
Protecting RISC-V Processors against
Physical Attacks

Mario Werner∗, Robert Schilling∗†, Thomas Unterluggauer∗, and Stefan Mangard∗
∗Graz University of Technology

Email: {firstname.lastname}@iaik.tugraz.at
†Know-Center GmbH

Abstract—RISC-V is an emerging instruction-set architecture
suitable for a wide variety of applications, which ranges from
simple microcontrollers to high-performance CPUs. As an in-
creasing number of commercial vendors now plans to adopt the
architecture in their products, its security aspects are becoming
a significant concern. For microcontroller implementations of
RISC-V, one of the main security risks are attackers with direct
physical access to the microchip. These physical attackers can
perform highly powerful attacks that span from memory probing
to power analysis up to fault injection and analysis.

In this paper, we give an overview of the capabilities of attack-
ers with direct physical device access, common threat models and
attack vectors, and possible countermeasures. Besides, we discuss
in more detail current approaches to secure RISC-V processors
against fault injection attacks on the microchip itself. First, we
show how to protect the control-flow against fault attacks by
using an encrypted instruction stream and decrypting it on-the-
fly in a newly added pipeline stage between the processor’s fetch
and decode unit. Second, we show how to protect conditional
branches against fault injection by adding redundancy to the
comparison operation and entangling the comparison result with
the encrypted instruction stream. Finally, we discuss an approach
to protect all pointers and memory accesses from tampering.

Index Terms—RISC-V, physical attacks, fault injection, coun-
termeasures

I. INTRODUCTION

Software is an essential building block in today’s computing
devices. To ensure their proper functioning, developers hence
need to take care of implementing software correctly, i.e., in the
absence of both functional and security flaws. Hereby, software
including software countermeasures is commonly designed by
assuming the underlying processor executes correctly as well.

However, in embedded applications such as for the growing
market of Internet of Things (IoT), this assumption is too
strong as these applications often allow attackers to gain direct
physical access to the computing hardware. Here, the attacker
modifies the internal state of a processor, e.g., by inducing
voltage or clock glitches [2], [4] or shooting with a laser on
the chip [26]. This physical access facilitates a wide range
of attacks that permit to skip instructions, change instruction
opcodes or register values, redirecting a memory access, and
modifying the control-flow, and thus renders the assumption of
correct hardware invalid. While these attacks require physical
access, attacks like exploiting the Rowhammer effect [11], [16]
can even be induced via Javascript [11] or entirely remotely
over a network interface [18], [30]. Eventually, even correctly
implemented software without security vulnerabilities may

deliver wrong results. Further, any software-based security
mechanisms cannot be trusted anymore since they always
assume the correct execution of the software.

Consequently, embedded computing platforms must incor-
porate security mechanisms to cope with this threat and
protect the system against fault attacks. As RISC-V is an
emerging open Instruction-Set Architecture (ISA) particularly
in the field of embedded devices, RISC-V based platforms are
increasingly susceptible to physical fault attacks and hence a
highly attractive platform for designing and evaluating physical
fault attacks and countermeasures.

Contribution: In this paper, we present an overview of
techniques to protect RISC-V based embedded computing
devices against fault attacks. First, we present Sponge-based
Control-Flow Protection (SCFP), which is a mechanism to
protect a processor’s instruction stream against tampering
by applying on-the-fly authenticated decryption. Doing so
enforces Control-Flow Integrity (CFI) meaning that the software
execution has to adhere to its Control-Flow Graph (CFG).
Second, assuming CFI is enforced, we present a concept to
protect conditional branches which ensure that, even under fault
attacks, only genuine control-flow transfers within the protected
CFG are possible. The concept utilizes a combination of AN-
encoded data values, specially developed encoded comparison
algorithms and linked branch operations to obtain this protec-
tion. Third, we present a new approach for securing memory
accesses against tampering by transforming address errors into
data errors. In this approach, we encode all data pointers and
perform their pointer arithmetic in a protected domain where
faults are detectable. These encoded pointers are used in linked
memory accesses, where the address information is linked with
the encoded payload data. Subsequently, accessing data with
an incorrect address destroys the redundancy of the payload
data.

