
From Smart Health to Smart Hospitals

Andreas Holzinger1(✉), Carsten Röcker1,2,
and Martina Ziefle3

1 Holzinger Group, Research Unit HCI-KDD, Institute for Medical Informatics,
Statistics and Documentation, Medical University Graz, Graz, Austria

{a.holzinger,c.roecker}@hci-kdd.org
2 Fraunhofer Application Center Industrial Automation (IOSB-INA),

Lemgo, Germany
carsten.roecker@iosb-ina.fraunhofer.de

3 Human–Computer Interaction Center, RWTH Aachen University,
Aachen, Germany

ziefle@comm.rwth-aachen.de

Abstract. Prolonged life expectancy along with the increasing complexity of
medicine and health services raises health costs worldwide dramatically.
Advancements in ubiquitous computing applications in combination with the use
of sophisticated intelligent sensor networks may provide a basis for help. Whilst
the smart health concept has much potential to support the concept of the
emerging P4-medicine (preventive, participatory, predictive, and personalized),
such high-tech medicine produces large amounts of high-dimensional, weakly-
structured data sets and massive amounts of unstructured information. All these
technological approaches along with “big data” are turning the medical sciences
into a data-intensive science. To keep pace with the growing amounts of complex
data, smart hospital approaches are a commandment of the future, necessitating
context aware computing along with advanced interaction paradigms in new
physical-digital ecosystems. In such a system the medical doctors are supported
by their smart mobile medical assistants on managing their floods of data semi-
automatically by following the human-in-the-loop concept. At the same time
patients are supported by their health assistants to facilitate a healthier life, well‐
ness and wellbeing.
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1 Introduction and Motivation

Life expectancy on our planet is still increasing [1, 2]. The World Population Database
of the United Nations Population Information Network, POPIN (http://www.un.org/
popin) forecasts a further increase in life expectancy through 2050. This prolonged life
expectancy along with an increasing survival of acute diseases poses a lot of challenges
for health care systems worldwide, making the use of sophisticated technologies not an
added value, but a requirement [3].

© Springer International Publishing Switzerland 2015
A. Holzinger et al. (Eds.): Smart Health, LNCS 8700, pp. 1–20, 2015.
DOI: 10.1007/978-3-319-16226-3_1

http://www.un.org/popin
http://www.un.org/popin


Along with the worldwide increasing complexity of health care systems and the fact
that modern medicine is turning into a data-intensive science, traditional approaches for
handling this “big data” can no longer keep pace with demand, also increasing the risk
of delivering unsatisfactory results. Consequently, to cope with this rising flood of data,
smart approaches are vital [4–8].

Particularly, the advent of smart phones, powerful ubiquitous smart sensors and
decreasing costs of data storage has led to an ongoing trend to record all sort of personal
biomedical data over time [9, 10]. These recordings lead also to a growing amount of
so-called longitudinal data, in the engineering domain better known as time series data
[11, 12], being of much importance for predictive analytics – one of the cornerstones of
P4-medicine (see Sect. 4.1).

The meanwhile “historic” vision by Mark Weiser of ubiquitous computing [13] and
smart objects [14] is also true for healthcare: Moore’s law [15] is also applicable for
biomedical sensors which will be embedded in more devices than we can imagine. The
vision is that people will interact seamlessly in both cyberspace and physical space. The
power of such cyber-physical systems [16], is in their “intelligence”, i.e. smartness,
which lies in their adaptive behavior.

A major future trend is moving the human-in-the-loop [17], for a good reason, as
both humans and computers have very different strengths, but both together can indeed
be more powerful. At large scale this means to combine the best of two worlds: cognitive
science with computer science [18, 19].

Recent technological advances in networked sensors, low-power integrated circuits,
and wireless communications have enabled the design of low-cost, miniature, light‐
weight, and intelligent physiological sensor nodes [20]. All these developments leave
enormous expectations to our future: Smart environments will be able to automatically
track our health and will, to some extend, shift the point of care away from clinician’s
offices – thus hopefully be of economic relieve of the much overstressed hospital systems
and moving the preventive aspect into the foreground. There is a clear paradigm shift
from explicit measuring your health vitals to sensors that fade in the background and
track important measures. Second, consumers tend to increasingly like becoming their
own health managers and actively participate in healthcare. This hypothesis is expressed
through a booming movement called “Quantified Self” were consumer constantly track
health vitals such as sleep patterns, blood pressure and body fat.

