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Abstract— Simultaneous Localization and Mapping is a key
requirement for many practical applications in robotics. In
this work, we present RESLAM, a novel edge-based SLAM
system for RGBD sensors. Due to their sparse representa-
tion, larger convergence basin and stability under illumination
changes, edges are a promising alternative to feature-based or
other direct approaches. We build a complete SLAM pipeline
with camera pose estimation, sliding window optimization,
loop closure and relocalisation capabilities that utilizes edges
throughout all steps. In our system, we additionally refine the
initial depth from the sensor, the camera poses and the camera
intrinsics in a sliding window to increase accuracy. Further,
we introduce an edge-based verification for loop closures that
can also be applied for relocalisation. We evaluate RESLAM
on wide variety of benchmark datasets that include difficult
scenes and camera motions and also present qualitative results.
We show that this novel edge-based SLAM system performs
comparable to state-of-the-art methods, while running in real-
time on a CPU. RESLAM is available as open-source software1.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) [1] has
been a very active research area due to its many applications
such as autonomous driving, navigation, 3D reconstruction,
augmented and virtual reality. SLAM is the task of creating
a map of an unknown environment while simultaneously
estimating the egomotion of an agent within this map. In
contrast, visual odometry (VO) methods that estimate only
the egomotion of an agent with respect to N previous
keyframes without keeping a global map, typically suffer
from drift, i.e. the difference between the estimated and the
real trajectory. A global map offers the capabilities to correct
drift by detecting previously visited places and performing
loop closure.

Monocular SLAM systems [2], [3] suffer from various
limitations since depth is not observable from just one
camera. In such systems, the scale of map and trajectory
is unknown, scale drift can occur, initialization to get an
initial depth estimate is difficult and camera motion esti-
mation fails under pure rotations. Many of these limitations
can be addressed by RGBD sensors such as the Microsoft
Kinect, the Orbbec Astra Pro or Intel’s RealSense that can
simultaneously record a scene’s texture as RGB image and
its geometry as depth map.

RGBD SLAM systems can be divided into two main cate-
gories. (i) Feature-based methods that extract and match fea-
tures, thereby discarding most of the image information [4],
[5]. (ii) Direct methods that do not rely on correspondence
computation but are based on photometric and/or geometric
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Fig. 1. RESLAM is an edge-based SLAM system for RGBD sensors
that comprises a sliding window optimization, loop closure and offers
relocalisation capabilities.

error [6], [7], [8], [9]. Recently, a new class of direct VO
methods that rely on edge alignment has emerged [10], [11],
[12]. While these edge-based VO systems show promising
results, no full SLAM system that includes loop closure and
relocalisation exists.

In this work, we present RESLAM, a complete SLAM
pipeline that utilizes edges throughout the whole process,
while running in real-time on a CPU. The main contributions
of this work are the following:
• An edge-based SLAM system that comprises trajectory

estimation, loop closure and relocalisation.
• A local sliding window optimization over several

keyframes to refine the depth of each edge, the camera
calibration parameters and the camera poses.

• We extensively evaluate on a wide variety of benchmark
datasets and also show qualitative results.

• A fast SLAM system that runs in real-time on a CPU.
• RESLAM will be released as open-source1.

II. RELATED WORK

In this section, we focus on the most important publica-
tions in the fields of RGBD VO and SLAM and refer the
reader to [13] for a more thorough overview.

Endres et al. introduced the feature-based RGBD-
SLAM [5] that computes the relative camera motion between

1Code is available: https://github.com/fabianschenk/RESLAM



frames from feature matches and verifies the results by itera-
tive closest point (ICP). The current state-of-the-art feature-
based system ORB-SLAM2 [4] utilizes ORB features for
tracking, mapping and loop closing and also supports stereo
and monocular setups. Known limitations of feature-based
methods are the error-prone matching step that typically
requires a subsequent filter to remove outliers and the often
uneven spatial distribution of the features.

