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ABSTRACT
Many Android developers take advantage of third-party libraries
and code snippets from public sources to add functionality to apps.
Besides making development more productive, external code can
also be harmful, introduce vulnerabilities, or raise critical privacy
issues that threaten the security of sensitive user data and amplify
an app’s attack surface. Reliably recognizing such code fragments
in Android applications is challenging due to the widespread use
of obfuscation techniques and a variety of ways, how developers
can express semantically similar program statements.

We propose a code recognition technique that is resilient against
common code transformations and that excels in identifying code
fragments and libraries in Android applications. Our method re-
lies on obfuscation-resilient features from the Abstract Syntax
Tree of methods and uses them in combination with invariant
attributes from method signatures to derive well-characterizing
fingerprints. To identify similar code, we elaborate an effective
scoring metric that reliably compares fingerprints at method, class,
and package level. We investigate how well our solution tackles ob-
fuscated, shrunken, and optimized code by applying our technique
to real-world applications. We thoroughly evaluate our solution
and demonstrate its practical ability to fingerprint and recognize
code with high precision and recall.
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1 INTRODUCTION
Nowadays, most Android applications are bundled with third-party
libraries that potentially include vulnerable or outdated code [13].
The Apache Cordova library, e.g., was affected by a vulnerability
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that enabled an attacker to interfere with an application’s behavior
by sending malicious intents1. Providing the building blocks for
a majority of cross-platform applications, this flaw immediately
put the security of all of them at risk. Apart from introducing
vulnerabilities, multiple studies [17, 20, 29] have demonstrated that
code from external sources can also leak private information, exploit
their privileges, or forward sensitive data to unauthorized parties.

Although Android libraries undoubtedly exhibit questionable
security practices, insecure code snippets can also be located within
app-specific code. If developers copy ready-to-use code snippets,
e.g., from programming discussion platforms like Stack Overflow,
they unknowingly might also introduce weaknesses. In 2017, a
study [14] has revealed that 15.4% of 1.3 million inspected Android
apps included security-related code snippets from Stack Overflow,
whereas 97.9% of them contained security problems.

Since the use of third-party libraries and the integration of code
snippets from external sources have evolved to common practices in
app development, it is of utmost importance to find vulnerable code
fragments. Despite significant research efforts to dissect apps and
uncover such threats, reliable identification of insecure program
parts remains challenging. Currently, code recognition in Android
applications mostly targets third-party libraries and involves either
whitelisting or a similarity-based strategy. In the former case, a
precompiled whitelist of directories or package names is used as
a reference to individual libraries. However, whitelists are usually
gathered manually [4, 9, 22] and have to be maintained to stay up-
to-date. Considering the constant intervention and the fact that it
is practically infeasible to cover all libraries, this approach does not
scale and is only suited for analysis scenarios without obfuscation.

The second approach consists in identifying libraries without
prior knowledge [10, 25, 38]. Therefore, apps are decompiled and
split into sets of potential library candidates. A similarity metric
or hash-based comparison then measures the difference to candi-
dates extracted from other apps. If the score exceeds a predefined
threshold, candidates are considered to be the same libraries.

Although research has demonstrated the practical feasibility to
identify code, existing work still leaves room for improvement:

(1) Current approaches for code recognition in Android apps
focus on detecting individual libraries by name and version.
They require large amounts of ground truth for training and
do not work effectively if the reference codebase is small
or a priori incomplete. Pinpointing specific code snippets
instead of full libraries is, thus, infeasible.

(2) State-of-the-art methods strongly depend on Java package
names, preserved directory hierarchies, and unalteredmethod
signatures. However, package structures and names can be
different in multiple versions of the same library. Also, dur-
ing compilation, code can mutate as it undergoes automated

1https://cordova.apache.org/announcements/2015/05/26/android-402.html

https://doi.org/10.1145/3339252.3339260
https://doi.org/10.1145/3339252.3339260


ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Johannes Feichtner and Christof Rabensteiner

performance-related code optimizations, such as method
inlining, duplicate code merging, and removal of unused
method parameters. Focusing too much on such auxiliary
information can, thus, give a false sense of a good classifier
that is only reliable if trained libraries and tested apps exhibit
the required attributes and do not apply optimizations.

(3) Android applications commonly apply code transformation
techniques, including obfuscation, identifier renaming, and
shrinking not only to optimize code but also to harden
against various forms of abuse, such as tampering, reverse
engineering, and intellectual property theft. While existing
classification approaches might yield useful results despite
suchmodifications, the recognition rate with real-world apps
could significantly be improved if techniques were resilient
to common types of obfuscation and code mangling.

In this paper, we address shortcomings of existing approaches
and introduce a solution that is able to recognize arbitrary code frag-
ments in Android apps, even if code transformation techniques, like
shrinking or obfuscation, are applied. We overcome the aforemen-
tioned limitations by extracting and processing features from the
Abstract Syntax Tree (AST) of methods. Our approach does not rely
on identifiers of packages, classes, and methods and uses them only
as supplementary information. Instead of a hash-based comparison,
we measure the similarity of methods using vectorized fingerprints
we derive from the AST of methods and transformation-invariant
representations of method signatures. To compare code segments,
we design a scoring metric that accurately determines inclusion
within other code parts and can express the similarity of classes
and packages based on an aggregation of fingerprints.

Compared to previous research, our solution excels in reliably
recognizing code fragments, even if a very high degree of code
obfuscation is applied and if the majority of originally trained
code is no longer present, e.g., due to code merging or inlining. Our
approach is scalable and succeeds in accurately matching individual
small code snippets as well as entire libraries. Aimed at conditions
that can be found with real-world apps, our solution is suited for
arbitrary tasks that involve code recognition in Android apps.

