protection of some S-box con-

structions. In particular, this affects S-boxes of the form ab + c
which is the case e.g. in the S-box of KECCAK , Present [5],

Noekeon [9], and LowMC [1] .

The 5-bit KECCAK S-box is given as xi+(xi+1+1)xi+2 which

is of the form ab+ c. In a first order DOM protected KECCAK S-

box (see Figure 2), the straightforward implementation requires

5 bit of randomness for each S-box to calculate xi+1xi+2. How-

ever, the shares of xi are independent from the ones of xi+1 and

xi+2 and thus the shares of xi fulfill the same property as a fresh

random Z share. Instead of adding Z to the cross-domain terms

in both domains, we instead add the shares associated with xi as

Ac and Bc to these cross-domain terms in their respective domain

(see Figure 1).

Saving randomness by reusing unrelated state bits has already

been reported for first-order threshold implementations by Bil-

gin et al. [3] and more recently by Daemen et al. [7]. The differ-

ence is that Daemen’s changing-of-the-guards approach performs

an explicit resharing at the end of the S-box function for two out

of five S-box bits, which requires additional XOR gates, while

instead we perform this implicitly.

While the probing security of the construction in Figure 1 is

trivially given under the assumption that the sharings of the in-

put bits (a, b, and c) are independent, the security argumentation

gets more difficult when the rest of the KECCAK transformations

and the full S-box implementation is considered. Indeed the uni-

formity of the state bits and therefore their suitability for mask-

ing other operations degenerates over the rounds of KECCAK as

stated by Daemen. As this effect is considered to be minimal by

Daemen [8] and therefore unpractical to exploit, we still consider

it as a valid option in our design. However, we note that, for-

mally speaking, this optimization leads to a flaw in the probing

assumption. Using this optimization requires careful investiga-

tion of the degeneration effect for the targeted design or usage of

the changing-of-the-guards method from Daemen [7]. Thus we

made the usage of this optimization optional for our first-order

KECCAK instantiation.

Throughput and Area Optimization. The DOM multiplier al-

ways introduces a delay cycle through the resharing of the cross-

domain terms. To make this calculation more efficient, another

register could be added in the inner-domain paths of the multiplier

to generate a pipeline stage (grey dotted registers in Figure 1).

However, this has a negative influence on the required chip area

if many S-box instances are used in parallel. We circumvent the

additional register by clocking the cross-domain flip-flops on the

negative clock edge, which effectively means doubling the clock

frequency for the S-box. We investigate the effectiveness of this

approach in Section 6 and investigate its influence on the maxi-

mum throughput. Furthermore, we note that this optimization is

only a meaningful option if the critical path in the S-box is rel-

atively small compared to the other circuit parts, or the overall

clock frequency of the chip is somewhat already constraint. Oth-

erwise this optimization might have a negative influence on the

layout of the design to meet the clock constraints.

5 Implementation

Our generic KECCAK implementation allows to be customized

for a variety of requirements for different security critical applica-

tions. In the following, all possible configurations of the KECCAK

design are explained, and the main variants which are considered

in Section 6 are introduced.

A very high level architectural view of the design is shown in

Figure 3. It is important to note, that each mapping is either con-

nected to the next one directly or to the sponge state. The con-

figuration of the connection is done at synthesis time. Hence the

connection between the steps, respectively between a mapping

and the sponge state, is done by simple wiring. Everything from

a fully parallel implementation, in which all five steps are done

in one clock cycle, to a fully iterative one, in which the output of

each step is written back into the state, can be instantiated. For

example when omitting the gray connections shown in Figure 3,
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the SERIAL-AREA configuration, which is described later in this

Section, is obtained.

Iterative Application of Functions. The design allows to ap-

ply the individual round transformation steps in an iterative way,

which takes either multiple cycles, but can also be performed in a

single clock cycle. In case a step is handled iteratively it will act

on a specified number of state slices (in powers of two) in parallel.