Outline: The remainder of this paper is structured as
follows. Section II introduces the attack vectors and discusses
common threat models. The techniques we present to secure
RISC-V processors against fault attacks are presented in
Section III. Finally, Section IV briefly discusses related work
on physical attacks beyond RISC-V and faults.

II. ATTACK VECTORS AND COMMON THREAT MODELS

Physical attacks are a diverse topic with various facets.
This section outlines the most common attack vectors which



are encountered in the context of active physical attacks and
discusses commonly used threat models.

A. Physical Attacks

Adversaries with physical access to a system can employ var-
ious techniques to tamper with the device and how it executes
software. Most intuitively, all types of non-volatile external
memory (e.g., on-board flash chips, SD-cards, HDDs, SSDs,
. . . ) can easily be read or written by attackers. Subsequently,
without special protection, manipulation of code and data in
memory is possible. Furthermore, even when cryptography
is used to enforce the memory content’s confidentiality and
integrity, replay attacks, like the NAND mirroring attack that
targeted the iPhone [28], are often still possible. Similarly,
volatile memory (e.g., DDR-RAM) can also be attacked. Cold
boot attacks [13], for example, permit to extract secret data
from memory when no encryption is used. Finally, even on
live systems, interposing the bus communication between
processor and memory is possible and common practice for
debug purposes.

However, physical attacks on general purpose systems are
by far not limited to external memory. Micro-probing of
the chip and side channel attacks can, for instance, acquire
information about the processed data. Similarly, fault attacks
on the processor can tamper with the correct execution of
software [4]. Such fault attacks intentionally violate presumed
invariants of a device’s operating conditions with the goal to
introduce faults into the performed calculations. Commonly
used invariants for the injection of faults are, for example,
the supply voltage [3], the maximum frequency [2], [4], the
allowed temperature range [27], and the tolerated amount of
injected photoelectric [26], [29] or electromagnetic energy [21].
Surprisingly, even software-induced fault injection [11], [16],
[18], [30] has already been demonstrated.

Especially in the context of general purpose processors, fault
attacks have been shown to be very powerful. Adversaries can
use precisely timed voltage and clock glitches to skip and
repeat instructions deterministically [15], [17]. The Xbox 360,
for example, has been compromised by such an attack [1].
Similarly, a targeted single bit flip in the sudo binary of a
contemporary Ubuntu installation, which can be caused by,
e.g., a Rowhammer attack or any other targeted fault injection
method, is known [10] to be sufficient to gain root privileges.

B. Threat Models

Considering these types of attack vectors, the distinction
between on- and off-chip attacks is often used to denote the
security boundary in threat models. In particular, the following
three model types are used in the context of physical attacks
and countermeasures for general purpose processors.

a) Fully secure chip, malicious off-chip environment:
This model is mostly used in system security papers that deal
with physical attacks. Here, the actual processor is considered
fully functional and not subject to faults or tampering. The off-
chip components and busses, on the other hand, including
storage memory (e.g., HDDs) and RAM, are assumed to

be under full control of the attacker. In other words, model
(a) completely disregards physical attacks on the chip and
entirely focuses on memory-related attacks with perfect control.
Interestingly, the resulting capability to perform arbitrary
memory reads and writes is also pretty similar to software
attacks that exploit memory vulnerabilities. Prominent examples
for countermeasures that are typically deployed to thwart
attacks in threat model (a) are memory encryption schemes as
found in Intel SGX [12] and AMD SME [14]. Similarly, disk
encryption schemes typically operate under this threat model.

b) Restricted on-chip attacks only, no off-chip memory:
Threat model (b) can be considered to be the counterpart
to threat model (a) given that it omits physical attacks on
external memory and mostly focuses on side channel and
fault attacks on the chip instead. The motivation for such a
model is that, in many embedded applications, self-contained
System-on-Chips (SoCs) without any external memory are
deployed. These SoCs range from simple microcontrollers
up to powerful application processors with Linux support.
Subsequently, perfectly controlled tampering is considered hard
and only more restricted attack models (e.g., random faults
due to glitches, low number of controlled bit flips due to laser,
limited number of probed wires, . . . ) are assumed. Software
techniques that target reliability [22], as well as software
countermeasures against special types of fault attacks [5],
typically, operate in threat model (b).