Contributions. Our key contributions are as follows:
• We present a framework to reliably recognize arbitrary code
fragments in Android apps2. Our solution can overcome vari-
ous limitations present in existing research and represents an
effective method to identify used libraries, recognize specific
code snippets, or find semantically similar candidates.
• We study features in code that are invariant to widely used
code transformation techniques and propose a novel feature
matching process that is resilient to code mangling, identifier
renaming, shrinking, and optimizations, such as inlining,
code merging, or removal of unused method parameters.
• We evaluate the quality of our algorithm by testing it with a
set of open-source libraries. We compile all libraries multiple
times with different forms of code transformations enabled
and assess the impact on classification. Moreover, we ensure
the soundness of our solution by thoroughly comparing the
expressiveness of chosen features and threshold values for
matching confidence and package particularity.

2The framework is available at: https://github.com/kstudent/astli

Outline. In Section 2, we discuss related work. Section 3 in-
troduces our approach for code recognition and highlights our
selection of code features to overcome obfuscation. Subsequently,
in Section 4 we present our algorithms for fingerprinting andmatch-
ing. We evaluate our solution in Section 5 and conclude in Section 6.

2 RELATEDWORK
Existing work addresses code recognition in Android apps mostly
in the context of third-party library detection. In the following,
we point out differences to our solution and also present related
research on code clone detection and obfuscation analysis.

Third-Party Library Detection. To investigate the security risks
associated with using advertising libraries in mobile apps, early
studies rely on awhitelist-based approach [8, 17, 22, 34]. Li et al. [20]
extend this concept to cover a general set of libraries. After man-
ually collecting directory and package names of known libraries
in a list, it is used to find matches in apps at a large scale. As such
approaches fail if obfuscation techniques are used, more elabo-
rate solutions based on machine learning and clustering have been
proposed. PEDAL [22] trains a classifier to detect libraries using
features extracted from code. AdDetect [26], AnDarwin [12] and
WuKong [35] build on the assumption that a library consists of only
one packages and segregate package hierarchies into distinct clus-
ters. LibRadar [25] augments the result by assigning each cluster a
unique profile representing a library. However, the lack of ground
truth and the use of heuristics comes at the cost of precision and
does not consider partial library inclusions, e.g., as a consequence
of code optimizations. Considering potentially obfuscated pack-
age names and deviating package hierarchies, LibD [21] extracts
features from code based on method invocations and inheritance
relations within classes. Compared to them, our solution also relies
on opcode sequences to find and match similar code fragments.
However, in contrast to their approach, we can also match partial
library occurrences as our fingerprints are composed independently
of class inheritance or method overloading.

Tackling the prevalence of code obfuscation, LibScout [4] comes
closest to this work. Backes et al. leverage both method signatures
and the package hierarchy structure to build profiles per library. An
algorithm transforms method signatures into obfuscation-invariant
fuzzy descriptors by removing identifiers and class types. These
descriptors are then hashed and fed into a Merkle tree, representing
the package hierarchy. Although their solution exhibits similar
premises and requirements as ours, the differences are in how the
overall problem has been approached. Besides obfuscation-invariant
method signatures and symbolic package hierarchies, we also add
features from the code implementation. While LibScout cannot
handle libraries where more than 40% of the original code has been
removed, fingerprints built on elements in the Abstract Syntax Tree
enable us to recognize not only full libraries but also individual code
snippets and library parts. At the same time, our approach helps to
improve recognition rates if a shrinking code transformation has
been applied. Consequently, our solution does not necessarily need
large amounts of ground truth for matching and also works if at
least a certain amount of code is available. Nonetheless, LibScout
is expected to scale better as its approach to compare packages
involves a smaller feature set than ours.
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Code Clone Detection. Malicious Android applications are often
distributed by repackaging legitimate apps [30, 39]. The problem of
uncovering small differences between two program versions is com-
monly referred to as clone or plagiarism detection and conceptually
exhibits requirements similar to code recognition. Techniques for
clone detection work on semantic and syntactic features of pro-
grams and measure the similarity of code based on tokens [11, 33],
parsing trees [3, 6], or dependency graphs [9, 23, 24]. Similar to our
method, they coalesce code attributes to form a fingerprint that can
then be pair-wise tested for equivalence with other candidates.

In a study, Potharaju et al. [28] investigate how attackers can
leverage social engineering techniques and app repackaging to
distribute malware in the Android market stores. They propose to
compute fingerprints based on features extracted from the AST of
methods. Therefore, the Android app archive is first transformed
into a custom assembly language, followed by pruning the code
of each method body, keeping only references to method calls and
replacing all variable identifiers with the placeholder local for local
variables or param otherwise. Of all method signatures, only the
number of used arguments is preserved. The remaining instructions
are then arranged as AST and used to derive a fingerprint vector.
The algorithm leans on the hypothesis that two apps are similar if
their fingerprints are located within a small neighborhood.

In our work, we adopt the concept as it yields a high detection
rate with only 0.5% false positives and solves a problem that is close
to ours. One advantage of working with feature vectors instead of
full ASTs is the fact that comparing method becomes substantially
cheaper than detecting graph isomorphism or computing the tree
editing distance between ASTs [27]. As their algorithm creates an
app fingerprint as a sum of all method fingerprints, it requires
that all code is present during matching. In our case, however,
this requirement is not satisfiable as we assume that libraries and
code parts may be incomplete or could have been removed during
compilation. We, thus, design our own similarity metric that is
resilient to common code transformations.