This means that the state can be thought of as a number of FIFOs.

The FIFO’s output form the input of the iteratively applied step,

and the output of the step gets either piped into the input of the

following step (which would in turn need to be iterative), or back

to the FIFO. The specified number of parallel slices is used for all

iterative steps (except for an iterative ρ/π step which is explained

further down). This simplifies the design by allowing to chain the

slice-based iterative χ, ι, θ and absorption steps together.

The iterative version of the steps looks as follows.

– In θ, one output slice depends on the parity of a previously

processed slice’s columns. This can simply be handled by

storing the parity of the highest processed slice of the previ-

ous cycle. This works for every but the first slice, which can

only be finished once we look at the last slice. Thus the first

slice is a special case and is finished together with the last

one.

– An iterative ρ step means that each lane gets rotated until the

desired offset is reached. This does imply some control over-

head, but allows to save most of the multiplexers which are

needed when π ◦ ρ is performed in one cycle, which requires

the full state to be written at once.

– The π mapping is then applied together with χ, which works

out nicely, since both are slice based functions and π is im-

plemented by simple wiring.

– The iterative ι step is simply done by only adding the relevant

part of the round constant. In our implementation ι is always

done concurrently with the S-box function χ.

It is also possible to choose the lane length freely, which

means, that any KECCAK-f [b] variant can be instantiated.

Absorption. A concrete instantiation of our design can perform

the absorption either in a lane-based or a slice-based fashion. In

case of a slice-based absorption, the absorbed slice(s) can be di-

rectly fed into an iterative θ step, which saves cycles that other-

wise would be wasted solely for absorption. In the case of a lane-

based absorption such optimizations are not possible. However,

lane-based absorption often fits much more naturally with how

data is processed and sent over buses, hence possibly saving area

or increasing overall performance, depending on the concrete sys-

tem. To avoid having to include additional buffers in case of sys-

tems with bus widths unequal to the lane length, it is possible to

adjust the number of bits absorbed in a single cycle (in powers of

two). This means, that it is possible to absorb more than one lane

at once, or only a fraction of a lane, as long as the word to absorb

is a power of two, depending on the configuration.

Concrete instantiations. Since the number configurations which

are possible with this approach is huge, we focus on three corner

cases.

Fig. 3: Simplified architecture of our implementation.

– SERIAL-TP All steps except ρ and π are performed itera-

tively. The absorption is done in a slice-based manner, in

parallel with the θ step in the first round. ρ and π are done

in a separate step. The χ and ι steps are chained together

with the absorption XORs and the θ step. Thus the process-

ing of a block takes r( W
SP + 1) cycles, where W is the lane

length, SP are the number of parallel processed slices and r
the number of rounds. This implementation is similar to the

one described by Bilgin et al. [3] but performs π ◦ ρ in a

dedicated cycle instead of concurrently with the last cycle of

θ.

– SERIAL-AREA This variant is similar to SERIAL-TP but ev-

ery step is done iteratively (including ρ and π). In the itera-

tive ρ step, each lane gets rotated until a counter exceeds the

rotation offset of that lane, hence this step now takes W cy-

cles to complete. This saves most of the multiplexers which

are needed when π ◦ ρ is performed in one cycle, because

not the full state needs to be updated at once. This simple

modification yields the smallest register-based implementa-

tion of KECCAK to date. As a trade-off, throughput is de-

creased, compared to SERIAL-TP, since ρ now takes W cy-

cles to complete.

– PARALLEL A fully parallel implementation. ι ◦ χ ◦ π ◦ ρ ◦ θ
is done in one cycle. Such a configuration yields the highest

throughput but on the other hand requires 5 ·2l 5-bit S-boxes.

S-Box Variants. For the any of the previously described config-

urations, we further instantiated two different variants, that differ

in the implementation of the S-Box in the χ step.

– Pipelined DOM variant. In this variant we use additional

inner-domain flip-flops together with the cross-domain flip-

flops as a pipeline stage for the multiplier in Figure 1.