c) Restricted on-chip attacks, malicious off-chip environ-
ment: Finally, the strongest model, threat model (c), combines
both previously discussed attack capabilities. Here, restricted
on-chip fault attacks, as well as arbitrary off-chip tampering,
are permitted. By themselves, only very few techniques
protect in this threat model. Instead, often a combination of
countermeasures, which counteract attacks in model (a) or (b),
are used in practice. Note, however, that simply combining
countermeasures does not necessarily provide the desired effect
of securing an embedded system, especially when also software
attacks have to be considered.

III. FAULT PROTECTION

Protecting the execution of software in a hostile environment
requires different protection mechanisms to be in place. In this
section, we briefly introduce our work which is tailored to
counteract fault attacks and protect the correct execution of
software. More detailed explanations and evaluation results can
be found in the respective publications.

A. Protecting Instructions and the Control-Flow [34]
To be able to securely execute a program in the context of

fault attacks, it is a necessity that the integrity of the instructions
is maintained at all time, i.e., from memory to execution. This
does not only mean that each instruction has to be genuine
(i.e., no bit flips in the encodings), but also that their sequence
has to be unaltered (i.e., no skipped or repeated instructions).
Every manipulation of the code should stop the execution of
further instructions as soon as possible. Exactly this properties
can be achieved with Sponge-based Control-Flow Protection
(SCFP).



Processor

FetchFetch Decode Execute Memory
Write
Back

Memory (e.g., RAM, Flash, ...)

I-Cache D-Cache

Register File

State

AE
Decrypt

Figure 1. Extended processor pipeline with a stateful decryption stage.

Approach: On a high level, the idea behind SCFP is
to encrypt all code for a processor using a sponge-based
authenticated-encryption primitive in a program-aware way.
Namely, the sequence in which the instructions of a program
are encrypted is determined by the sequence in which they
eventually are executed. When such a program is executed on
an SCFP-enabled processor, this special encryption approach
permits to delay the actual decryption to the latest possible
point. As shown in Figure 1, decryption is ideally performed
with instruction-granularity as part of the processor pipeline
just-in-time for execution. As the result, the majority of the
system components, including the full memory hierarchy, the
processor caches, the chip internal busses, and even the fetch
unit that loads the instruction stream into the processor core
only operates on encrypted instructions.

In case a wrong instruction is fed into the decryption unit,
either due to bit flips in the encoding or because of software-
based control-flow tampering, the respective instruction is
decrypted incorrectly and yields a pseudo-random result.
Additionally, due to the stateful cipher, also all subsequently
decrypted instructions result in bogus values. In this situation,
without knowledge of the cipher state and key, controlling the
processor is next to impossible which effectively thwarts any
further attacks. Still, eventually recovering from this pseudo-
random execution state is also supported given that SCFP
permits to perform context switches via interrupts. Therefore,
as soon as the decoder detects an invalid instruction, the invalid
instruction handler of the operating system can be used to
handle the problem as desired.

Interestingly, a cryptographically strong Authentic Encrypted
Execution (AEE) instantiation of the SCFP approach alone is
already sufficient to protect instructions and their execution
sequence against faults in the strongest threat model (c).
However, even weaker instantiations (e.g., AEE-Light), that are
more likely to be used in practice given that they are cheaper
to implement and faster, still achieve protection in threat model
(b) and hinder software attacks considerably.

Details: Besides the addition of the sponge-based
authenticated-decryption module, implementing SCFP also
requires software changes. Due to the stateful cipher, without
software support, reuse of code in loops and via function calls
would be impossible. We fix this problem in SCFP by injecting

A

B

D

C
Patch

Branch

Figure 2. Example of patching the CFG of an if-then-else construct as part
of the conditional branch instruction [34].

patch values into the state of the cryptographic primitive at
specific points during the execution of a program. Each patch
value whitelists exactly one specific control-flow transfer in
the program’s CFG by deliberately introducing a cipher state
collision at the merge point in the graph. Subsequently, these
patch values should be considered as part of the program code.
Similar to regular instructions, they are placed by the compiler
and their final value is computed during encryption of the
binary.