App Code Obfuscation. In a survey from 2018, Wermke et al. [36]
analyzed 1.7 million Android apps regarding the use of obfuscation
techniques. According to the authors, 24.92% of apps are obfus-
cated, whereas the most prevalent obfuscation system is ProGuard.
While the authors confirm that identifier renaming of classes, meth-
ods, and fields is among the most popular features, they make no
statements about minified or shrunken apps. Nonetheless, in our
solution, we address all variants of code obfuscation and optimiza-
tions that ProGuard offers to developers.

Most research of obfuscation in Android apps concentrated on
reversing [5, 7] and analyzing applications in spite of obfusca-
tion [16, 32, 37]. More recent studies specifically focus on obfuscated
malware, such as a study by Hammad et al. [18], who assessed the
impact of obfuscation on Android anti-malware products by in-
specting 7 obfuscation strategies and 29 techniques. Also in this
context, the work of Garcia et al. [15] inspects obfuscation-resilient
properties to uncover malware using machine learning.

3 SYSTEM DESIGN
We design a static analysis framework to recognize code in Android
app archives. The primary functionality can be split into two parts:

In the learning phase, our tool is trained with code fragments
or libraries. In the matching phase, we automatically analyze a
given app and try to recognize code parts using previously learned
data. The objectives of our solution can be summarized as follows:

(1) If an app includes a library or code fragment, the tool should
identify it both by name and version, if known.

(2) The tool should work equally with obfuscated code.
(3) After analyzing an app, the tool should list packages that

resemble previously learned libraries or code fragments with
a score indicating how much code has been matched.

3.1 Overcoming Obfuscation
In regular apps, code fragments and libraries can be recognized
with reasonable certainty by matching the names of packages,
classes, and methods. If code transformation techniques are applied,
these identifiers become inconclusive. For a reliable identification
nonetheless, we rely on features that (1) are suited to identify a code
segment and remain the same for semantically similar sections of
code, and (2) are invariant to common code transformations.

With these two properties in mind, our fingerprinting approach,
as detailed in Section 4.1, is based on AST Vectors and Sanitized
Signatures. AST vectors are vectors obtained by extracting struc-
tural dependencies of a method’s AST. Sanitized signatures result
from removing all identifiers from a method signature. These iden-
tifiers include the method’s name and the class identifiers in all
parameter types and the return type. We combine an AST vector
and a sanitized signature to a fingerprint. Consequently, a grouped
set of fingerprints can represent a package hierarchy. In the follow-
ing, we explain how we overcome code transformation techniques.

3.1.1 Identifier Renaming. In this transformation, the obfuscator
replaces debug symbols with meaningless character sequences. If
activated during compilation, package names in the app archive
will not disclose hints on included libraries. As our solution does
not rely on identifiers at all, it is invariant to identifier renaming.

3.1.2 Shrinking. In this step, an obfuscator removes unused code
from an app. In the learning phase, we cannot tell which parts of
a library will be removed during app compilation. In preliminary
tests, we identified cases where more than 90% of code was pruned.
Shrinking does not only decide if an entire package gets in- or
excluded; it can also remove unused methods and classes. As all
methods in a class and classes in a package can be subject to dead
code elimination, we consider this in the fingerprinting process.

3.1.3 Optimizations. Code optimizations involve adding, replacing,
rearranging and removing code fragments. Although some of them
can affect our features in theory, we can show in our evaluation
all of these modifications have a minor impact on detection rates.
Basically, a slight change in the AST vector does not necessarily
inhibit a correct mapping, since the similarity between AST vectors
is based on their distance. However, a sanitized signature that has
been altered cannot lead back to the original method, since we
check for strict equality when comparing signatures.

The obfuscator ProGuard offers 29 optimizations3 to developers.
Some of them have an impact on our features:

3https://www.guardsquare.com/en/products/proguard/manual/usage/optimizations
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Inlining Hereby, ProGuard replaces a method invocation with
the body of the invoked method. This usually affects short or
unique methods but also tail recursive methods could be inlined.
Inlining alters the AST vector. However, if only a short method
is being inlined, we argue that the alteration is also limited.

Code Merging With this transformation, ProGuard identifies du-
plicated code fragments and merges them by modifying branch
targets. Merging affects the AST vector as it reduces AST nodes.

Method Parameter Removal Hereby, ProGuard identifies un-
used parameters in methods and removes them from the signa-
ture. If applied, the sanitized signature will be altered and we
will not be able to match it with the corresponding method.

4 WORKFLOW
The workflow of our approach starts by converting a given code
fragment or library into the .dex format. This task is delegated to
the build tool dx, which is provided by the Android SDK. Based
on the Dalvik bytecode obtained, for each available method, we
extract a fingerprint and arrange all of them within a package
hierarchy (see Section 4.1). When learning code, we stop after this
step and store the results in a database. When matching code, we
compute a similarity score between 0 and 1, indicating whether
given code fragments can be recognized fully, partially, or not at all
by comparing with learned fingerprints and package hierarchies.

4.1 Fingerprinting Code
To derive fingerprints, we explain AST vectors in Section 4.1.1 and
sanitized signatures in Section 4.1.2. The aggregation of fingerprints
in package hierarchies is elaborated in Section 4.1.3. Finally, in
Section 4.1.4, we give a practical example of a fingerprint derivation.

Algorithm 1: Building a minimal AST from a method body
Input :Method Body
Output :Abstract Syntax Tree

1 AST← createRootNode();
2 foreach instruction ∈ method body do
3 keep instructions with opcode in {INVOKE_DIRECT,

INVOKE_VIRTUAL};
4 instructionNode← createNode(instruction.opcode);
5 foreach parameter ∈ instruction do
6 parameterNode← createNode(parameter.type);
7 instructionNode.addChild(parameterNode);
8 end
9 AST.addChild(instructionNode);

10 end
11 return AST

4.1.1 AST Vectors. We generate an AST vector by building an AST
and conveying this tree to a vector. To compare methods, AST
vectors are preferable over regular ASTs, as they allow to express
the similarity of two methods by computing their distance.

