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ABSTRACT

Labeling a real network dataset is specially expensive in computer
security, as an expert has to ponder several factors before assigning
each label. This paper describes an interactive intelligent system
to support the task of identifying hostile behavior in network logs.
The RiskID application uses visualizations to graphically encode
features of network connections and promote visual comparison. In
the background, two algorithms are used to actively organize con-
nections and predict potential labels: a recommendation algorithm
and a semi-supervised learning strategy. These algorithms together
with interactive adaptions to the user interface constitute a behavior
recommendation. A study is carried out to analyze how the algo-
rithms for recommendation and prediction influence the workflow
of labeling a dataset. The results of a study with 16 participants
indicate that the behaviour recommendation significantly improves
the quality of labels. Analyzing interaction patterns, we identify a
more intuitive workflow used when behaviour recommendation is
available.

Index Terms: Human-centered computing—Visualization
techniques—Heatmap—Labeling– Semi-Supervised learning;

1 INTRODUCTION

This paper describes an intelligent tool to aid the network security
expert in the task of labeling network data. Network security is
a challenging field of research. It builds on data-driven methods
to develop techniques to identify threats, for example, building
predictive models using machine learning or statistical methods [5].
Beyond user authentication, data encryption and firewalls, intrusion
detection systems (IDS) serve as an active defense for the network
environment, monitoring network traffic to identify security breaches
(e.g., Botnet behavior) and initiate countermeasures. Most of IDS
use machine learning techniques to adapt to the fast evolution of
the network environment [7]. Intelligence-based Network Intrusion
Detection System (NIDS) must be trained and evaluated before
deployment using real labeled network traffic traces with an intensive
set of intrusions or attacks [9].

One of the attacks is Botnet malware, that is one kind of threat
of particular interest in network security. It is extremely hard to
detect and can be used as starting point for different kinds of attacks:
key logging, denegation of service and SPAM are some of them [7].
Hereby, one of the most significant issues during the development
of NIDS is the lack of appropriate public datasets [19]. This issue is
originated by three major challenges: i) network data contains sensi-
tive information that organizations and individuals are not willing
to disclose, ii) labeling all published data requires a major human
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effort, which can only be carried out by highly trained experts: se-
curity specialists. Last, the task is so specialized that there is little
prior documentation on what steps security experts follow on their
decisions (iii).

Responding to the challenge of releasing network data without
revealing sensitive information (i), the Stratosphere Intrusion Pre-
vention System (IPS) proposes an encoding of network behavior to
facilitate the release of network data to the community [4].

Our contribution addresses the second challenge (ii) by building
an intelligence based visual analytics application – RiskID – to assist
the labeling of network traffic datasets. RiskID builds on the Strato-
sphere IPS encoding to ensure anonymity of network labeled data
and combines visualization with machine learning to facilitate the
recognition of malicious traffic. In this respect, the application uses
several methods to classify, cluster and organize connections accord-
ing to behaviour similarity as well as to directly predict labels. This
intelligent guidance offers a portfolio of possibilities to approach
the labelling process. Our second contribution lies in analyzing with
an user study the workflows (iii) that participants follow depending
on the type of intelligent guidance made available to them and the
efficiency they achieve.

We can summarize the contributions of this paper in two ways:
• An interactive tool that through semi-supervised learning and

visualization techniques improves the quality and speed of
labeling by experts.

• A study of the strategies followed by users in the process of
creating a real traffic labeled dataset.

RiskID is released as open source to improve and further develop
the security communitys ability to perform botnet threat labeling.
The code and data of this paper is publicly available and could be
accessed in the following links 1.

2 RELATED WORK

The lack of labeled datasets is a well-known problem in network
security and has been addressed considering different aspects. An
appropriate division of network traffic dataset labeling strategies
depends on whether or not user assistance techniques are performed.
Most of the examples found in previous works belong to the variant
of automatic labeling (not user assistance): DEFCON [1] gener-
ate labeled traffic captured during the ”Capture The Flag” hacker
competition, CICIDS2017 [17] using a testbed architecture and
the B-Profile system [11] to generate and capturing labeling traffic,
Bhuyan et al. [9] and Mukkavilli’s et al [14] performed an automatic
labeling using Injection Timing technique. Injection Timing is a
widely used method consisting of recreating a network environment,
control the flow during a period of time and take a known-good
traffic capture injecting malicious traffic in it. This control of the
network environment is not always possible. Even in controlled
networks, assuring that the training datasets are correctly labeled or
completely free of noise information is extremely hard.

Therefore the use of human experts are essential for annotating
but they are an expensive resource, thus the labeling process must
use expert time efficiently. Consequently, to reduce human effort

1https://github.com/jorgeguerra881215/riskIDemo



in the labeling process it is common to find two main user support:
semi-supervised learning strategies and visual applications. Aladin
project [21] uses a semi-supervised approach [15] on top of active
learning to foster the discovery of the different attack families, and
Gornitz et al. [12] use a k-nearest neighbor approach to detect yet
unknown malicious connections. Even the task of labeling those
unknown connections could be hard labor. In another attempt to
improve the manual labeling of connections, Soule’s et al. [20]
propose a web-based software system. Their tool analyzes raw
network traffic, but despite the visual tools for collaborative labeling,
the process of labeling a large dataset remains an arduous task.
Beaugnon et al. propose a labeling strategy based on interaction
with the expert mixing the two approaches: graphical user interface
(GUI) and active learning [8].