This paper provides a very brief overview about the concept of smart health,
discusses the challenge of “big data” driven by the emerging P4-medicine, and debates
some aspects of smart hospitals, with a focus on how to deal with the large amounts of
data. Finally, we present some open questions and future challenges – only by touching
some aspects on the surface just to stimulate the debate.

2 Glossary

Acceptance: A very important concept for the successful integration of any smart health
concept, the term goes back to the work of [21].
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Ambient Intelligence: This term was coined within the European research community
[22], as a reaction to the terms Ubiquitous Computing [13] and Pervasive Computing
[23], which were introduced and frequently used by American researchers. In contrast
to the more technical terms of Ubiquitous and Pervasive Computing, Ambient Intel‐
ligence emphasizes aspects of Human–Computer Interaction and Artificial Intel‐
ligence. Hence, the emphasis of Ambient Intelligence is on better usability, more
efficient and embedded services, user-empowerment and support for advanced human
interactions [24].

Context Awareness: Involves knowledge about how individuals interact within a shared
socio-technical environment and includes information about the participants’ locations,
their present and past actions, and their intentions and possible future actions [25, 26].

Context-aware computing: Integration of multiple diverse sensors for awareness of
situational context that can not be inferred from location, and targeted at mobile device
platforms that typically do not permit processing of visual context [26, 27].

E-Health: Describes the fusion of medicine and healthcare services through the use of
information and communication technologies, with particular focus on everyday life and
low cost devices [28].

E-Homecare: Similar to the E-Health, but with a strong focus on preventive care appli‐
cations in the home domain [29]. E-Homecare services may include patient assessment,
supervision of patient care, routine nursing care and health monitoring, medication
administration and scheduled injections, management of dietary needs, daily exercise,
and lifestyle changes [30].

P4-Medicine: Focusing on the four aspects: predictive, personalized, preventive and
participatory, P4-medicine moves from a reactive to a proactive discipline supported by
systems approaches to disease, emerging smart technologies and analytical tools [31];
actually “big data” is good for P4-medicine, as machine learning approaches may get
better results by more training examples.

Privacy: A must in the health domain is to ensure privacy, data protection, safety and
security; a particular necessity in smart health, as main security problems encompass
protection Precautions, confidentiality, and integrity, which is a challenge as most of the
smart devices are working in a wireless environment [32–34].

Smart: The word synonym for clever, socially elegant, sophisticated, shrewd, showing
witty behaviour and ready mental capability, is a term which is intended to replace the
overly stressed word “intelligent”, mostly due to the fact that research in both human
and artificial intelligence is lacking far behind the original expectations when the field
of artificial intelligence was formed [35].

Smart Health: A term, inherently integrating ideas from ubiquitous computing and
ambient intelligence applied to the future P4-medicine concept, thus tightly connected
to concepts of wellness and wellbeing [3, 36], and including big data, collected by large
amounts of biomedical sensors (e.g., temperature, heart rate, blood pressure, blood and
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urine chemical levels, breathing rate and volume, activity levels etc.) and actuators, to
monitor, predict and improve patients’ physical and mental conditions.

Smart Hospital: An old dream of a highly interactive environment saturated with high-
end ubiquitous devices [37], and closely related to the context aware health paradigm
[38]; this topic is in the strategic focus of large companies including IBM, Siemens,
Google, etc., as it is highly business relevant, as it might help to overcome the worldwide
cost problems of health systems.

Smart Multi-agents: consist of n interacting smart agents within an given environment
and are used to solve difficult problems, impossible solvable by an individual agent. The
goal of an agent based model is to search for explanatory insight into the collective
behavior of the agents, which can be software agents, robots, humans or collective
human teams. Smart agents are usually active software agents with simple goals (e.g.
birds in flocking or wolf-sheep in the prey-predator model), or they can be complex
cognitive agents. Such approaches have enormous capacity for solving biomedical
problems.

Ubiquitous Computing (UbiComp): A vision by Weiser (1991) [39], who argued, that
computers should be integrated into the physical environment, and hence be effectively
invisible to the user, rather than distinct objects on the desktop. Making many computers
available throughout the physical environment enables people to move around and
interact with computers, more naturally than they currently do, leading to the disap‐
pearing computer concept [40].

Wellness Technology: A term mainly introduced to correct the negative connotations
of ‘technology for disability’ and associated with technical devices for the prevention
of deterioration, the support of changes in lifestyle, and the improvement of social
contacts [41], becoming now more important [42].