As depicted in Listing 1, we first build a minimal AST over a
method body. Starting at the root node of a tree (line 1), we iterate
over all program statements contained in the method (line 2) and fil-
ter instructions of the type INVOKE_DIRECT and INVOKE_VIRTUAL4
(line 3). We focus on these two as they are the most commonmethod

4https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

Algorithm 2: Conversion of an AST to an AST vector
Input :Abstract Syntax Tree
Output :Abstract Syntax Tree Vector

1 vector = createVector();
2 //count horizontal features;
3 foreach invokeActionNode ∈ AST.getChildren() do
4 #locals← |{c ∈ invokeActionNode.getChildren() |

c.type = local}|;
5 #params← |{c ∈ invokeActionNode.getChildren() |

c.type = param}|;
6 vector[local_local]←

(#locals
2

)
;

7 vector[param_param]←
(#params

2
)
;

8 end
9 //count vertical features;

10 foreach lvl1Node ∈ AST.getChildren() do
11 increment(vector[lvl1Node]);
12 foreach lvl2Node ∈ lvl1Node.getChildren() do
13 increment(vector[lvl2Node]);
14 increment(vector[lvl1Node, lvl2Node]);
15 end
16 end
17 return vector

invocation calls according to Potharaju et. al. [28]. However, for a
more detailed vector, we could also keep track of further suffixes,
i.e., _SUPER, _STATIC and _INTERFACE. Next, we create an AST
node for the current invocation call (line 4) and attach a child node
for each parameter of the method (lines 5-8). Finally, we add the
instruction node as a child to the tree root (line 9).

We convert the AST into a vector by counting horizontal and
vertical features, as defined by Potharaju et al. [28]: A horizontal
feature is a pair of leaf nodes with the same parent node, whereas
a vertical feature is a directed path of arbitrary length, starting at
the root node. Each dimension in our AST vector resembles the
number of occurrences of a particular horizontal or vertical feature.

As shown in Listing 2, starting with an empty vector (line 1), we
count horizontal features by going through all first level nodes of
the AST, determining the number of leaf pairs for each node (lines 3-
8). For each invocation call, we count the number of local variables
and parameters (lines 4-5), and compute the amount of pairs of
type local-local and param-param (lines 6-7). Determining the
number of pairs is equivalent to the handshake problem5, so we can
compute it using the binomial coefficient over 2. Next, we count the
vertical features by iterating over first level nodes of the AST again
(lines 10-16) and increment the occurrence count of the current
node by 1 (line 11). Finally, we iterate over all of its children and
increment occurrences of both paths, be it either 2nd-level relation
only or a conjunction of first and second-level nodes. (line 12).

4.1.2 Sanitized Signature. Sanitized signatures contain data from
a method signature that is invariant to obfuscation. To sanitize the
signature from features affected by obfuscation, we remove method
identifiers, parameter names, and modifiers from the original signa-
ture. Further, we replace parameter types and the return type with
a single letter code. For primitive types, we adopt the mapping from
smali6. Since object types can be subject to identifier renaming,
they are mapped to an obfuscation-invariant token depending on
its type. If it equals the class we are currently processing, we assign
5http://mathworld.wolfram.com/HandshakeProblem.html
6https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields
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public ClassY doSomething(float[] number, ClassX x) {
    return new ClassY(field1, number);
} 

.method public doSomething([FLhello/ClassX;)Lhello/ClassY;
    new-instance v0, Lhello/ClassY;
    iget v1, p0, Lhello/ClassX;->field1:I
    invoke-direct {v0, v1, p1}, Lhello/ClassY;-><init>(I[F)V
    return-object v0
.end method

[FT:O
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local local param

VRT:0 

DRC:1 

PAR:1 

LOC:2

VRT-PAR:0 

VRT-LOC:0

DRC-PAR:1 

DRC-LOC:2  

method

Java Source Equivalent

DEX (represented in smali)

AST

Fi
n

ge
rp

ri
n

t

1

2

3

AST Vector

Sanitized Signature: 

LOC-LOC:1

PAR-PAR:0 

ve
rt

ic
al

 f
. (

p
at

h
s)

h
or

iz
.f

.

Figure 1: Fingerprint extraction example.

the letter T, if belonging to the same package as the current class,
we assign O and, otherwise, we set the letter E for external origin.

4.1.3 Fingerprint and Package Hierarchy. Having extracted an AST
vector and a sanitized signature, we combine both features to a
fingerprint. Although it could already be used for matching, just by
itself the fingerprint does not provide information to map packages
unambiguously. An example of ambiguous methods are getters and
setters: They have a similar structure and, thus, a similar fingerprint
but do not necessarily belong to the same class.

We overcome ambiguity by capturing the entire structure of a
package. Two unrelated methods might share the same fingerprint,
but two unrelated classes are unlikely to share all method finger-
prints. The same logic holds for packages: We conclude that two
packages are related if their classes share the same fingerprints.
Consequently, we require a data structure to group fingerprints in
classes and classes in packages. We refer to it as package hierarchy.

4.1.4 Example. Figure 1 shows a complete example of a fingerprint
extraction. We convert the method doSomething from the class
ClassX located in the package hello. Note that we use smali to
represent the method and its implementation. The original Java
source code equivalent should help to gain a better understanding
of the .dex format but is not involved in the extraction process.

1. Convert method body to minimal AST: Weadd the top node
method and create a node inv-direct that represents the in-
struction invoke-direct {v0,v1,p1}. The parameters v0,v1
of the invoke-direct statement are local parameters. v0 is an
instance of ClassY and v1 an Integer that contains the value
of ClassX.field1. For v0,v1 and the parameter number in p1,
we generate two local nodes and one param node and add them
to the inv-direct node as children.