In contrast, direct methods do not require correspondences
but estimate camera motion directly. KinectFusion [14]
uses the depth map to estimate the relative camera mo-
tion and a dense 3D model using ICP but is restricted to
very small workspaces due to the high memory demands.
Kähler et al. [15] proposed a scalable ICP-based SLAM
system that builds a global map from multiple submaps
and performs loop closure and relocalisation. Purely ICP-
based system are error-prone in scenes with little geomet-
ric structure and therefore several systems incorporate an
additional photometric error term into their camera motion
estimation [6], [9], [16]. Kintinuous [16] addresses several
limitations of [14], while the surfel-based ElasticFusion [6]
achieves global consistency through non-rigid deformations
of the map instead of a pose graph optimization. The recent
BundleFusion [9] system performs sparse-then-dense global
pose optimization, where the authors first use SIFT features
for coarse alignment, and subsequently refine the estimate
with a dense alignment. The authors always search through
the whole RGBD history, thereby implicitly closing loops
and also solving the relocalisation challenge. The capabilities
of these systems comes at a high cost as they require a strong
GPU [6], [14], [15], [16] or even two GPUs [9] to run in
real-time.

Since GPUs are expensive, power hungry and difficult to
utilize in mobile robots or UAVs, SLAM systems that run on
a CPU are very important. Kerl et al. [7] developed DVO-
SLAM, which runs in real-time on a CPU and estimates
camera motion by minimizing a dense ICP-based and a
photometric error. It inserts keyframes on the basis of an
entropy measure, includes loop closure and shows very
promising results. In order to make it real-time capable, the
authors do not process the highest resolution of typically
640×480, thereby sacrificing accuracy. The RGBDTAM [8]
SLAM system optimizes a geometric and photometric error
and achieves state-of-the-art performance while running on
a CPU. Methods based on photometric error are sensitive to
illumination changes since the optimization works directly
on raw intensity values and are limited to small inter-frame
motions as shown in [10], [12].

While photometric and ICP-based systems are well es-
tablished, direct edge-based methods that estimate camera
motion by aligning edges instead, have received a lot of
attention in recent years. Edges have some favorable qualities
such as a larger convergence basis and more robustness
against illumination changes. Tarrio and Pedre [11] work
with a monocular camera and try to align edges by searching
for the closest edge along the normal direction, which is
computationally expensive and error prone. To avoid this

Fig. 2. RESLAM comprises three main components: (i) the VO modul
estimates relative camera motion, (ii) the Local Mapper manages keyframes
and optimizes a local window and (iii) the global mapper stores a global
map and performs loop closure and relocalisation.

search, Kuse and Shen [12] instead pre-compute the distance
to the closest edge at each pixel position with a distance
transform (DT) [17] and optimize with a subgradient method.
In [10], the authors study the influence of various state-of-
the-art edge detectors and demonstrate how to efficiently
remove outliers to increase accuracy and robustness. The
recent Canny-VO [18] proposes alternatives to the DT and
incorporates also the edge orientation into their optimization.
Also combinations of edge-based methods with photometric
error [19] or ICP-based error [20] have been proposed to
increase robustness and accuracy.

To the best of our knowledge no RGBD edge-based SLAM
system exists and we are the first to build a complete SLAM
pipeline that utilizes edges throughout all stages.

III. EDGE-BASED SLAM (RESLAM)

In this work, we present RESLAM, the first edge-based
SLAM system that optimizes the depth of edges, the intrinsic
camera parameters, the camera poses within a local window,
while also performing loop closure on a global map and
offering relocalisation capabilites.

A. System Architecture

Figure 2 shows the main components of RESLAM that run
in four different threads: (i) System, (ii) Visual Odometry,
(iii) Local Mapper, (iv) Global Mapper. We receive RGBD
data and pass it to the system, where we detect edges in a pre-
processing step. Then the VO module estimates the relative
camera motion between the current frame and a keyframe
(KF). We propagate the estimated pose to the local mapper,
to decide if we should create a new KF. If a new KF is created
we add it to the local window of K KFs and refine the depth
of the edges, the camera poses and the camera intrinsics.
After this refinement, the loop closer searches for a loop
candidate in the existing database. If a suitable candidate
is found, we try to close the loop, otherwise we add the
frame to the database. If at some point the system is paused
or the camera pose estimation in the VO module failed,
the system switches to relocalisation mode and every new
RGBD frame is passed to the relocaliser instead of the VO
until relocalisation is successful. In the remaining section, we



will explain the camera model and then describe the main
components in more detail.