3 From Ubiquitous Computing to Smart Health Environments

Ubiquitous computing provides enormous possibilities for establishing smart health
services as integral parts of future care concepts [43], which are challenged by our ageing
society. In this context, in particular smart homecare environments are often propagated
as a promising solution for taking care of elderly or disabled people. Sensors and new
interaction technologies seamlessly integrated in such environments offer various forms
of personalized and context-adapted medial support, including assistance to carry out
everyday activities, monitoring personal health conditions, enhancing patient safety, as
well as getting access to social, medical and emergency systems. By providing a wide
variety of services, smart healthcare applications bear the potential of bringing medical,
social and economical benefits to different stakeholders. The goals are from enhancing
comfort, supporting autonomy enhancement up to emergency assistance, including
detection, prevention, and prediction (Fig. 1).
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Technological challenges include mobility, invisibility (smart devices embedded in
our daily objects, e.g. clothes as in wearable computing [45], watches [46], glasses [47],
etc.), natural communication including voice and gestures instead of keyboard or mouse
[48], and most of all adaptivity and context-awareness, as those two important issues
“adaptive behavior in context” are key for “intelligence” i.e., capable of reacting to all
abnormal and exceptional situations in a flexible way.

3.1 Emergency Support

The majority of existing systems for detecting and preventing medical emergencies
focus on falls and congestive heart failures as their main application areas. In particular
fall detection becomes more and more important as recent statistics show that over
30 % of the people over 65 years and 50 % of the people over 80 years fall at least
once a year [49]. In approximately one fourth of these cases, people suffer serious
injuries with sustaining effects on their mobility and independence [50]. As many of
these falls happen when people are alone at home, several projects started to develop
mobile emergency systems, which should enable users to call for help in an emergency
situation [51]. While mobile solutions seem to be a promising approach at first sight,
empirical evidence shows that patients often do not carry those devices with them or
are simply not able to operate them when medical problems have occurred. Conse‐
quently, several research projects developed prototypes of pressure sensitive floor
elements allowing the detection of falls without additional technology being worn by
the patient. While early systems distributed pressure sensitive floor tiles at specific
locations within the environment (e.g. [52, 53]), more recent approaches use distributed
sensors to cover an entire room and thereby enable fine-grained location detection [54],
see Fig. 2.

Fig. 1. From emergency assistance (right) to autonomy enhancement and comfort [44].
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Fig. 2. Smart Floor consisting of an array of pressure sensitive floor tiles for unobtrusively
monitoring patients in home environments [54, 55].

3.2 Monitoring of Patients with Chronic Diseases

Long-term treatment of chronic conditions does not only increase the quality of life
for patients, it is also expected to bring significant economical benefits compared to
traditional care concepts. Hence, it is not surprising that a broad variety of smart health
services have been developed for various kinds of chronic diseases. For example, Klack
et al. (2011) [56] developed an assistive home monitoring system for patients suffering
from end-stage heart failure, which incorporates medical data captured via different
biosensors embedded into the patient’s physical surrounding. The system focuses
particularly on patients with implanted mechanical circulatory support devices,
including ventricular assist devices and total artificial hearts and provides an easy and
unobtrusive way for monitoring crucial vital parameters over extended periods of time.
Figure 3 shows the monitoring system in a home environment. An infrared camera is
integrated behind a translucent interactive display, weight sensors are installed under
the entire floor and blood pressure and coagulation monitoring devices are implemented
in a coffee table next to the sofa.

Fig. 3. Medical sensors integrated in a smart home environment (left), blood pressure and
coagulation-monitoring device embedded in a coffee table (right), from the RWTH Living Lab
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Similar research prototypes have been developed for patients with diabetes [57], (for
the importance of diabetes refer to [58]), pulmonary diseases [59], memory loss [60–
62], physical impairments [63–65], for the aurally disabled [66, 67] for the elderly [68,
69], or for wellness of the young [42].

An interesting pioneering sample work has been presented by Park et al. (2003) [61]:
in their smart home project they devised a set of intelligent home appliances that
provided awareness of the end users needs and to improve day-to-day home life with
various smart technologies, including smart memories (the smart home learns favourite
ambient settings), smart pen (translates and offers additional help on vocabularies during
reading of text), gate reminder (reminds you before you leave your house on important
issues), smart photo album (see here also [70]), smart wardrobe (looks up the weather
forecast and recommends adequate clothing), smart dressing table, smart bed, smart
pillow, smart mat, smart table (see here also [71]), smart picture frame, smart furniture
(see here particularly [40]), smart refrigerator, smart sofa, smart greenhouse, smart wall,
smart window, and smart bathroom.