2. Convert AST to AST vector: Vertical features are paths con-
sisting of 1 or 2 nodes. We count the following paths of length 1:
DRC:1, because of the inv-direct node; LOC:2, PAR:1 because of
the respective child nodes; VRT:0 as there is no invoke-virtual
node in the tree. Paths of length 2 are DRC-LOC:2 and DRC-PAR:1.

Both INV-LOC and INV-PAR remain 0. Finally, we generate hori-
zontal features by counting the pairs of local and param nodes.
There is one local pair, thus, LOC-LOC:1 and no param pair.

3. Generate sanitized signature: We are interested in the param-
eters [F, representing float[] number, and hello/ClassX, fol-
lowed by the return type hello/ClassY. Parameters and return
type are colored green in the .dex-box of the figure. We leave
[F as is and substitute hello/ClassX with letter T, as the type
matches the currently processed class. We add a colon : to divide
parameter types from return type and replace the return type
hello/ClassY with the character O, as the type is located in the
hello package. This results in the sanitized signature [FT:O.

4. Form fingerprint from AST vector and sanitized signature

4.2 Recognizing Code
In the matching process, we are given a set of package hierarchies
Pa , which we extracted from an Android app archive. For each
package hierarchy pa ∈ Pa we pursue the following steps:

(1) We sort all fingerprints in pa by particularity in descending
order, such that we can choose a set of particular fingerprints.
An explanation of particularity is given in Section 4.2.1.

(2) For each fingerprint, we query the database for previously
learned fingerprints with the same AST vector and sanitized
signature. We collect the package hierarchies of similar fin-
gerprints and store them in the candidate set Pl .

(3) For each candidate pl ∈ Pl , we check if pa ⊆pl , which means
that the app package is included in the known package.
Section 4.2.2 defines this relation and steps to compute it.

(4) If pa ⊆pl , we compute the similarity s(pa,pl ), which de-
pends on the AST vectors in pa and pl . Otherwise, we set
s(pa,pl ) to 0. Section 4.3 elaborates on the definition and
computation of the similarity score.

(5) We sort package candidates by similarity score in descending
order and return the package with the highest score that
meets a minimum threshold as a match.

4.2.1 Fingerprint Particularity. Some fingerprints are more likely
to match with unrelated fingerprints than others. When populating
a set of candidates, rare fingerprints are preferable over frequent
ones as they will less likely yield false positive candidates. In a test
with 120,000 fingerprints, we observed that fingerprints with long
AST vectors are more particular as they occur less frequently.

We approximate the particularity of a fingerprint with a score.
Letm = (s,v) be a method fingerprint with a sanitized signature s
and an AST vector v . The particularity score ofm is defined as:

score(m) := ws · length(s) +wv · ∥v ∥1, (1)
whereas length(s) returns the amount of character of s and ∥v ∥1
denotes the Manhattan distance of v . We weigh both dimensions
withws andwv in order to rectify the distributions.

4.2.2 Inclusion. The inclusion relation ⊆ expresses if a package
hierarchy p is included in a package hierarchy p′. Inclusion depends
on the sanitized signatures in both package hierarchies. We use
inclusion instead of equivalence in order to handle the loss of code
when an obfuscator removes dead code from an app. Therefore,
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inclusion is reflexive and transitive, but not symmetric:
p ⊆p′⇔ ∃fc : p 7→ p′, fc ... injective. (2)

In other words: Package p is included in package p′ if and only if
there exists an injective mapping fc for all classes in p to the classes
in p′. We require injectivity because we expect each code class to
end up at most as one class in the app.

We add further requirements for our class mapping fc . Let c ∈ p
be a class in the package p and c ′ ∈ p′. Then we have:

fc (c) = c
′ ⇒ c ⊆ c ′. (3)

If we map an ap class c to a library class c ′, then the app class is
included in the library class. The inclusion relation between classes
is defined analogously to the inclusion relation between packages:

c ⊆ c ′⇔ ∃fm : c 7→ c ′, fm ... injective. (4)
However, we can only map a fingerprint m ∈ c to a fingerprint
m′ ∈ c ′ if their sanitized signatures are equal, or:

fm (m) =m
′ ⇒ Signature ofm andm′ are equal. (5)

Having defined inclusion for both packages and classes, we can
now describe how our solution practically determines inclusion.

Determining Class Inclusion. Let c = {s1, ..., sn } be a class consisting
of sanitized signatures si (for the sake of simplicity, we ignore AST
vectors and fingerprints for now). Then we can determine if c ⊆ c ′
in a greedy manner as described in Listing 3. The idea behind this
approach is to find all signatures from c in c ′. If we find one, we
delete it from the c ′ set such that we do not pick the given signature
in c ′ twice. If we found all signatures from c in c ′, we know that
there is an injective mapping fm and, thus, c ⊆ c ′.

Determining Package Inclusion. In order to determine if package p is
included in package p′, we need to find an injective mapping fc for
all classes in p to classes in p′. This task is more challenging than
the mapping fm for methods because of the lacking symmetry in
the class inclusion relation. Figure 2 illustrates an example, where
the greedy approach from Listing 3 fails.