B. Camera Model
In this work, we focus on RGBD sensors from which we

receive an RGBD frame at each time step t, which comprises
an image It and a depth image Zt. We assume It and Zt
to be aligned and synchronized such that at for each pixel
position p = (x, y) in It the corresponding depth Z is given
as Z = Zt(p).

We define an inverse projection function π−1 that com-
putes a 3D point P from a pixel position p and its corre-
sponding depth in the respective camera frame:

P = π−1(p, Z(p)) =

(
x− cx
fx

Z,
y − cy
fy

Z,Z

)
. (1)

Similarly, π is a projection function that maps P to p:

p = π(P ) =

(
xfx
Z

+ cx,
yfy
Z

+ cy

)
. (2)

We further define a relative rigid body motion as transfor-
mation matrix T comprising an orthogonal rotation matrix
R3×3 ∈ SO(3) and a translation vector t3×1 ∈ R3. A rigid
body motion only has 6 degrees of freedom and we utilize
the minimal representation as twist coordinates defined by
the Lie algebra se(3) associated with the group SE(3) and
denote it ξ.

Finally, we define a full warping function τ that computes
the reprojection of pi in frame Fi to p′ frame Fj under the
transformation ξji:

p′ = τ(ξji, pi, Zi(p)) = π(Tjiπ
−1(pi, Zi(pi))). (3)

IV. EDGE-BASED VISUAL ODOMETRY (EBVO)
In each frame, we detect Canny edges [21] and compute

the relative motion ξji between a KF Fi and a current frame
Fj by aligning their respective edge detections. To align
the edges, we reproject the set of edge pixels with a valid
depth Ei from Fi to Fj and try to align with the closest
edge detected in Fj . Searching for the closest edge in each
iteration is typically very slow and therefore not feasible in
practice. Since the edges are detected once and do not change
afterwards, we can precompute the Euclidean distance to
the closest edge at each pixel position using the distance
transform (DT) [17]. We define the reprojected edge distance
error Epi , i.e. the residual, for an edge pi reprojected from
Fi to Fj under the transformation ξji as:

Epi = Dj(τ(ξji, pi, Zi(pi))), (4)

where Dj denotes the DT of Fj and pi the pixel position of
an edge in Fi. We estimate the relative camera motion ξ∗ji
that aligns the edge detections of Fi and Fj by minimizing
(4) for the set of all edges with valid depth Ei.

ξ∗ji = argmin
ξji

∑
pi∈Ei

δHEpi , (5)

where δH is a Huber weight function that reduces the
influence of large residuals. Since edge detections often differ
between frames, we drop a potential outlier if Epi > Θe.

We minimize (5) in a coarse-to-fine-scheme with an it-
eratively re-weighted Levenberg-Marquardt method similar
to [2], [10]. Most edge-based methods [10], [12] perform the
costly edge detection and DT computation on each pyramid
level. This introduces a problem regarding robustness be-
cause textures are often smoothed over at lower scale levels.
[20] tackles this challenge with an edge transfer method that
copies detections from higher levels to the lower ones.

We propose a different method that reduces computational
cost while also addressing the robustness issue studied
in [20]. Instead of detecting edges on each pyramid level
separately, we only detect edges and explicitly compute the
DT on the highest level. The edges are then reprojected
to lower levels through camera intrinsics, i.e. to go from
highest to second highest, we divide the intrinsics by a factor
of 2 in the projection function π. We also avoid a costly
explicit re-computation of the DT on each pyramid level
DN by downscaling it from a higher resolution level DN−1.
We compute DN as mean over a 4 pixel patch of DN−1
and additionally divide by 2 since the pixel distances halve
between levels:

DN (x, y) = 0.5
1

Np

1∑
i=0

1∑
j=0

DN−1(2x+ i, 2y + j), (6)

where Np is the size of the patch at the higher resolution
level. The strength of our method to only detect edges on
one level becomes apparent, when computationally more
expensive machine-learned edge detectors [10] are used.