– Double clocked DOM variant. Here we try to keep the area

overhead of DOM minimal by saving the inner-domain flip-

flops and clocking the cross-domain flip-flops on the negative

clock edge as described in Section 4.

Both S-box variants use the optional optimization to reduce ran-

domness in the first-order case, as described in Section 4. For

the SERIAL configurations the overhead of the inner-domain flip-

flops is negligible when only one slice is processed in parallel.

Thus only the pipelined S-box variant is shown in the results for

these instantiations.
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Area Estimation. For the protected implementations, the linear

parts (except for the inverts) need to be replicated for each ad-

ditional domain. Hence the linear θ, ρ, π mappings, as well as

the state itself are expected to scale linearly with the number of

shares (d + 1). For the non-linear χ step, a more detailed look at

the S-Box is required. An unprotected S-Box consists of 5 AND,

5 NOT and 5 XOR gates as can be obtained when only looking at

domain A (black parts) in Figure 2 and replacing the DOM AND

instances by normal AND gates. An estimation for the scaling of

the χ step can be given by looking at the generic construction

of the DOM AND gate in Equation 2, and replicating the XOR

gates for each share, as illustrated in Figure 2 for two shares.

Generally speaking, for d + 1 shares, the combinatorial part of

the S-Box consists of 5(d + 1)2 AND gates, 5 NOT gates and

5(d + 1) + 5(d + 1)2 XOR gates. Simplifying this by looking

only at the DOM AND gate ((d+ 1)2 ANDs and XORs), we can

estimate the combinatorial part to increase with a factor (d+1)2.

The number of flip-flops in the χ step depends on whether the

implementation is pipelined (uses the inner-domain flip-flops) or

not. The pipelined variant requires (d+1)2 flip-flops, the variant

without inner-domain flip-flops requires d(d+ 1).

6 Results

The synthesis results are obtained with the configurations de-

scribed in Section 5. We apply the configurations to the KECCAK

[1088,512] permutation, since it is a SHA3 standard, and allows

comparisons with other publications. All values have been ob-

tained by synthesizing the design with Cadence RTL Compiler

version 8.1 XL. We used the FSC0H D and FSD0A A libraries

from FARADAY for the 130 nm and 90 nm designs respectively.

The numbers given in plots correspond to designs synthesized

with the 130 nm library.

A detailed look at the synthesis results, up to second protec-

tion order, is given in Table 1. The KECCAK team itself were the

first to provide a first-order protected KECCAK threshold imple-

mentation with three shares [2]. The implementation was later on

improved by Bilgin et al. [3] resulting in the smallest register-

based1 protected and unprotected KECCAK designs reported up

to now.

Area Requirements. The SERIAL configurations in Table 1 show

the resulting numbers when processing a single slice per cycle.

This allows to directly compare our serial designs with the one of

Bilgin et al. [3], which also processes one slice per cycle. Their

unprotected design has a size of just 10.6 kGE for their serial

implementation while our unprotected variants use 11 kGE in

case of SERIAL-TP, and 9.2 kGE in the SERIAL-AREA imple-

mentation for the cost of a doubled cycle count. This makes our

SERIAL-AREA configuration the smallest register-based KEC-

CAK implementation reported so far.

When looking at the SERIAL configurations’ increase in size

between unprotected (11.0/9.2 kGE), first order (22.3/18.7 kGE)

and second order (34.6/28.8 kGE) protected SERIAL designs in

Table 1, it can be seen that all linear parts grow linearly with the

protection order as expected. This is also illustrated in Figure 4,

1 The smallest design this far is achieved by the usage of RAM macros

and needs significantly more cycles per block [18].

Fig. 4: Area requirement for increasing number of share domains.