Our contribution differs from previous works because we use a
mixed approach: visualization and machine learning. Our approach
supports the notion of a tight coupling between the system and the
human [6]. Our system incorporates output from different models:
clustering, item-based recommendation and prediction. The visual
interface integrates these outputs in a layout that fosters compari-
son, showing graphically the features extracted from the network
behaviour. It is expected that performance will be characterized
for the entire system, not just the ML component [22]. Therefore
we present an evaluation involving 16 participants to determine the
level of improvement contributed by the intelligent system and the
workflows that experts follow with the system.

3 SYSTEM OVERVIEW

RiskID is an intelligent interactive system combining machine learn-
ing and visualization techniques to assist the user in the process of
labeling network connections. To do so, the application organizes
overview and detailed views of the network behavior for the user to
explore and detect threats related to Botnet traffic.

3.1 Labeling Problem and Connection Characterization

The first approach in designing appropriate visualizations for net-
work traffic analysis and supporting decision making for labeling
should be to understand the objectives and needs of analysts. In
order to obtain relevant information from experts that refer to the
methodology necessary for the task of labelling, we carried out sev-
eral informal interviews with experts on the analysis and labelling of
network traffic. During this period, several prototypes were designed
and iteratively tested to meet the requirements. We supplemented
this information with a review of previous work focused on both
the study of ILAB’s role [8] and the identification of different fea-
tures important for the recognition of botnet behavior. Based on
the knowledge gained from the practice of network labeling, we
identify a set of data requirements and tasks that must be addressed
by our solution. In general, one of the issues founded in the analysis
of requirements is the need to preserve the privacy of network in-
formation. When conducting a more detailed analysis on the data
requirements and tasks, they could be divided into two main cat-
egories: i) Early identification of connections and ii) Analysis of
connection features (e.g IP, destination Port, Protocol, periodicity
with which the same connection is established, size of the package
etc.).

Early Identification of connections: In order to make the labelling
process more effective and efficient, it is important that users can
quickly identify groups of connections that share similar features.
The study with the experts revealed four important requirements to
identify botnet behavior based on quick search: 1) initially an easy
identification of those connections already labeled and unlabeled, 2)
those connections established periodically 3) number of connections
presenting a short duration 4) number of connections with small or
medium size of package.

Analysis of connection: Once those connections were identified
with certain features (referent to periodicity, size and period of
time established) an in-depth analysis is started. Setting a label
for a connection is a process that requires several observations and
comparisons. In this case the user requirements are: 1) filtering
connections by features (port, protocol, similar IP), 2) comparing
connection behavior with another well-known connections group,
for both normal and malicious behavior, 3) analysis of features like
the established time of the connection, size of packages transferred
in the connection, number of connections coming from the same
source IP and port in a certain time interval, 4) easy manner of
handling labels for each decision taken by the user.

Based on the information provided, we start the development
of RiskID to meet the requirements of users for the labeling task:
protecting network flow information, identifying connection groups,
analyzing features and a simplify the process of labeling network
connections.

3.2 System Architecture
RiskID’s architecture is developed based on three main modules to
cover the gained requirements. The Back-End includes a Prepro-
cessing Module, and an Analytics Module. The process starts with a
raw network traffic dataset, usually in pcap (packet capture) format.
The Preprocessing Module is in charge of protecting the information
doing a transformation of a raw network traffic dataset to internal for-
mat –a 10-dimensional feature vector– and passes it to the Analytics
Module. The Analytics Module applies several statistical methods
with the goal to group items and favour the early identification of
behavioural patterns in the dataset of connections. In the Front-End,
the Visual Analytics Module receives the feature vectors, statistics
and grouping information and organizes them in overview and de-
tailed views following the Visual Information-Seeking Mantra [18].

3.2.1 Preprocessing Module

The Preprocessing Module performs two conversion processes, each
inside a specific submodule: the Network Pattern Extractor and the
Feature Extractor. The former takes care of annonymization and
the later of feature generation (two user requirements mentioned in
section 3.1 ).

Network Pattern Extractor Submodule: The Network Pattern
Extractor Submodule implements the Stratosphere IPS encoding [4]
with two purposes: to reduce the usually considerable size of the
network traffic data, and to guarantee data anonymity during the
labeling process.

The Stratosphere IPS encoding aggregates network flows accord-
ing to a 4-tuple composed of: the source IP address, the destination
IP address, the destination port and the protocol. All network flows
aggregated under a single 4-tuple are referred to as Stratosphere con-
nection (SC), which represents the temporal behavior from one IP ad-
dress to a specific service running on a specific IP address. For each
flow in a SC, the encoding considers the size, duration and periodic-
ity of packet exchange and uses characters to encode them such that:
a letter defines a 3-tuple encoding < perliodicity,duration,size >
of a flow, a number indicates the lack of data to confirm the 3-tuple
(which is normal at the beginning of a SC), a symbol indicates the
time elapsed between flows. The Stratosphere project has been using
this model for 5 years. It currently has a thesis and several scientific
works that somehow support the importance of these features [4].

Fig. 1 shows a sample SC with symbols representing all the flows
for a SC based on TCP protocol from IP address 147.32.84.164 to
port 80 of IP address 209.85.148.103. The SC represents 24 flows
(count of characters between numbers and letters).