a) Motion Assumptions: For the optimization of (5),
the initialization of ξji is a crucial point. Especially when
the cameras are farther apart, simply starting with identity
can result in slow convergence speeds, convergence to a
local minimum or low accuracy. To avoid such problems,
we evaluate five different initializations for ξ0ji: no motion
(i) from the last KF Fi or (ii) from the last frame Fj , or (iii)
constant, (iv) double or (v) half motion based on the motion
from Fj−1 to Fj−2 and choose the one with the lowest cost.

b) Alignment Failures: If we cannot align a new frame
successfully, which can occur due to a partly or fully
covered sensor, very aggressive motions or reflective or sunlit
surfaces, where no depth can be estimated, we switch the
system to relocalisation mode. We evaluate two criteria to
detect alignment failures: (i) if we have less than ΘNE valid
edges or (ii) the average reprojection error of inlier edges is
above Θreproj .

V. LOCAL MAPPING

In contrast to previous edge-based systems, where only
the relative motion to the last KF is estimated [10], [12]
or only the most recent frame is optimized with respect to
several other KFs [20], we optimize over a window K of
previous KFs. Within K, we jointly refine the depths of all
the active edges, the camera poses and the camera intrinsics.
Note that we rely on an inverse depth parametrization [22],
[23] throughout this work and only refine the depth of points
with sufficient baseline and keep it fixed otherwise. The



Fig. 3. We activate edges in a two step process: (1) project the set of
active residuals Ai to the new KF (green) and (2) project detected edges
with valid depth Ei to the new KF to active new edges. Each step fills up
the distance map Mn.

overall error over the sliding window K is similar to (5):

EK =
∑
i∈K

∑
e∈Ai

∑
j∈K,j 6=i

δHr, (7)

where δH is again a Huber weight function. We evaluate the
residual r with respect to the current state estimates, which
unlike (4) also contains the optimized camera intrinsics C
and the inverse depth ρi:

r = Dj(p′i(ξi, ξj , ρi, C)), (8)

where p′i is the reprojection of pi into Fj with the refined
world poses ξi and ξj of Fi and Fj .

We minimize (7) with a Gauss-Newton optimization algo-
rithm similar to [23], [24]:

H = JTWJ b = JTWr, (9)

where W ∈ Rn×n is a diagonal weight matrix, r ∈ Rn
are the stacked residuals and J ∈ Rn×d is the Jacobian of
r. Since the optimization over a window is computationally
expensive, we have to work with and manage a reduced set
of active edges.

A. Edge Management

In each KF in the window, we have a set of around 10k
- 20k detected edge pixels with valid depth E . Due to the
depth initialization provided by the RGBD sensor, this set is
significantly larger than the number of points in monocular
approaches [23], where only points with already estimated
depth are of interest. However, optimizing over all edges
from each KF in K is not possible in real-time on a CPU.
Therefore, we follow a strategy inspired by [23], where we
maintain a set of active edges Ai for each KF that we
optimize for K. In contrast to [23], we do not limit the size
of the active edges but only the number of KFs in K.

Thus, when we add a new KF Fn to the window, we
have to drop an old one. In order to keep the edges well-
distributed, we maintain a distance mapMn for Fn. We first
reproject all active edges Ai from each KF in K into Fn (see
Fig. 3) and activate an edge if its reprojection p′ fulfills the
following condtions: Dn(p′) < ΘA and Mn(p′) > ΘM , i.e.
p′ is close to an edge detection in Fn and not close to an
already activated edge. If an edge is activated, we insert it
into the distance mapMn. After reprojecting all active edges
Ai, we try to activate new edges detected in previous KFs in
K or Fn. We again reproject and apply the same procedure
as before. Figure 3 shows the two-step activation procedure
and the progress of Mn.

Seq. Number of Frames Created KF KF After Culling

fr1/desk 573 223 90
fr1/desk2 620 299 69

TABLE I
WE INITIALLY CREATE MANY KFS AND CULL THEM LATER TO REDUCE

THE NUMBER OF KFS FOR PGO.