We are given the packages p and p′, and we can tell that p ⊆p′
because there exists an injective mapping fc with fc (c1) = c ′1 and
fc (c2) = c ′2. However, the greedy approach fails because class c1
can also be assigned to c ′2, since c1 ⊆ c

′
2 holds. If we assign c1 to c

′
2,

we end up with c2 being unassigned, because of c2✚⊆ c ′1.
In the case where a valid assignment is not possible, we could

backtrack by amending some assignments until we explore all
possibilities. However, we opted to reduce the problem such that
we can solve it with the Hungarian Algorithm [19]. Given a set
of workers, a set of tasks and a cost matrix, this algorithm assigns

Algorithm 3: Greedy Class Inclusion Check
Input :Class c , Class c ′
Output :True if c ⊆ c ′

1 foreach si ∈ c do
2 if si ∈ c ′ then
3 remove si from c ′

4 else
5 return False;
6 end
7 end
8 return True;

Figure 2: Example with failing Greedy Package Inclusion.

workers to tasks such that the overall costs are minimized. Instead
of workers and tasks, we use classes of p and p′. We construct our
cost matrixMs as follows:

Ms ∈ {0, 1} |p |× |p
′ | ,Ms [i, j] =

{
0 if ci ⊆ c ′j
1 otherwise

(6)

If we apply the Hungarian Algorithm on Ms , we end up with an
assignment fc . Since the algorithm minimizes the cost of fc , it
prefers assignments that cost 0 over the ones that cost 1. Eventually,
we compute the overall cost of fc with

cost(Ms , fc ) :=
|p |∑
i=1

Ms [i, fc (i)] (7)

and can argue that if
cost(Ms , fc ) = 0⇔ ∃fc : p 7→ p′, fc ... injective.⇔ p ⊆p′ (8)

4.3 Similarity Score
The similarity score helps us to determine how similar two packages
hierarchies p and p′ are. The score depends on the similarity of AST
vectors in the respective packages. Packages that are similar yield a
higher score than packages that are not. Next, we explain how we
measure the similarity between packages, classes, and AST vectors.

4.3.1 Package Similarity. We compute the similarity score s(p,p′)
by leveraging the Hungarian Algorithm, as it helps us to find the
mapping between classes with maximum similarity. We fill the cost
matrix S with the similarity score of the respective classes s(c, c ′):

S ∈ R |p |× |p
′ | , S[i, j] =

{
s(c, c ′) if ci ⊆ c ′j
0 otherwise

(9)

Since the Hungarian Algorithm minimizes the costs in the cost
matrix, we apply it on an inverted matrix Sinverted, where we negate
each entry and shift it by the maximum:

Sinverted = (max(S) − S[i, j])i j (10)
After the Hungarian Algorithm generated a mapping fc , we can
compute the similarity with cost(S, fc ), as defined in Definition 7.

4.3.2 Class Similarity. Let c = {m1, ...,mn } be a class consisting
of a list of fingerprints mi where each fingerprint consists of a
sanitized signature si and anAST vectorvi . Then the class similarity
s(c, c ′) can be determinedwith the Hungarian Algorithm once again.
First, we generate the cost matrix T :

T ∈ R |c |× |c
′ | , T [i, j] =

{
s(vi ,v

′
j ) if si = s ′j

0 otherwise
(11)

We invert T as in Equation 10 and let the Hungarian Algorithm
find the best assignment. We use the cost function cost(T , fc ) in
Definition 7 to determine the similarity score s(c, c ′).
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4.3.3 AST Vector Similarity. We express the similarity between
two AST vectors v and v ′ with the following formula:

s(v,v ′) = max(0, ∥v ∥1 − ∥v −v ′∥1) (12)
We use the Manhattan distance to determine distance and length of
vectors, as proposed in [27]. Our formula fulfills these requirements:
• We want the similarity to be 0 if the vectors are too far apart.
The threshold where similarity becomes 0 is reached if the
difference between to vectors is greater than the vector itself.
• We do not accept negative values for similarity, as wewant to
avoid the situation where a mismatch of vectors worsens the
overall score of an assignment. We ensure this requirement
by taking the maximum between the difference and 0.
• We require maximum similarity when both vectors are equal.
In that case ∥v −v ′∥1 becomes 0, such that s(v,v ′) = ∥v ∥1.
• If ∥v1∥1 > ∥v2∥1, we require s(v1,v1) > s(v2,v2) because
we want larger and therefor more particular vectors to have
more influence on the assignment cost.

5 EVALUATION
The goal of this evaluation is twofold. First, we investigate how well
AST vectors and sanitized signatures fingerprint code and tackle
obfuscation (see Section 5.2). Second, applying our solution on a
set of open-source Android apps, we assess (1) how much code
of a library is needed to accurately recognize it (see Section 5.3),
(2) how much confidence a match should have to be significant (see
Section 5.4), and (3) how well we can recognize individual libraries
when different obfuscation techniques are applied (see Section 5.5).

5.1 Method and Dataset
In the learning phase, we seek to assign similar fingerprints to
semantically similar code fragments. Distinctive features should
characterize unrelated code. To better understand how well AST
vectors and sanitized signatures identify code, as a first step, we test
our features using a home-made app that is obfuscated, includes
two libraries, and 150 packages. The results give an intuition on how
changes in the codebase or parameters affect the tool’s accuracy.

To evaluate how our solution can recognize code in real-world
apps, we chose to crawl the F-Droid Repository7. Since this app
repository offers only Free and Open Source Software (FOSS), we can
download the source codes of apps including configuration files
for the Gradle build system. From these files, which are needed for
compilation only but are not included in final Android app archives,
we can extract a list of used library packages. On their basis, we split
the code into different parts to derive fingerprints for each of them.
Moreover, we adapted the build files of all downloaded FOSS apps
to compile multiple versions with different code transformation
techniques enabled: shrunken, obfuscated, shrunken + obfuscated,
shrunken + obfuscated + optimized. For this evaluation, we crawled
source codes of 800 FOSS apps and compiled one regular and four
transformed versions, resulting in 4,000 app samples overall.