3.3 Integrated Care Environments

Over the last years, several prototypes of integrated medical care environments have
been developed, which incorporate different smart healthcare. For example, the Future
Care Lab (Fig. 4) at RWTH Aachen University provides an intelligent care infrastruc‐
ture, consisting of different mobile and integrated devices, for supporting elderly people
in technology-enhanced home environments. The setup of the lab enables in situ eval‐
uations of new care concepts and medical technologies by observing different target user
populations in realistic usage situations. As the lab relies on a modular technical concept,
it can be expanded with other technical products, systems and functionalities, in order
to address different user groups as well as individuals with differences in their cognitive,
health-related or cultural needs [43] (Röcker et al. 2010).

Fig. 4. An example of smart medical technologies integrated into a smart home environment,
from the RWTH Living Lab
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3.4 Machine Learning: Human-in-the-Loop

Whereas large amounts of data not good for humans, as they are difficult to handle
manually, large data sets are good for machine learning algorithms, as the more training
data are available the better results are achieved. However, a perfect match of both
together is to include the human-in-the-loop. Figure 5 shows an example: a medical-
doctor-in-the-loop crates and modifies rules on demand to train the algorithms, in the
shown example for activity recognition.

There is not much related work on the human-in-the-loop approach yet, one of the
most prominent ones to date is the work of Shyu et al. (1999) [72]: they implemented a
human-in-the-loop (a physician-in-the-loop, more specifically) approach in which the
medical doctor delineates the pathology bearing regions (regions of interest) and a set
of anatomical landmarks in the image when the image is entered into the database. To
the regions thus marked, their approach applies low-level computer vision and image
processing algorithms to extract attributes related to the variations in gray scale, texture,
shape, etc. Additionally their system recorded attributes which captured relational infor‐
mation such as the position of a region of interest with respect to certain anatomical
landmarks and an overall multidimensional index is assigned to each image based on
these attribute values.

Fig. 5. Concept of Human-in-the-loop (Doctor-in-the-loop), similar to supervised learning. With
massive sensor data only machine learning approaches can bring us further.
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4 From Smart Health to the Smart Hospital

4.1 Future Medicine as a Data Science

Today the design of a drug involves more data science than biological or medical
science. The life sciences are increasingly turning into a data intensive science [73–
76]. In bioinformatics and computational biology we face not only increased volume
and a heterogeneity and diversity of highly complex, multi-dimensional, multivariate
and weakly-structured, noisy and dirty data [6, 7, 77–79], but also the growing need
for integrative analysis and modeling [80–85]. Due to the increasing trend towards
P4-medicine: Predictive, Preventive, Participatory, Personalized [76, 86], even more
amounts of large and complex data sets, particularly omics-data [87], including data
from genomics, epi-genomics, meta-genomics, proteomics, metabolomics, lipidomics,
transcriptomics, epigenetics, microbiomics, fluxomics, phenomics, etc., are becoming
available. A recent article on “HCI for Personal Genomics” by [88] gets straight to
the point: Recent advances in -omics along with Web technologies have led to a
dramatic increase in the amount of available complex data sets to both expert and non-
expert users. They emphasize that the HCI community is challenged with designing
and developing tools and practices that can help make such data more accessible and
understandable. However, the problem is, that despite the fact that humans are excel‐
lent at pattern recognition in dimensions of lower than three [89], most of our current
data is in dimensions much higher than three, making manual analysis difficult, yet
often impossible [90]. Today, biomedical experts both in daily routine and science are
no longer capable of dealing with such increasingly large, complex, high-dimensional
and weakly-structured data sets. Consequently, efficient, useable computational
methods, algorithms and tools to interactively gain insight into such data are a
commandment of the time [91].

Consequently, a synergistic combination of methodologies and approaches of two
areas offer ideal conditions towards unraveling these problems: Human-Computer Inter‐
action (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting
human intelligence with machine learning – human-in-the-loop – to discover novel,
previously unknown insights into the data [18]. Big Data is bad for humans, but good for
machines, as machine learning algorithms improve their precision with the amount of
training samples, however, what we really need is not more data – but better data.