B. Keyframe Management

Maintaining a tractable number of KFs for the global map
that are well-distributed is very important for performance
and accuracy of the whole system.

1) Keyframe Creation: We follow a strategy, where we
initially create many KFs (5 - 15 per second) and cull
them later inspired by [4], [23]. Table I shows the number
of created KFs and number of KFs after culling, which is
around a factor of 2 - 4 depending on the scene. This greatly
speeds up later computations over the global map such as
loop closure.

We compute three metrics during the optimization process:
(i) the mean square optical flow Cfov that measures changes
in the field of view, (ii) the mean flow without rotation
Cocc that measures occlusions and (iii) the number of edge
reprojections p′ below Nin and above Nout a distance
threshold θe:

Cfov =

√
1

n

∑
||p− p′||22 , Cocc =

√
1

n

∑
||p− pt||22.

(10)
Based on these metrics, we create a new KF if:

Cfov + Cocc > 1 or Nin < 2Nout. (11)

2) Keyframe Marginalization: Since the size of K is
limited, we remove and marginalize a KF before adding
a new one. If a KF has less than θvis active points, we
marginalize it but if none of the KFs fulfills this constraint,
we keep the newest two KFs and compute a distance score
si over rest to assure that they are well-distributed in 3D
space:

si =
√
di,1

∑
j∈[3,n]\{i}

1

di,j + ε
, (12)

where di,j is the Euclidean distance between Fi and Fj .
When we marginalize a KF, we store the relative transfor-
mations between it and all the other KFs in K since these
relative transformations will later represent an edge in the
pose graph generated during loop closure (see Sec. VI-A).
In order to prevent a practically intractable set of active
variables, we use the the Schur complement to marginalize
old variables. Following [23], [24], we drop any terms that
would influence the sparsity pattern of H . Whenever we
marginalize a KF, we first marginalize all its active edges,
then all the edges that have not been observed in the last two
KFs and finally remove all its observed edges completely
from the system. We compute the part of the energy EM
that contains all residuals that depend on state variables that
should be marginalized and add it to the full edge error EK
in all following optimization and marginalization operations.



Fig. 4. Whenever we find a candidate KF in the Fern database, (a) we
estimate the relative camera motion between the current (green) and the
candidate KF (red). (b) Before and after PGO, we assess the quality by
reprojecting the edges from the candidate KF and its adjacent KFs (blue)
to the current KF.

VI. GLOBAL MAPPER

Our global mapper keeps a global map of the scene and
stores a Fern database of KFs to perform loop closure and
relocalisation (see Fig. 2).

A. Loop Closure

Loop closure is a long-standing problem and poses the
following challenges: (i) finding loop closure candidates, (ii)
estimating the corrected poses and (iii) verifying if the loop
closure is correct. We address all three of these challenges in
RESLAM and propose an edge-based algorithm to verify if a
loop closure is valid. In order to find loop closure candidates,
we follow the random-fern-based bag of words approach
from Glocker et al. [25], where we compute a Fern descriptor
at Nf = 500 randomly sampled positions in a down-sampled
40x30 RGB image. [25] is easy to implement and very fast
since it is purely based on thresholds of RGB values and
does not require a costly feature extraction step like [4].
Note that the positions of the sample points are randomly
chosen in the first KF and kept constant throughout the
sequence. We then compute similarity scores between the
current Fern descriptor and the already stored KFs with the
Hamming distance. If we do not find a KF that is similar
enough, i.e. its score is above threshold ΘHamming , we
add it to the database and continue. Otherwise we have a
candidate KF Fcand and start the loop closing process (see
Fig. 2). As depicted in Fig. 4 (a), we start by estimating
the relative motion between Fcand (red) and our current KF
Fcurr (green) with our VO module (see Sec. IV). We then
set up a pose graph optimization (PGO) problem, where the
measured world poses of the KFs are the nodes and the edges
are the estimated relative constraints of the current window K
computed in the Local Mapper also including the ones from
marginalized KFs (see V). We define the error for PGO as:

eij = Tij T̂
−1
wj T̂wi, (13)

where Tij is the relative transformation between KF i and j
and T̂wi and T̂wj are the corrected world poses. We use the
Ceres solver [26] to optimize this pose graph problem and
parametrize the rotations as quaternions.