Feature Vector Extractor Submodule: The Feature Vector Extrac-
tor Submodule generates a condensed representation of the network
traffic dataset and represent the last data arrangement. It summarizes
a SC into a 10-dimensional numerical vector denoted as feature
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Figure 1: The behavioral encoding of connection c-80 from IP address
147.32.84.164 to destination port 80 at IP address 209.85.148.103
using TCP.

vector:
< xsp,xwp,xwnp,xsnp,xds,xdm,xdl ,xss,xsm,xsl >. The first four di-
mensions of the numerical vector represent the periodicity feature
(strong periodicity (sp), weak periodicity (wp), weak non periodic-
ity (wnp) and strong non periodicity (snp) respectively ), the other
three refer to duration feature (duration short (ds), duration medium
(dm) and duration large (dl) respectively ) and the last three repre-
sent the size feature (size short (ss), size medium (sm), size large
(sl)). The feature vector for a given connection is generated con-
sidering, for the complete symbol sequence, the cumulative fre-
quency of the corresponding values associated with the behavioral
encoding. At the end of the sequence, a percent of each feature
is calculated and normalized to [0,1]. Formally each x j where
j ∈ {sp,wp,wnp,snp,ds,dm,dl,ss,sm,sl} it is defined as:

x j =
1
N ∑

N
i=1 I(ti ∈ S j) (1)

Where N is the count of symbols that make up the SC, ti the i-th
symbol in the SC and S j the set of characters that represents the j
feature in whole connection behavioral encoding. Finally I(.) is the
indicator function. As example, the feature vector resultant for the
connection c-80 is:
< sp : 0,wp : 0.13,wnp : 0.21,snp : 0.58,ds : 0,dm : 0.25,dl :
0.66,ss : 0.25,sm : 0,sl : 0.66 >

Notice that the resulting vector after the transformation provides
a similar information level about the SC except for the temporal
behavior (i.e. historical information about network flows).

3.2.2 Analytics Module
For relevant information about the set of connections in the dataset
the Analytics Module organizes 10-dimensional feature vectors ac-
cording to standard similarity measures using a specific submodule:
the Similarity Module and makes a prediction of label for those
unlabelled connections through the Prediction Module.

Similarity Module: The model performs two grouping strate-
gies. The first grouping strategy is based on clustering. Clustering
improves the process of comparing SCs by offering a first approxima-
tion of similarity inside the dataset. Clustering is implemented using
a k-means algorithm based on L2 distance to form the groups. The
optimal number of groups is selected by the Elbow method, which
consists of increasing the number of clusters until the marginal gain
of the variance explained by the model is negligible.

The second grouping strategy is implemented considering the
similarities between all the SCs in the dataset. The Similarity Mod-
ule implements a similarity matrix by iterating over each SC in the
dataset and ranking the remaining SCs according to the cosine dis-
tance function, much like an item-based recommender system. In
this way, once a connection is selected from the list, the remainder
connections are arranged by their similarity with the connection
selected. This functionality improves the detection of sets of con-
nections with similar features.

Prediction Module: The integration between specialist and com-
puter tools are the key to building a great labeled dataset. Part of
the interaction that we can get in RiskID is performed by Prediction
Module. As the user interacts with the visual components and sets
up the first set of labels, the system can learn about the importance
of certain connection’s features and their relation with the labels.
Hereby, a semi-supervised learning strategy in the Prediction Mod-
ule learns a model to issue Botnet predictions, whereby (i) label
probability for connections without label is implicitly generated

from behavior information as labels are assigned, and (ii) a label
prediction bar in interface represents the predictions. Therefore, a
minimal set of labeled connections is needed. Such first labeling
process can be done following a simple selection and comparison
strategy using the visual components that we will explain in sec-
tion 3.3. The Prediction Module monitors the number of labeled
connections. If the number of labels rises over two percent, it trig-
gers an autonomous process for learning behavior associated to
connections using the available labels. The process is carried out in
the background and does not affect the user’s interaction with the
application.

After a learning cycle, the Prediction Module will include the
resulting model to predict Botnet class probability for each unlabeled
connection. All unlabeled connections with a probability higher than
0.5 will be predicted as Botnet while those below or equal to 0.5
will be predicted as Normal.

As a basic means of evidence for the prediction, Prediction Mod-
ule outputs a Support Level (SL) for each prediction. SL of a con-
nection with a predicted label refers to the percentage of connections
with a similar port within the training set with which the prediction
was made:

SL(scp) =
|scpt |
|scpd | (2)

Where scp refers to a SC with port p, scpt is the set of connections
with port p inside the training set and scpd the set of connection with
port p in whole dataset.

3.3 User Interface
The application design focus on facilitating to the user a set of visual
tools to analyze the connection composition and the dataset being
labeled. The user can interact with the different components of
the application to obtain insights for improving the precision and
confidence of the labeling process.

To address users requirements mentioned in section 3.1 the
RiskID UI design has two main blocks with different levels of
information detail, see Fig. 2. The application displays general
information about the dataset composition in the first block together
with the Connection Overview shown as a list of SCs (Fig. 2 A).
The second block shows a Detailed Connection View (Fig. 2 B). For
each connection selected in the list, the connection viewer displays
detailed information about the connection including its current label.