The collected dataset enables us to unambiguously verify how
well learned code can be recognized. Based on the assumption that
FOSS apps exhibit the same library inclusion as other apps, our
results should also hold for arbitrary Android applications.

7https://f-droid.org

5.2 Fingerprint Quality
Our algorithm derives a representation of code using AST vectors
and sanitized signatures. We designed these techniques to be invari-
ant to commonly used code transformations while still being able
to characterize individual code parts precisely.
Question: How well can our features describe code fragments?
To answer this question, we deploy a confusion matrixM = (mi j ).
It depicts how well we assign labels to Android app packages and
visualizes incorrectly recognized packages. Each row resembles
a label, each column an actual package. The color of a cell mi j
indicates the confidence that package i of an arbitrary app matches
package j of a library. We can draw conclusions on the matching
quality from the structure of M : If its main diagonal is confident
and the rest is not, we identify code segments without confusion.

5.2.1 Setup. To build a confusion matrix, we use the sample set of
150 packages included in our obfuscated test app. The set is large
enough to feature a variety of different packages and sufficient to
visualize confusion. We compute the similarity score between each
app package with each library package we learned before.

5.2.2 Results. As depicted in Figure 3, we derived three matrices
that show confusion when only AST vectors or sanitized signatures
are used for code identification, and with both features combined.
The x and y-axes are sorted by package particularity (see Sec-
tion 4.2.1). Packages with small particularity are located on the
top/left, whereas packages on bottom/right have high particularity.

With AST vectors, code similarity is confident on the main di-
agonal but overall prone to confusion. The upper right part of
the matrix shows many packages that have been mislabeled with
high confidence. We can explain this observation by the fact that a
small app package can be easily mapped to a large library package.
The other way around does not hold: large app packages are not
confused with small library packages.

The confusion matrix for sanitized signatures shows that the
similarity measure is either absolutely confident that a package
is included (see Section 4.2.2) in another one, or otherwise not
confident at all. Compared to AST vector similarity, we observe
less confusion in the upper right part of the matrix, where less
particular app packages are compared to more particular library
packages. Confusion, however, occurs with small app packages as
large packages are likely to contain all signatures of small packages.

With both features combined, confusion is mostly eliminated
aside from low particularity packages in the top rows of the matrix.
The small clusters around the main diagonal in the top left area re-
sult from packages that implement the same interfaces and are, thus,
semantically related. Overall, we see that the combination of AST
vectors and sanitized signatures can identify code almost without
confusion and, thereby, paves the way for accurate recognition.

5.3 Threshold for Package Particularity
The confusion matrix for AST vectors and sanitized signatures
combined showed that the remaining confusion was caused by
packages with low particularity. As a remedy for confusion and
to improve accuracy, we introduce the threshold for minimum
package particularity (tpp). It decides whether a particular package
is sufficiently expressive to be used for learning and matching.



ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Johannes Feichtner and Christof Rabensteiner

Figure 3: Confusion matrices based on AST vectors (left), sanitized signatures (middle), and both features combined (right).

Before processing an app package, we check if the package is
particular enough. If not, we simply ignore it as we cannot rely on its
matches. The higher we choose tpp, the more accurate recognition
becomes. However, with a high tpp we ignore more packages and,
thus, identify fewer code fragments overall. In the following, we
measure this influence with the keep ratio:

keep ratio =
|Analyzed Packages of App|

|Packages of App|
(13)

Our goal is to find a reasonable value for tpp that represents a
compromise between recognition accuracy and keep ratio.

Question: Howmuch particularity is needed for precise recognition?

5.3.1 Setup. We use our set of real-world apps and iteratively try
recognition with values between 0 and 200 for tpp. After each round,
we build a confusion matrix and compute accuracy and keep ratio.

5.3.2 Results. Figure 4 shows how tpp influences accuracy and
keep ratio. For small values of tpp, the keep ratio stays near 1,
which means that all packages are used for analysis. The accuracy
in this area is at 0.7, indicating 30% incorrect matches. The higher
tpp becomes, the more packages we drop and the more accurate
our results become. At tpp = 75, accuracy reaches 0.9 and stagnates
from there on, whereas the keep ratio keeps declining.

As also observed in Figure 3, confusion arises below a certain
package particularity but decreases above a specific particularity.
Hence, we see that a tpp value of 80 delivers the highest accuracy
without dropping toomany packages. If a high keep ratio is targeted
instead of accuracy, any value for tpp below 80 would be reasonable.

0 25 50 75 100 125 150 175 200
0.0
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0.4

0.6
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1.0

Minimum Package Particularity

Accuracy
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Figure 4: Influence of tpp on accuracy and keep ratio.

5.4 Threshold for Matching Confidence
As explained in Section 4.3, we express the similarity between
an app package pa and a library package pl with the similarity
score s(pa,pl ). This score depends both on how similar and on
how particular packages are: More particular packages result in a
higher score, whereas less particular packages are scored lower. This
imbalance is problematic when deciding on whether a recognition
result is significant. A constant threshold for all packages favors
more particular packages over less particular ones with no regard
to the actual similarity. To counteract, we derive the confidence we
put into a match from the package similarity as follows:

confidence(pa,pl ) =
s(pa,pl )

s(pa,pa )
(14)

The resulting value is ∈ [0, 1] because 0 ≤ s(pa,pl ) < s(pa,pa ).
Our goal is to find a reasonable threshold (tmc) that indicates if a
recognition result is significant enough to be accepted.

Question: Howmuch confidence makes a recognition result reliable?