4.2 Mobile Medical Doctors Assistants

The vision of a “mobile medical doctor’s assistant” is an example of a cognitive
computing project (see Sect. 5) that shall enable a more natural interaction between
medical professionals and biomedical data and would be a cornerstone in the develop‐
ment of a smart hospital, and can contribute to enhanced patient safety [92]. One step
to reach such a goal is in the application of sophisticated modern technologies such as
the Watson Content Analytics. Technologically, “Watson” consists of diverse algo‐
rithms, created in the context of cognitive computing research to demonstrate the capa‐
bility of the DeepQA technology [93]. The challenge to date is, that Watson has “no
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eyes and no ears”, so Watson needs sophisticated user interfaces, to date Watson the
current algorithms – sophisticated as they are – are far from being usable for the non-
expert end user [5].

A future vision is to make the Watson technology useable from a smart phone –
so that a medical professional can ask questions to the data, e.g. “Show me the simi‐
larities, differences, anomalies … between patients with symptom X and patients with
symptom Y”. Why mobility? Medical professionals work in an environment which
requires high mobility; within their daily routine their sphere of activity alters
frequently between wards, outpatient clinics, diagnostic and therapeutic departments
and operating theatres – they rarely sit in an office. Although access to stationary
clinical workstations is provided in the hospital, their locations do not always coincide
with the user’s current workplace. In order to fulfill a high health service standard, the
medical staff has an extensive demand for information at a number of locations –
which actually only mobile computers can supply [94]. For example: Up-to-the-minute
electronic patient record information is not always available at the bedside [95, 96].
New orders or diagnostic results noted during rounds must be transcribed to the elec‐
tronic patient records via a clinical workstation at a later time – whereas a mobile
computer enables direct access [97–100].

4.3 Smart Hospital

Mark Weiser (1991) expressed his vision of invisible computing by his famous sentence:
“… the most profound technologies are those that disappear [39]”. We interpret this and
develop it further: “The best technology is those who is in the direct workflow”, and
practically not perceived as such. A smart hospital would integrate all aforementioned
approaches with the aim to support both professionals and patients.

Approaches to a smart hospital are rare to date, a search in the Web of Science as of
December, 30, 2014 returned only 22 hits (title = “smart hospital”). The most prominent
example is a project on Activity recognition for the smart hospital, by the group around
Jesus Favela [37]: they developed an approach for automatically estimating hospital-
staff activities, where they trained a discrete hidden Markov model (HMM) to map
contextual information to a user activity. The vision of the authors is called iHospital
and includes a highly interactive smart environment saturated with heterogeneous
computing devices. At the core of this approach is context aware computing (see Sect. 5).

5 Future Challenges

5.1 Challenge 1: Context Aware Computing

Context is key in the development of the smart hospital in the sense that it is any infor‐
mation that can be used to characterize the situation of entities (people, places, objects),
considered to be relevant to the interaction between an end user and an ubiquitous
computing application [101]. A classical paper [102] provides a good overview of
context in the field of artificial intelligence. If context is redefined continually and ubiq‐
uitously, then how can users form an accurate model of a constantly evolving digital
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world? If system adaptation is negotiated, then how do we avoid disruption in human
activities? A clear architecture and a well-founded, explicit relationship between envi‐
ronment and adaptation are the critical factors; indeed, they are the key that will unlock
context-aware computing at a global scale [103]. Such approaches require the integration
of concepts in User Experience and Context-aware computing in the sense of [26], and
[27] and to see our surrounding environment as a Physical-Digital Ecosystem [104–
106]. Context aware computing is not only key for the smart hospital, but for the overall
smart health principle: Situational awareness can be used to reduce the amount of explicit
input a person is required to provide a computer. Contextual information of what and
where the user task is, what the user knows, and what the system capabilities are, can
simplify the user scenario [107]. Improving the user experience is not enough; we need
concepts, frameworks, and methods that will enable it to consider humans and computers
as part of our complex world full of limitations and opportunities (see also challenge 4).