SERIAL with 1 slice processed in parallel with pipelined S-box

which shows that the area requirement increases almost linearly

with the protection order for the SERIAL designs. The only non-

linear part of the design is the χ step, which only operates on one

slice in the SERIAL configurations as shown in Table 1, and thus

the χ transformation has only a marginal influence on the overall

size.

For the PARALLEL configurations, the linear parts of the design

grow linearly with the protection order as well. The non-linear χ
step now operates on the full state, hence 64 · 5 5-bit S-Boxes are

required, making it the main contributor to the overall area.

As discussed in Section 5, the area of the DOM protected χ
step increases non-linearly with the number of shares. This can

best be observed in the area increase from the unprotected PAR-

ALLEL to the protected PARALLEL configurations. The unpro-

tected χ step (6.4kGE) consists solely of combinatorial logic, a

1600-bit state of small flip-flops is around 8.8kGE (see SERIAL-

AREA in Table 1). Hence, as was discussed in Section 5, a rough

area estimation for the χ step of the parallel KECCAK implemen-

tation with d+ 1 shares would be (d+ 1)2 · (6.4kGE + 8.8kGE)
for the pipelined and (d+ 1)2 · 6.4kGE + d(d+ 1) · 8.8kGE for

the double-clocked variant. In case of a first-order protected im-

plementation this corresponds to 60.8kGE, respectively 43.2kGE,

which is close to the actually achieved results (57.6kGE, resp.

44.0kGE).

Compared to the existing implementations our designs have a

lower area overhead for the same protection order, while achiev-

ing similar throughput, in all configurations. The main reason for

this difference is that related work uses the dt + 1 TI approach

which requires at least three input shares for first-order protection

while our d+1 share implementations require only two shares in

the first-order case.

Throughput Considerations In case higher throughput is desired

it is also possible to increase the number of slices that are pro-

cessed in parallel as mentioned in Section 5. Figure 5 shows how

the area and maximum frequency develop when doing so for the

pipelined SERIAL-TP configuration. Note, that while the area and

maximum frequency for SERIAL-AREA would look similar, the

throughput gain would be lower, due to ρ always taking 64 cycles.

The throughput of the SERIAL-TP configuration doubles if the

number of parallel processed slices doubles. This of course also
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UMC 0.13μm UMC 90nm

Prot. Area (kGE) Freq. Area (kGE) Freq.
order Design θ χ State/Other

∑
(MHz) θ χ State/Other

∑
(MHz) Cycles Rand.

None
PARALLEL 8.6 6.4 16.2 31.2 919.1 7.4 6.0 14.0 27.4 1,287.0 24 -
SERIAL-TP 0.3 0.1 10.6 11.0 866.6 0.2 0.1 9.6 9.9 861.3 1624 -
SERIAL-AREA 0.3 0.1 8.8 9.2 861.3 0.2 0.1 7.4 7.7 900.9 3136 -

1st
order

PARALLEL double clocked 17.2 44.0 33.2 94.3 452.1 1.7 38.4 41.8 81.9 580.0 24 -
PARALLEL pipelined 17.2 57.6 33.2 108.0 851.8 1.6 50.4 41.8 93.9 1,184.8 25 -
SERIAL-TP pipelined 0.6 0.9 20.8 22.3 812.3 0.4 0.8 18.9 20.1 864.3 1648 -
SERIAL-AREA pipelined 0.6 0.9 17.1 18.7 856.2 0.4 0.4 14.5 15.7 850.3 3160 -

2nd
order

PARALLEL double clocked 25.7 138.0 49.3 213.0 450.5 2.5 111.9 62.2 176.7 558.7 24 4800/cycle
PARALLEL pipelined 25.7 157.2 49.3 232.3 804.5 22.2 130.0 42.5 194.8 1,083.4 25 4800/cycle
SERIAL-TP pipelined 1.0 2.5 31.1 34.6 844.6 0.6 2.2 28.1 30.9 845.3 1648 75/cycle
SERIAL-AREA pipelined 0.9 2.5 25.4 28.8 852.5 0.6 2.2 21.4 24.2 898.5 3160 75/cycle