When closing loops, it is of utmost importance that all
the detected loops are correct, since even one wrong loop
closure can seriously degrade the overall result. We propose
an edge-based procedure to quickly verify the validity of

the loop closure, which is inspired by the tracking quality
measure proposed in [10]. Figure 4 (b) shows the core idea
of this procedure, where we reproject a set of verification
frames V , which are Fcand (red) and its N − 1 adjacent
frames (blue), to a counting map C in Fcurr, where we
count the reprojections that overlap with an edge detection.
To avoid counting coinciding reprojections multiple times,
we generate separate counting maps C0,...,N−1 for each KF:

Ci(τ(ξci, pi)) = 1, ∀pi ∈ Ei, Fi ∈ V (14)

where Ei is the set of valid edge pixels and ξci the trans-
formation from Fi to Fcurr. We compute the final map C
as the element-wise sum of each Ci. Since each Fi ∈ V
only contributes one edge overlap, we generate a histogram
H of size N + 1 to count the number of edge overlaps. A
candidate is positively verified, if the weighted sum of edge
overlaps and is lower than the number of non-overlaps:

N∑
i=1

wiH(i) ≤ w0H(0), (15)

where wi is a weighting factor. In total, we apply this
verification procedure twice, once to verify the initial relative
motion estimation and once more after PGO to verify the
overall result.

B. Relocalisation

In cases, where large parts of a scene do not have sufficient
texture for edge detection or depth information is missing,
e.g. due to sunlight, or the sensor is fully or partially covered,
it is possible that tracking losses occur. Such scenarios
require a relocalisation step, where we want to continue from
previously seen position. Relocalisation and loop closure are
closely related in terms of finding a previously seen scene
parts. As depicted in Figure 2, both access the same Fern
database. We find and verify a relocalisation the same way
as we verify a loop closure. After a successful relocalisation,
we remove all the KFs from the current window and restart
the system from the relocalised position.

VII. IMPLEMENTATION

We implemented our system in C++ using OpenCV for
edge detection, distance transform computation and image
in- and output. RESLAM runs in real-time at 30-35 Hz on
an Intel i7-4790 desktop computer with 32 GB of RAM. We
optimize the relative camera poses in a 3 level coarse-to-fine
scheme with maximum resolution of 640×480 px. We set our
Huber threshold θH = 0.3 and remove potential edge outliers
on each respective pyramid level with a distance greater than
θE = 10, 20, 30 px. Tracking is considered lost if less than
θNE = 100 edges are good or the average reprojection error
is above Θreproj = 2.5px We marginalize a KF, if less than
Θvis = 0.05% of its points are visible in the current KF. A
loop closure candidate must be below ΘHamming = 0.25 and
the weights for the counting maps are ωi = [1, 1, 1.25, 1.5].



Comparison of the Absolute Trajectory Error [cm]

BF [9] RGBDTAM [8] DVO-SLAM [7] EF [6] ORB2-SLAM [4] RGBDSLAM [5] REVO [10] Edge+ICP [20] Our Methods
Seq. Direct Features Edges VO LM LC All

fr1/xyz - 1.0 1.1 1.1 0.8 1.3 6.8 1.6 7.4 2.4 2.2 1.1
fr1/desk2 - 4.2 4.6 4.8 2.2 4.2 8.2 6.0 7.1 6.3 5.4 4.8
fr2/desk - 2.7 1.7 7.1 0.9 5.7 8.9 9.5 3.5 3.4 3.6 1.9
fr2/xyz 0.4 0.7 1.8 1.1 0.8 0.8 1.0 - 0.9 0.5 0.8 0.5
fr3/office 2.2 2.7 3.5 1.7 1.0 3.2 11.0 - 13 7.8 4.2 3.5

icl/lr-kt0 0.6 - 10.4 0.9 0.8 2.6 24 5.4 6.5 3.2 2.2 2.1
icl/lr-kt1 0.4 - 2.9 0.9 1.6 0.8 2.3 0.9 1.3 1.9 2.5 1.7

TABLE II
THE RMSE OF ATE IN [cm] FOR BUNDLEFUSION (BF) [9], RGBDTAM [8], DVO-SLAM [7], ELASTICFUSION (EF) [6],ORB-SLAM2 [4],

RGBD-SLAM [5], REVO [10] AND EDGE+ICP [20] COMPARED TO OUR METHOD WITH VO, LOCAL MAPPING (LM), LOOP CLOSURE (LC) AND

ALL (VO+LM+LC) ON THE TUM-RGBD [27] AND ICL-NUIM [28] DATASETS.