The Connection List: Aiming to assist the aforementioned re-
quirements of network threat labeling, in RiskID, we choose to use
a multi-grouping Heatmap to represent the pool of SC (see Fig. 2 A)
over other visualization methods for several reasons. A Heatmap is
most often applied to data gathered from microarrays [16], which is
a suitable analogy to the feature vector of an SC. Thus each SC is
represented with a Heatmap illustrating its feature vector. Joining all
connections constitutes a multi-group Heatmap. Variations in hue
represent different feature types: orange:periodicity, green:duration,
blue:size. Variations in value represent numerical value (darker
is higher). The Heatmap serves many purposes: i) it provides an
overview of behaviours in the dataset, ii) it lets the user easily recog-
nize predominant features of each SC and iii) it intuitively relates
SCs with similar features.

On the other hand, in order to support the task of analysis and
identification of connections, SCs in The Connection List are orga-
nized into clusters (assigned in the Analytics Module) according to
similarity in encoding behavior. Varying background colors help
identify cluster boundaries in the list, giving the user a first approxi-
mation of similar connections. The label of an SC is shown with a
traffic light metaphor (circle on the left): red circle means ”Botnet”,
green circle means ”Normal” and yellow circle means ”Unlabeled”.
As the user labels a new connection, the color of the circle changes
accordingly. The position of the circle and its color facilitate the
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Figure 2: RiskID application. Left block (A) displays a visual representation of all connection in the dataset grouped by their similarity (from letf to
right: prediction bar, support level of prediction, current label, connection index, color representations of the feature vector). Right block B displays
mean details of selected connection (histogram of behavioral model, pie chart of periodicity feature, buttons for labels selection). Sections C and D
represent filtering and query options of the behavior model respectively.

Figure 3: Prediction bar and confidence level added in connection list
view after each learning and prediction process.

analysis of groups of connections with same labels. It also helps the
user find potential connections to be labeled.

A new dataset initially has all connections unlabeled. Once a user
sets enough labels, The Prediction Module comes into action and an
alert notifies the user about label recommendations. Each unlabeled
connection receives a prediction bar with the red color indicating
the percentage of probability of Botnet. Green color indicates the
percent of probability of Normal. Next to the bar, a numerical value
indicates the support level of that prediction. This minimalist visual
cue aims to make it easy to compare predictions over several SCs
and decide where to continue labeling. Fig. 3 illustrates the label
recommendation bar that appears next to an unlabeled connection
(c-80, in the example). Finally, the user can customize the list of
connections using a set of filtering options that appear at the top of
the list (Fig. 2 C),e.g., filtering by label.

The Detailed Connection View: A second information block aims
at a more in-depth analysis of connections. The Detailed Connection
View, located on the right section of the application (see Fig. 2 B),
displays detailed information about selected connections, includ-
ing: Origin and Destination IP Addresses, Destination Port and
Protocol. This network information can be used for filtering the
Connection List,e.g., select from List of Connections all connections
with SMTP protocol. Hereby, the user can inspect a particular subset
of connections that share the selected network features.

To perform a deeper analysis, the Detailed Connection View
includes also a bar chart describing the frequency of occurrence
of each character from the behavioral encoding (see Fig. 6 C.6).
Looking at the bar chart, the user can easily observe the differences
between the character distribution along different connections. Be-
sides, Garcia et al. emphasized the importance of periodicity for
recognizing Botnet behavior [10]. Hence, the detailed connection
view includes a pie chart illustrating the distribution of periodicity

for each connection (Strong Periodicity, Weak Periodicity, Weak
Non-Periodicity and Strong Non-Periodicity) (see Fig. 6 C.3). For
users that prefer to see raw information, the original symbol-based
behavioral encoding is available upon clicking a button (see Fig. 6
C.4). Finally, once decided, the user can establish the chosen label
with a button click (see Fig. 6 C.5). Label changes are immediately
reflected in the application and can be edited at any moment.

3.4 Interaction design

In this section, we present an example use-case that was carried out
by a fictional analysts, Marie. The key goal with this section is to
illustrate how analysts would label threat connections on RiskID.
Maries task is to label a new dataset of connections captured during
a networking day. The ultimate goal is to get as many connections
as possible labeled as either Botnet or Normal. The resulting dataset
will help train an IDS for early threat detection.
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Figure 4: Screenshots of RiskID showing the steps taken by Marie
to upload a new pcap file, study the Heatmap generated with the
information loaded and select the connection with ID 76.

Marie is a specialist in network traffic analysis and receives a no-
tification from the network administrator that she has the May 22nd



network traffic capture available. In Fig. 4.A she loads the raw file
pcap into RiskID. The application internally starts (in background)
the preprocessing of the information that includes: extraction of
features and coding of the network traffic in the Stratosphere model
of letter, generation of the feature vectors, grouping of the vectors,
creation of the similarity matrix and finally displaying the Heatmap
on the main screen (see Fig. 4.B). Once the preprocessing is finished,
the user can start interacting with the application. Marie starts look-
ing at the Heatmap and notices that there is a small group of very
similar connections that have a periodic behavior during a short time
and small traffic size of package. Then Marie clicks the connections
with ID 76, trigering a reorganization of the Heatmap according to
similarity with the chosen SC (Fig. 4.B.1). A second view (inside
the Detailed Connection View) displays relevant information about
the selected connection (see Fig. 4.C). In addition she consults infor-
mation of the selected connection: the protocol icmp, port 8618 and
origin IP 147.32.84.164 (see Fig. 6). To reduce the analysis spectrum
she filters the Heatmap of connections by the icmp protocol. Then
she observes in the list of connections the remaining connections
that have a Heatmap (each connection is a Heatmap in itself) simi-
lar to the one she is analyzing to see their features too. Basing on
comparisons she makes on the features of the connections and the
behavior that these present, Marie concludes that the connection
with ID 76 has a malicious behavior and she labels it as Botnet.
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Figure 5: Screenshots of RiskID showing the steps taken by Marie
to accept recommendations, identify connection (ID 108) with high
Botnet probability and analyze the available detailed views to finally
decide a label.