Related Work

None Parallel [3] 8.6 6.4 15.6 30.6 855 - - - - - 24 -
Serial [3] 0.1 0.1 10.4 10.6 752 - - - - - 1600 -

1st
order

Parallel-3sh [3] 25.7 52.8 56.7 135.2 746 - - - - - 25 4/round
Parallel-4sh [3] 34.2 61.6 61.8 157.6 735 - - - - - 24 -
Serial-3sh [3] 0.4 0.8 31.4 32.6 820 - - - - - 1625 4/round
Serial-4sh [3] 0.5 0.9 41 42.4 775 - - - - - 1600 -

Table 1: Synthesis results

doubles the number of needed S-boxes, thus the area increase

with higher protection order becomes less linear. Compared to

the first order protected dt+ 1 TI in Table 1 that needs 32.6 kGE

, the DOM protected counterpart uses just 22.3 kGE.

The highest throughput is achieved with the PARALLEL config-

uration, which needs the full 1600 S-boxes. The area requirement

can be lowered by implementing the double clocking of the S-

box as described in Section 4. As shown in Table 1, the area of

the double clocked S-box variant (81.9 kGE resp. 176.6 kGE) is

noteworthy smaller, than of the pipelined S-box variant (93.9 kGE

resp. 194.8 kGE). Although the maximum frequency takes a hit

when double clocking the S-box, this approach might still be

well suited for applications that are constrained in their maximum

clock frequency.

7 Side-Channel Evaluation

To test our KECCAK implementations’ resistance to side-channel

analysis attacks, a Welch’s t-test is used which is a standard test

for masked hardware implementations (see Goodwill et al. [10]

for details). The t-test basically compares two distributions and

outputs a statistical value t that serves as basis for the decision

whether or not the mean values of the two sets of measurements

are equal. Therefore, two different trace sets A and B are col-

lected, one set of traces for randomly picked inputs and another

one for traces for constant input values. For both sets the sharing

of the inputs is always generated randomly but the value of the

unshared inputs differ. Finally, the t-value for the two sets is cal-

culated according to Equation 3 where the means of the respective

set are indicated by X , the variances are given by S2, and the set

sizes by N . The null-hypothesis is that the mean values of both

sets are equal, which means that random inputs cannot be dis-

tinguished from constant inputs. This equals the requirement for

first-order protection. For second order t-tests, a normalized prod-

uct combining preprocessing step is applied. The null-hypothesis

is rejected if the t-value exceeds the ±4.5 border.

t =
XA −XB√

S2
A

NA
+

S2
B

NB

(3)

Measurement Setup. Originally, t-tests were designed to test the

leakage of a protected (hardware) implementation on its targeted

platform (e.g. a specific FPGA or ASIC design). Since we do not

target any specific platform, and in order to deal with the com-

plexity of higher-order multivariate t-test assessment for multiple

first and higher-order designs, we decided on using leakage traces

from a post-synthesis netlist simulation to generate toggle-count

traces for individual signals. Compared to other practical evalua-

tions, an evaluation based on simulated traces has some clear ben-

efits but also a few drawbacks. While measurements performed

on real devices are highly dependent on environmental and oper-

ating conditions, and thus noisy, post-synthesis simulation traces

are noise free. If there is any exploitable leakage available, the

statistical evidence for this is thus found much faster, with less

leakage traces, and with higher confidence. Additionally it is pos-

sible to focus on the critical parts of an implementation and the

noise caused by irrelevant parts of the circuit may be ignored.

This approach even allows to analyze where a leakage originates

from by performing the described t-test on (combinations of) in-

dividual circuit signals.

Signal timing differences introduced by gates can already be

observed in the post-synthesis netlist simulation and thus many

possible glitches are covered by this approach. Flaws like in the

masked AND gate of the ISW [14] scheme, for example, are de-

tected by this approach. Also possible degeneration effects in our

first-order optimized KECCAK implementation would be recog-

nized with significantly less traces than for an FPGA or ASIC

evaluation, since this effect does not depend on signal timings.