VIII. RESULTS AND DISCUSSION

We demonstrate the quantitative performance of our
method on two standard RGBD benchmarks datasets TUM
RGBD [27] and ICL-NUIM [28] covering a large variety of
camera motions and scenes. TUM RGBD comprises many
sequences recorded with a MS Kinect at 30 Hz with 100
Hz ground truth poses from a motion capture system. ICL-
NUIM is a synthetic dataset that is completely noise-free
and offers perfect ground truth. From the ICL-NUIM we
choose two typical indoor sequences that also contain poorly
textured walls. For both datasets we evaluate the root mean
squared error (RMSE) of the translational component of the
absolute trajectory error (ATE) at time step i [27]:

ATEi = Q−1i SPi, (16)

where S is a rigid body transformation that aligns the ground
truth Q and with the estimated trajectory P .

A. Benchmark Datasets

We compare our system to 6 SLAM approaches: (i)
Bundle Fusion [9] that combines indirect and direct prin-
ciples, three direct methods (ii) RGBDTAM [8], (iii) DVO
SLAM [7], (iv) ElasticFusion [6], two feature-based systems
(v) ORB-SLAM2 [4] and (vi) RGBDSLAM [5] and finally
two edge-based VO systems: REVO [10] and the edge- and
ICP-based [20]. Please note, that as suggested in [4] we
accounted for the depth bias in the freiburg2 dataset. To
demonstrate the influence of each component, we present
four different evaluations of our system: (i) VO, which is
similar to REVO [10], (ii) VO + Local Mapping (LM) (iii)
VO + Loop Closure (LC) and finally (iv) all the modules
combined (VO + LM + LC).

The results of the ATE on the benchmark datasets in
Table II clearly show that all the state-of-the-art systems
are very close together in terms of accuracy. Since the ATE
is given in cm, the differences are often in the mm-range,
which is probably below the groundtruth accuracy. RESLAM
clearly shows improvements over other direct edge-based VO
systems [10], [20] on nearly all the datasets. The addition
of a sliding window optimization already improves accuracy
compared to methods only taking the last KF into account.
Interestingly, also the combined method using edges and ICP
terms is outperformed by a purely edge-based method.

Fig. 5. (a) Reconstruction and trajectory of the fr2/desk dataset. (b)
Reconstruction and trajectory of a flat with over 5000 images.

Compared to BundleFusion [9] or ElasticFusion [6], our
method does not require a GPU but runs in real-time on a
CPU, while achieving competitive results.

B. Qualitative results

We additionally want to show some qualitative examples to
demonstrate the performance of our method. In Figure 5(a),
we show the trajectory and sparse reconstruction of the
fr2/desk sequence. The trajectory is very accurately estimated
and also the pointcloud is consistent. Figure 1(b) depicts an
example trajectory recorded with our own Orbbec Astra Pro
RGBD sensor and the sparse reconstructed pointcloud. An-
other of our own RGBD recordings is shown in Figure 5(b),
where we record a whole flat with over 5000 frames.

IX. CONCLUSIONS

We presented RESLAM, a novel edge-based SLAM sys-
tem that utilizes edges for VO, local mapping and loop
closure/relocalisation verification. Edge-based algorithms are
very interesting due to their favorable properties such as
larger convergence basin and fast optimization speed. We
also demonstrate that we can compete with many state-of-
the-art methods that require a strong GPU. In contrast, our
method runs in real-time on a CPU, which is essential for
mobile robotics applications and navigation tasks. RESLAM
is available as open-source1 to encourage further research in
the area of edge-based methods.
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