Marie, using the previous strategy, continues to label connections
that she finds similar to the others. Once she has completed 2% of
the dataset she receives a notification that a label recommendation
is ready to be displayed (see Fig. 5.D). Automatically accepted
the recommendation, a Botnet/Normal behavior recommendation
appears to the left of each unlabeled connection in the Heatmap
(Fig. 5.B.2).

Returning to the visualization, once there is a recommendation,
the prediction probability and support level aim to help the expert
decide which connection to pick next. We believe that once the first
recommendation has been made, the labelling process is sped up
favouring subsequent recommendations. It is a human-computer
system that is becoming increasingly effective. Now Marie has a
new feature that will speed up her labeling task. Using the recom-
mendation, Marie realizes that connection with ID 108 has a high
Botnet probability and a 29% of confidence. Upon choosing the
connection 108, it is brought atop the detailed connection view, the
connection list is reorganized by similarity and two other SCs are
brought to the detailed connection view: the most similar ”Botnet”
labeled SC and the most similar ”Normal” labeled SC. The idea is
to offer the expert a quick way to access the character distributions
and periodicity charts for quick comparison (see Fig. 5.E).
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Figure 6: Elements that are part of the detailed view of a SC. C1 shows
features like IP Origin, IP Destiny, Port and Protocol. In addition,
C1 allow users filter connection by these features. C2 represent
the Heatmap of the feature vector. C.3 display a pay-chart for the
periodicity feature. C4 allow users consult the Stratosphere encoding.
C5 are the buttons to set the decided label for the connection. C6
means the letter distribution. C7 represent the current label for the
connection, in this example the connection has not been labeled yet.

Marie analyzes the features of the selected connection and the
connections followed by this in the detailed view. After a compar-
ative analysis, she decides that the connection with ID 108 shares
many similarities with the connection previously labeled as Botnet.
Marie finally accepts the recommendation given by the system and
labels the connection 108 as Botnet. After some time of labeling
connections and receiving label recommendations from the appli-
cation, Marie decides that the dataset has an acceptable number of
labels. Finally, Marie downloads the resulting dataset with most of
the labeled connections. She then makes the labels available to the
administrator to train the next IDS.

4 USER STUDY

We conducted an online user study to assess the value of the vi-
sualization techniques combined with a machine learning labeling
prediction strategy (Learning Prediction Module). The use of the
prediction Module is then contrasted to labeling just with the visual
tools and features of the networks flows. The study compares four
versions of the tool, offering a view of gradual inclusion of intel-
ligent guidance. While our target is to assess the influence of the
Learning Prediction Module, we do so considering the entire label-
ing task. Hence, we analyze the workflow and labeling strategies in
each case, considering that the use of a prediction tool can increase
the complexity of the UI, and potentially lead to a system that is
too difficult to understand and use. In this study, we address such
concerns in detail.

4.1 Evaluation Methodology
The study used four version of RiskID to measure the impact of
each feature inside the system: (i) Simple users set labels in a semi-
labeled dataset only using filter and visual tools without support
from the analytics module, (ii) CSM users set labels as in (i) but
the Heatmap reorders by cosine similarity upon selection of an SC
(form analytics module only using the Similarity Module), (iii) LPM
users set labels as in (i) but with a label predictions added (form
analytics module only using the Prediction Module), and (iv) Full all
functionalities are available (filters, visual tools, Heatmap reordering
and prediction).

4.2 Dataset Description
The study was conducted using the CTU-13 group of datasets [3],
which consists of a group of thirteen different malware dataset cap-



tures conducted on a real network environment taken from Czech
Technical University in Prague (VUT) university campus networks.
Datasets are publicly available as part of the Malware Capture Fa-
cility Project (MCFP) [2]. For the purpose of the study, the thirteen
datasets were merged to create a unique CTU-13 Dataset.

4.3 Participants
We recruited participant from the last year of Informatics Engineer-
ing career in the National Technological University in Mendoza,
Argentina. The RiskID study was part of a final evaluation of the
Computer Security course. This guarantees that participants had
knowledge of computer networks and security fields. Since the task
required dealing with network flows, it was crucial that participants
have an appropriate background but that they were not security ex-
perts. A total of 16 people took part in the study, from which 4
users worked with Simple version, 5 worked with CSM version, 3
worked with LPM version and the remaining 4 whit the Full version.
Demographic information is summarized as follows:

• Age: 15 [20-29] years old, 1 [30-39].
• Gender: 4 female, 12 male.
• Highest level of education: 16 Bachelor student.
• Worked in the field of Network Security: 16 none
• Created datasets for analysis of network threats before: 16

none.
• Labelled datasets identifying bot activity before: 16 none.
• Used visual analysis tools to label datasets before: 4 yes, 12

none.