5.2 Challenge 2: Cognitive Computing

Cognitive computing (cc) is suited to solve medical problems: because it is on how
to deal with complex situations and information uncertainty, and dealing with probable
information is the key challenge in biomedical informatics [108]. The quest towards
a smart hospital requires new breakthroughs in the overlapping area of cognitive
science and computer science: Whilst high-dimensionality of our data is often regarded
as a curse [109], it is also possible that very high dimensionality actually facilitates
processing: for example, numbers (i.e., scalars) can be seen as one-dimensional data,
but in a computer they can be represented by strings of bits, i.e. by high-dimensional
vectors, so a 32-bit integer can be seen as a binary vector in . Such a high-dimen‐
sional representation makes simple algorithms and circuits for high-precision arith‐
metic possible. We can contrast this with one-dimensional representation of numbers.
The slide rule represents them one-dimensionally and makes calculating awkward and
imprecise. Thus, the dimensionality of an entity (a number) and the dimensionality of
its representation for computing purposes (a bit vector) are separate issues – the first
with the existence in our world, the other with the manipulation by algorithms in
abstract spaces – which is more suitable for computing. Pentti Kanerva (2009) [110]
shows a nice example of the advantages of such a hyper-dimensional approach, which
we cannot discuss here due to the limited space but we can summarize: A grand
challenge of cognitive computing is to explore both hyper-dimensional representation
of data and randomness. This brings us further beyond Von-Neumann machines and
is a core topic of brain informatics [111–113] – which may bring us to both smart
health and smart hospitals.

5.3 Challenge 3: Stochastic Computation

Closely related to cognitive computing by emphasizing the aspect of randomness is the
concept of stochastic computation [114]. Stochastic computing (sc) was proposed in the
1960s as a low-cost alternative to conventional binary computing. It is unique in that it
represents and processes information in the form of digitized probabilities and employs
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low-complexity arithmetic units which was a primary design concern in the past – due
to the limited computing power and inaccurate results [115]. Meanwhile, Bayesian
computational techniques such as Markov chain Monte Carlo (MCMC), Sequential
Monte Carlo (SMC), and Approximate Bayesian Computation (ABC) methods are well
established and have revolutionized the practice of Bayesian statistics, however new
grand opportunities have appeared with the emergence of massive, high-dimensional
and complex data sets [116, 117]. Stochastic computation is an approach for the design
of robust and energy-efficient systems-on-chip (SOC) in nanoscale process technologies
[118], which will be vital for smart hospital environments. The reduction of size along
with massive parallelization is one step towards implementing stochastic computation
approaches, hence to overcome classical von Neumann machines to perform meaningful
and accurate computations in neural circuits. Much work is needed here in the future,
but there are promising ideas for the realization of smart health and smart hospital
particularly in programmable and autonomous stochastic molecular automata, which
have been shown to perform direct analysis of disease-related molecular indicators in
vitro and may have the potential to provide in situ medical diagnosis and cure [119].

5.4 Challenge 4: Smart Multi-agent Collectives with Experts-in-the-Loop

Multi-agent systems are an extremely interesting research area [120–123] and are
becoming continually important for solving medical problems (e.g. [124]). Human–
Agent collectives (HAC) are an upcoming class of socio-technical hybrid systems in
which both humans and smart agents may develop a flexible relationship to achieve both
their individual and collective goals. It is increasingly accepted that it is both necessary
and beneficial to involve human experts, working as active information processors, in
a concerted effort together with smart agents [125, 126]. Such approaches are completely
in line with the goal of combining cognitive science with computer science [19],
following the HCI-KDD approach [18]. The challenge in Human-Agent collectives is,
that despite relevant work in the AI, HCI and Ubicomp communities a comprehensive
scientific foundation is lacking, hence is of urgent need for fundamental research; in
particular the challenges are in flexible autonomy (balance control between human
experts and smart agents), agile teaming, incentive engineering and most of all on how
to provide a necessary infrastructure, and the application of machine learning to network
metrics and the human labelling of graphs provide a lot of interesting research challenges
[127]. There are several best practice examples from disaster management [128, 129].

5.5 Challenge 5: Beyond Data Mining

As Yvonne Rogers pointed out in the Foreword to this volume: Being smart about health
data is not straightforward: Smart health has the potential to enable more people to
manage their own health, and in doing so become more aware and better informed. But
it also raises many moral questions. Who owns the health data being collected? Who is
willing to share their health data? Where do the new streams of health data end up? All
these questions must be considered when realizing a smart hospital. These are grand
challenges and not easy to tackle and can be summarized as “What comes beyond data

12 A. Holzinger et al.



mining?”, to close with the words of Tim Menzies “Prediction is all well and good – but
what about decision making?” [130].
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