5.4.1 Setup. To find the best value for tmc, we use our sample set
of FOSS apps and remodel the multi-class problem into a binary
classification problem with the One-Vs-All approach. The binary
classifier tells whether a package is known (positive, +) or unknown
to the system (negative, -). We transform each match into the new
problem domain by expressing learned library packages as positive,
and all others, e.g., unlearned packages or app packages, as negative.

With our recognition results transformed into binary classifica-
tions, we build Receiver Operational characteristics (ROC) curves
that can illustrate the performance of a binary classifier and reveal
how the accept threshold for confidence influences both true and
false positive rate. The ROC curves shed light on the separability
of known and unknown packages and help in finding a reasonable
threshold value for matching confidence tmc. We repeat this pro-
cess for all app samples to determine how well we can distinguish
known from unknown packages if code transformations are used.

5.4.2 Results. Figure 6 compares different ROC curves of the bi-
nary classifier. The classifier separates known from unknown pack-
ages with high accuracy in almost all build types. The Area Under
the ROC Curve (AUC) for these build types is above 99.5%. The only
build type where our classifier performs suboptimally is the one
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Figure 5: Confidence histograms for known (green) and unknown (red) packages.
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Figure 6: Comparing ROC curves of different build types.

with obfuscation, shrinking and optimizations activated. In this
build type the AUC is 87.7%, which is still acceptable.

Figure 5 shows how known and unknown package matches
are distributed over their confidence. The red bar indicates the
occurrence of unknown packages, the green bar the occurrence
of known packages. Note that the y-axis is scaled logarithmically
since matches with confidence = 1 and confidence = 0 tend to
dominate the histogram. We notice that regular and shrunken app
packages can be separated perfectly at tmc = 0.8. Separability in
the confidence histogram of obfuscated app packages (Figure 5c)
is still good since the distributions barely overlap. The same holds
for obfuscated and shrunken app packages in Figure 5d. As seen in
Figure 6, app packages with all possible transformations applied
are the hardest to separate. Judging from the corresponding ROC
curve, the best value for tmc to optimize accuracy is around 0.5.

5.5 Code Recognition
In Section 4.2, we elaborated a workflow to recognize learned code
by computing fingerprints of methods, aggregating them in package
hierarchies and testing for similarity with known packages.
Question: How well does our approach recognize app packages?

5.5.1 Setup. For this scenario, use our FOSS sample set and analyze
all apps in all build types. Aimed at highest recognition accuracy, we
set the thresholds formatching confidence tmc to 0.5 (see Section 5.4)
and for package particularity tpp to 80 (see Section 5.3). To all
obtained results, we apply the following multiclass performance
metrics [31] by using the formulas shown in Figure 7:
Accuracy: Determines how many app packages have been labeled

correctly in relation to all recognition matches.
Precision: Ability of our solution to not mislabel packages.
Recall: Ability to find all instances of a package.
F1 Score: Harmonic mean between Precision and Recall.

Accuracy =
1
n

l∑
i=1

tpi PrecisionM =
1
l

l∑
i=1

tpi
tpi + f pi

RecallM =
1
l

l∑
i=1

tpi
tpi + f ni

F1ScoreM =
2 precisionMrecallM
precisionM + recallM

Figure 7: Multiclass metrics [31]. n . . . amount of matches,
l . . . amount of known packages, pi . . . app package.

5.5.2 Results. The recognition results are summarized in Table 1.
As shown, all metrics perform well in all build types except for the
set of obfuscated, shrunken, and optimized apps. By manually inves-
tigating classifications, we noticed that the optimization technique
Method Parameter Removal causes the weaker performance with
this build type (see Section 3.1.3). With this code transformation
enabled, ProGuard prunes method signatures from unused parame-
ters, leading to different sanitized signatures. Nonetheless, the use
of AST vectors ensures that recognition is still feasible.

Table 1: Code recognition performance on real-world apps.

regular obfuscated shrunken obf.,shr. obf.,shr.,opt.

Accuracy 96.76% 96.61% 93.30% 93.40% 78.83%
Precision 98.03% 97.80% 94.81% 94.69% 70.64%
Recall 99.15% 98.92% 97.05% 96.80% 71.95%
F1 Score 98.17% 97.94% 94.94% 94.80% 70.32%

5.6 Summary
We examined how AST vectors and sanitized signatures align with
real-world apps that use code transformations. First, we assessed
howwell our techniques describe obfuscated code fragments. Three
confusionmatrices revealed that although each technique is capable
of identifying obfuscated code on its own, results are significantly
improved when both features are combined. We also noticed that
most confusion arises in packages with low particularity. Therefore,
we introduced a threshold tpp value that indicated how much code
was relevant to keep high accuracy high while not dropping too
much packages. We also introduced a match confidence threshold
tmc to decide on whether to accept or to reject a recognition re-
sult. To find a reasonable value for tmc we remodeled our problem
into binary classification. ROC curves underlined how well we can
distinguish known from unknown packages despite code transfor-
mation. In our final study, we tested code recognition with a set
of Android app samples and found that our solution delivers high
values for accuracy, precision, recall, and F-Score in all scenarios.
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6 CONCLUSION
The use of third-party libraries and the integration of code snippets
from public sources have become common practices in Android
application development. Security issues and vulnerabilities in such
components reach a high number of end-users and put sensitive
data at risk. However, a precise recognition of such program parts
is challenging if code transformation techniques were applied.

In this work, we presented a solution that can reliably recognize
code snippets or libraries even if obfuscation, shrinking, or similar
techniques are used. By extracting fingerprints from the Abstract
Syntax Tree of methods and combining them with obfuscation-
resilient features of method signatures, we succeed in accurately
characterizing code. We thoroughly evaluated the applicability of
our technique and demonstrated that can we describe and recognize
code fragments with high precision. Our solution contributes to an
effective identification of problematic code in Android applications.
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