4.4 Procedure
The study was carried out in a single session with each of the 16
participants using an individual computer. Each participant was as-
signed to a condition randomly. Participants first received a step-by-
step video tutorial introducing the main features of RiskID. The tuto-
rial covers explanatory features such as color-codes in the Heatmap,
behavioral model and prediction bar (for participants using LPM
and Full). Thereafter, they had five minutes to get used to the sys-
tem, e.g get familiar with Heatmap, connection selection, adjusting
filter parameters. Participants were then presented with the task of
labeling as many connections as possible. We asked participants to
imagine they are network security workers and had to detect nor-
mal and botnet connection flows in the network. The dataset had
25% of labels to simplify the task and foster comparison. The LPM
and Full version have a total of 2145 connections recommended
as Normal (less than 0.5 Botnet probability) and 4843 connections
recommended as Botnet (equal or more than 0.5 Botnet probability).
The prediction has an accuracy value of 0.9. Participants worked
over 45 minutes with the app version assigned. They basically ahd
to find ”unlabeled” connections and label them either as ”Normal or
Botnet”. Participants chose an anonymous username in the app, and
a screen showed a scoreboard with the count of labels for anonymous
name. Showing the scores with anonymous usernames encouraged
participants to label more SCs.

4.5 Measurements
User Behavior. The session was logged. The start time and the
time for each label event were logged as well as UI actions such as
selecting a connection, opening details for a connection, etc. At the
end of the session, participants had to fill a NASA TLX questionnaire
[13] and a post-questionnaire asking about the interpretation of the
interface visual features and the workflow followed during labeling
task.

System Accuracy. We computed the True Positive Rate (TPR)
( correctly ”Botnet” labels selected), True Negative Rate (TNR)
(correctly ”Normal” labels selected), False Positive Rate (FPR) (set
incorrect ”Botnet” labels) and the False Negative Rate (FNR) (set
incorrect ”Normal” labels) for each connection labeled. Using TPR,

Table 1: Number of labels obtained by the users in every tested app
version (Simple, CSM, LPM, and Full).

Version Users Labels(Correct) Normal(Correct) Botnet(Correct)

Simple 4 98(71) 53(28) 45(43)
CSM 5 68(45) 26(14) 42(33)
LPM 3 87(73) 36(25) 51(48)
Full 4 106(104) 45(43) 61(61)

TNR, FPR and FNR we estimated the final accuracy for each app
version.

Accuracy = (T PR+T NR)
(T PR+T NR+FPR+FNR) (3)

Hypotheses
Intuitively, versions without Prediction Module (Simple and CSM)
require more fine-tuning actions to identify a real pattern in the
connection and set a label. We then expected to observe differences
in system performance, labeling workflow and user satisfaction when
the users try to complete the labeling task. For example the only
difference in control features between version with and without a
prediction module is the prediction bar as part of connection list.
Clearly, participants working with versions using label prediction
(LPM and Full) have another factor that influence their decisions,
but that bias could affect or improve the performance. We then build
the study based on the following hypotheses:

H1: Prediction of labels significantly improves labeling per-
formance. We hypothesized higher system performance for the
prediction tool with labeling interactions, though influenced by the
amount of correct and incorrect labels.

H2: The number of correct labels increases over time for
users using the versions with prediction (LPM and Full). Users
of the versions LPM and Full would increase the system under-
standing over time. The experience with the system, in this case,
could influence the detection of groups of connections and the speed
of complete the labeling task. The quality of labeling must be de-
termined by the cumulative experience and the acquired ability to
identify similar patterns.

H3: Participants will follow a different labeling workflow in
those version of the system including prediction. Participants in
the prediction conditions LPM and FULL have a hint regarding what
the system considers the label of a connection would be, based on
available evidence. Therefore, we assume that they will perform
less actions for each label and / or they will rely on different actions
for their decision. However, we make no assumption as to which
actions are more appropriate to successfully label a dataset.

4.6 Results
This study aimed to analyze the workflow and decisions taken while
looking for undesired behavior in network logs. We performed
analyses of performance, effort and time spent, workflow analysis,
and the personal experience.

H1: Prediction of labels significantly improves labeling perfor-
mance.
We analyze performance based on the quality of labels obtained for
each version during the 40 minutes (first 5 minutes were for with the
system). The whole study resulted in 359 SCs labeled, 160 Normal
and 199 Botnet. The 82% of the connections (293) were correctly
labeled and the remainder 18% (66) incorrectly classified.

Fig. 7 a) shows for each condition the distribution of connections
correctly and incorrectly labeled (green and red respectively). At
first glance, versions with prediction (LPM and Full version) seem
to obtain better results. Table 1 shows the exact results in accuracy.
The first column represents the versions, the second column the
number of participant for each version, in the third column the count
of labels established, columns four and five show the number of
Normal and Botnet labels respectively (in parenthesis the number
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Figure 7: General labeling result for each application.

Table 2: Prediction utility for users that worked with version using
prediction feature (LPM and Full version).

Prediction utility LPM Full

Useful and effective prediction 72 103
Useful and not effective prediction 2 1
Not useful prediction 0 1
Not useful but effective prediction 11 1

of correct labels). Participants using Full version of the application
labeled more connections and with almost a 100% of success (104
connection correctly labeled over 106 labels). Mann-Whitney U
tests revealed no significant difference between Simple and CSM
(p ≈ .82). Neither between LPM and Simple nor between LPM
and CSM (p ≈ .66 and p ≈ .08). Instead, participants with Full
were significantly more accurate (p < .05) compared to all other
versions. The boxplot in Fig. 7 b) confirms these results. Participants
working without prediction had relatively poor performance and
broad variance.