We note that because of the simple delay model used for the post-

synthesis traces, it is possible that a practical evaluation catches

some more glitches then our targeted approach. However, we em-

phasize that a t-test either way can never replace a formal verifi-

cation as it would be required to ensure leakage freeness up to
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Fig. 5: SERIAL-TP: Area and frequency over the number of share domains for different number of parallel processed slices
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Fig. 6: SCA evaluation of the χ step for different attack and protection orders

a certain order for all possible signal timings and under all envi-

ronmental conditions. Since, to the best of our knowledge, there

exist no such formal tools for hardware implementations up to

now, we keep the formal verification as future work and note that

our evaluation is only meant to strengthen the reader’s trust in the

carefulness we put into designing the KECCAK implementations.

Evaluation Target. The χ step of our designs is the most vul-

nerable circuit part since it is the only non-linear step, thus the

only that requires the combination of different share domains. In

order to get reproducible results, we use a seeded PRNG, using

different seeds for the random and constant sets. The mean and

variance are calculated incrementally, to show the evolution of

the t-value for an increasing numbers of traces up to 1 million

noise-free traces.

Since the χ step is considered to be the source of any potential

leakage in the design, we restrict the simulation to the χ step ex-

clusively. This has the advantage, that not only simulation is con-

siderably faster, but we also don’t introduce unnecessary noise

(meaning toggling of uninteresting signals) from the rest of the

system, hence significant t-values should be observable with a

greatly reduced amount of traces.

In order to verify that no implementation errors were made,

which cause leakage somewhere else than the χ step, we addi-

tionally simulated a first-order protected KECCAK-f [25] with and

without the reduced-randomness tweak from Section 4. We ap-

plied constant-shared and random inputs for absorption to this

KECCAK-f [25], as described previously, and let it process the

data for twelve rounds, as is specified for this state size, before

reiterating these steps. No significant t-values could be observed

when performing a first-order t-test on the traces obtained this

way.

Evaluation results. The results of performing first and second-

order t-tests on different protected χ variants with and without the

optimizations described in Section 4 (double-clocking and ran-

domness optimization) are shown in Figure 6. The significance

levels, which are shown in light green, show the t-values at ±4.5
which corresponds to a confidence interval of 99.9995% for re-

jecting the null-hypothesis.

The first-order t-test for the first-order and second-order pro-

tected KECCAK variants do not indicate any leakage as targeted

by our implementation. The second-order t-test for the first-order

protected implementations, on the other hand, exceed the con-
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fidence border even after a few hundred traces. This shows the

correctness of our evaluation setup and the sensitivity of the t-test

in this noise-free setting. Please note, that the number of traces

required to break a masked implementation grows exponentially

with the protection order [6] and also highly depends on the sig-

nal to noise ration of the attacked leakage signal. For a practi-

cal DPA attack, an attacker would thus require significantly more

measurements to exploit this second-order leakage than indicated

by this t-test results on noise-free leakage traces. As expected, the

second-order leakage disappears for the second-order protected

variant.

Furthermore, it can be seen that our optimizations do not affect

the protection level in a negative way.

8 Conclusions

In this work, we introduced a generic side-channel protected

KECCAK design which allows to be customized to fit many dif-

ferent requirements from low area to high throughput. The design

thus suits a wide range of security critical applications. Without

touching the hardware design itself but only its configuration, all

different kinds of KECCAK and SHA-3 variants can be synthe-

sized for any desired order of side-channel protection (see [21]

for the Verilog sources).

We furthermore investigated and evaluated different possibili-

ties to lower the overhead introduced through masking in terms of

area, throughput, and required randomness. As an outcome, our

design yields the smallest and least randomness demanding pro-

tected KECCAK implementations at any protection level reported

to this date.
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