Prediction Utility
Fig. 8 shows labels chosen in accordance with system prediction.
The X-axis shows participants that worked with prediction (LPM and
Full) and the Y-axis displays the Botnet probability (prediction) for
each unlabeled connections. A green point in the Fig. 8 represents an
SC correctly labeled and a red point an SC incorrectly labeled. First,
note that most of the labeled connections lie in an extreme of Botnet
probability (close to 0=Normal or close to 1 = Botnet). Therefore
most of users followed the label recommendation to complete the
task. Furthermore, some connections were labeled despite confusing
recommendation (connection with probabilities between 0.25 and
0.75). Most of the labeling mistakes (red dots) occur in connections
having a confusing recommendation.

Table 2 presents a prediction utility comparison between the LPM
and Full version. It considers whether the participant followed the
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Figure 8: Labels according to prediction got by users that worked with
versions using prediction feature (LPM and Full version).

prediction and whether it was correct. The first column represents
our prediction utility indicators (Useful and effective prediction: the
user set the same label that was indicated in the prediction and this
is correct, Useful and not effective prediction: the user relies on the
prediction, setting the same label but this is incorrect, Not useful pre-
diction: the prediction is incorrect but the users establishes correct
labels avoiding the recommendation, and Not useful but effective
prediction: the users setting wrong labels avoiding the recommenda-
tion). In both LPM and Full, participants mostly trust the prediction.
Most labels were set over Useful and effective prediction. When
participants did not rely on the prediction they obtained a poor re-
sults. Participants in LPM wrongly labeled 11 SCs obviating the
prediction (Not useful but effective prediction). One notable aspect is
that, while prediction improves the results, only the full version that
also incorporated similarity recommendation obtained significantly
better results. All this evidence supports H1.

H2: The number of correct labels increases over time as users
use the versions with prediction ((LPM and Full)).
Fig. 9 illustrates labeling accuracy over time for each version and
participant (in left the number of labels established by users of the
different versions over each period times and in right the accuracy
of labeling for the same period time). For this analysis we divided
the participant interaction time in eight intervals. The X-axis repre-
sent the eight intervals and the Y-axis represents participants. The
intensity of the blue color represents the accuracy/presence of labels
for a participant in the corresponding time interval. Note that every
participant in Simple took 3 intervals to the first label and only one
participant in CSM started right away. In most of cases participants
set the first label at or after the second time interval, approximately 6
minutes after starting. Users of Simple and CSM improved partially
their labeling result. Users of LPM improved towards the end of
the process (most intense blue after the sixth interval). Also, we
perceive a lack of stability in labeling quality for participants in
Simple and CSM version (constantly changes in color intensity). In
case of Full version, two participants set labels in the first minutes
of the study getting good results. Generally, the users of the Full
version presented a regular performance in the whole process (most
of intensive blue color). These results provide evidence that supports
H2.

H3: Participants will follow a different labeling workflow for
applications with prediction.
We performed action analysis of logged activity to study the work-
flow participants follow for labeling. To this end, we categorized
actions in five types (filtering, details, letter, overview and label-
ing). This actions are in-line with known visualization workflow
(overview, filtering, details). All filtering actions (filter by IP, filter
by port, protocol, etc.) fell under the filtering category. We distin-



u12

u15

u2

1 2 3 4 5 6 7 8

time intervals

u
s
e

rs
 (

S
im

p
le

)
Number of Labels

u12

u15

u2

1 2 3 4 5 6 7 8

time intervals

u
s
e

rs
 (

S
im

p
le

)

Accuracy

u13

u16

u6

1 2 3 4 5 6 7 8

time intervals

u
s
e

rs
 (

C
S

M
)

u13

u16

u6

1 2 3 4 5 6 7 8

time intervals
u

s
e

rs
 (

C
S

M
)

u10

u4

u8

1 2 3 4 5 6 7 8

time intervals

u
s
e

rs
 (

L
P

M
)

u10

u4

u8

1 2 3 4 5 6 7 8

time intervals

u
s
e

rs
 (

L
P

M
)

u14

u17

u7

u9

1 2 3 4 5 6 7 8

time intervals

u
s
e

rs
 (

F
u

ll)

u14

u17

u7

u9

1 2 3 4 5 6 7 8

time intervals

u
s
e

rs
 (

F
u

ll)

Figure 9: Labeling result for each version (Simple, CSM, LPM, Full)
in different period of times. Left column shows the number of labels
established by users into 8 time periods. Right column shows the
labeling accuracy for each users in thee same intervals.

guish two labeling actions (label botnet, label normal) and separate
the detail actions (connection details=details, connection symbol
sequence=letter). The overview actions represent the use of option
of clean the filters or reset the connection details block, and going
back to the overview display.

Fig. 10 illustrates the different strategies each user followed to
accomplish the labeling task using Simple, CSM, LPM and Full
versions respectively. In Simple and CSM (first and second graphs)
most users relied on multiple comparisons (detail actions) to arrive
at label (e.g. users u15, u6, u13). In some cases, the letter sequences
(behavioral model) was opened and filter actions applied by different
fields, but they did not seem to influence the labeling: in most cases
filter or letter action a were not followed by label actions. Instead,
users continue to make comparisons to arrive at the decision of a
label (e.g. u2, u13, u16). Otherwise, u12 (in Simple) made use of
filter and letter actions to establish the labels. For this case, it is
notable that several label actions occur shortly after having used a
filter or having observed the letter behavior. Another aspect that is
striking is that three participants failed to label any connection: one
in simple (u5) and two in CSM (u11, u3).

The bottom two charts in Fig. 10 represent the strategies employed
by participants using the prediction feature (LPM and Full version
respectively). Note that for these versions all users established labels.
This sub-group of users favored filter followed by letter actions as a
means to find unlabeled connections that shared characteristics with
labeled ones. In most cases we see a use of the filters and the letter
preceding labeling actions (eg. u10, u4, u14, u17, u7).

Deeper into the user workflow, in Fig. 11 we analyzed a set of
variables that influenced labeling. From top to bottom the topmost
two charts show the average time and average actions per label.
The remainder charts display the average number of three specific
actions per label (filters, details, and letter). Note in the fist chart that
Simple version and CSM version has the less mean time per labels
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Figure 10: Workflows for each set of users (from top to down: Simple,
CSM, LPM, Full version). Actions are distributed from top to bottom
in five levels: filtering, details, letter behaviors, reset and labeling.
Participants followed two different strategies, users that worked with
prediction feature concentrated on filtering while users without these
features used details and comparison.

than LPM and Full versions. In case of actions by labels (second
chart), the difference between versions is less observable. We can
also see a difference in the use of filters by labels for the Full version
respect another (third chart). We can not say the same for detailed
actions (four chart) because there is not notable differences.The
last chart reflects a greater use of behavioral model queries by the
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Figure 11: Percent of time, actions, filters, details and behavioral
model respectively during the labeling task.

LPM version. Despite this observed differences a Mann-Whitney U
test revealed that there is not significant differences between each
version. These result provide evidence that partially supports H3.

4.7 Discussion and Limitations

In this study we assessed overall accuracy and user workflow for a
visual labeling system: RiskID. A group of participants interacted
indistinctly with different versions of the application to measure the
impact of the different visual and intelligent components. Users had
the task to label a real network dataset. We measured the accuracy of
this labeling process. Analyzing the patterns of users while selecting
connection in a list, searching patterns to make comparisons and
setting Normal or Botnet labels. One of our contributions is in
analyzing the different strategies that lead users to label flows of real
connections.

Accuracy in the labelling task was acceptable considering that
users were working with the application for the first time. A total
of 359 connections were labeled between all versions obtaining
an 81% of correct labels. The study design allows to emerge how
accuracy improves as intelligence based features are added in the
system. Participants in Simple versions got an 72% of good labels.
The CSM version added the recommendation features, re-ordering

by similarity the connection list when a connections is selected.
Participants working with CSM obtained an 66% of good labels.
The LPM extends the Simple version with a label prediction feature.
Participants working with LPM obtained a 83% of good labels.
Finally participants in the Full version obtained 98% of correct labels.
This result evidences that integration of all feature significantly
improvement the labeling result.

In terms of adaptability to the system, participants mostly began
the labeling task after the first six minutes of interactions. Three
of the users (one in Simple version and two in CSM version) did
not feel comfortable enough with the system to issue any label.
Time to the first label was reduced in prediction versions LPM and
Full. Participants learned early to trust the prediction, but note that
participants performed more actions and spent equal amount of time
per connection in the Full version. We suspect that participants used
several actions and time to check whether the prediction was correct.

In terms of workflows we expected to see different labelling
strategies. The tools for predicting and grouping similar connections
provide the user with a more complete interface for pattern detection.
In spite of not observing significant differences in the workflow of
each version we can notice that in the case of the versions with
prediction the filter actions precede labeling actions. Seeing that
these versions obtained good performance in the labeling we can
say that the filters were influential to classify a large part of the
connections of these versions.

As for shortcomings, the prediction feature is an advantage but
could be a limitation. When a new dataset is loaded in system to
be labeled the users initially have a CSM version to established
the first labels. Only when the number of tagged connections ex-
ceeds two percent of the dataset, users begin to have the first label
recommendation. It is widely known that a classifier performance
will be influenced by the quality of the labeled data used. Since
the Prediction Module builds the learning model with connections
labeled according to users opinion, the quality of the labels will
impact directly in the final prediction.

5 CONCLUSIONS

In this paper we introduced RiskID, a visual analysis tool to aid
the network security expert in the task of labeling network data.
Visual representation of network flows, machine learning and rec-
ommendation algorithms are put together to help the understanding
of the main characteristics of real connection sets and consequently
improve the quality of the resulting dataset.

A user study was conducted to observe the effects of the algo-
rithms workflows and the contribution of the different components
included inside RiskID. Four different RiskID versions were pro-
vided the users. According to results from post questionnaires, the
visual and interaction design of the four versions were well received
by the users. From the usability and workload point of view, RiskID
was relatively simple to learn and usable for all participants. More-
over, users reported low effort in using the tool. In particular, study
results showed clear evidence of the benefits provided by the RiskID
version including visualization techniques and the intelligence based
strategies (Full version). However, no significant differences were
observed in user workflows when comparing different versions of
RiskID.

Future works should be oriented towards analyzing the impact of
RiskID in front of different scenarios: prediction robustness working
with noisy data, learning rate, and others.
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