Figure 2 illustrates the concept using a simple if-then-else
construct. Two valid execution paths exist in the shown CFG,
namely, both the Basic Block (BB) sequence A-B-D and the
sequence A-C-D are valid in this example. To enable the
potential execution of both paths at runtime, at the beginning
of block D, exactly the same decryption unit state has to be
present independent if BB B or BB C has been executed
before block D. To ensure this invariant, a patch value has to
be applied as part of the conditional branch instruction that
jumps to basic block C. In other words, in this example, the
patch value compensates the difference in cipher state between
executing BB B and BB C.

Results: As a proof-of-concept, we implemented a custom
software toolchain that fully automatically inserts the patches
and encrypts the binary. Furthermore, we implemented SCFP,
in an AEE-Light configuration, into a RISC-V processor based
on the open-source RI5CY core [32]. The resulting processor
supports the RV32IM ISA and most parts of the privilege
architecture version 1.9. Our results demonstrate the practicality
of SCFP with a size overhead of 19.8 % and performance
overhead of 9.1 % on average.

B. Protection of Conditional Branches [24]

Ensuring solely that the execution of a program adheres to
its CFG using CFI protection schemes is, although a good start,
still insufficient in the context of fault attacks. In particular,
these schemes do not ensure that control-flow transfers within
the graph are consistent with the data that is processed. For
instance, the decision on which successor of a conditional
branch gets executed is still unprotected and can be faulted
with a single bit flip. However, many security critical operations,
e.g., the verification of a computed cryptographic signature, rely
on the correct execution of conditional branches. Subsequently,
these operation require protection to withstand physical attacks.



CMP BR
Constant

(PC
1
,S’

1
),

(PC
2
,S’

2
)

CFI Update
1

Enc. 
CMP

nx
c

y
c

Standard Compare & Branch

P
P

=

(PC
1
,S

1
),

(PC
2
,S

2
)

Figure 3. Protected conditional branch with state update and n-bit redundantly
encoded comparison.

Independent of the actual implementation in an ISA, a
generic conditional branch is an operation that consists of two
micro-ops. First, a comparison operation is performed which
compares its input operands, under a comparison predicate, to
generate a 1-bit condition result. Second, the actual conditional
branch is performed by updating the program counter based
on the 1-bit condition result.

We identified three attack vectors, which all can be used to
manipulate a conditional branch: (1) Modifying the input data
of the comparison. (2) Attacking the comparison operation
or the 1-bit result. (3) Attacking the direction of the branch
operation.

Approach: To design an inherently secure conditional
branch, all three attack vectors need to be mitigated. To prevent
(1), we use AN-codes [22] and protect the data used for a
conditional branch. While this encoding scheme protects the
data during the storage in memory and registers, AN-codes
also support protected arithmetic operations without the need
of decoding and exposing data to an attacker. In particular, this
encoding scheme natively supports the addition and subtraction
operation without any changes. This property is exploited to
prevent attack vector (2), namely the comparison. Instead of
using an ordinary comparison operation of the processor’s
instruction set, which only yields a 1-bit condition result, we
develop new comparison algorithms for all comparison predi-
cates based on the arithmetic properties of AN-codes. These
comparison algorithms instead return a syndrome containing
only two values with a sufficiently large Hamming distance
such that fault attacks are detectable. The last missing piece is
the prevention of attack vector (3), namely, the protection of the
branch operation itself. After performing the computation of the
conditional branch, the comparison result already determines
the branch target ahead of executing the conditional branch
and therefore is a branch-target dependent value. At the branch
target, the condition result can be used to explicitly alter the
CFI state and to bind the computation of the comparison with
the correct execution of the conditional branch.

Figure 3 summarizes the overall concept. The image shows
how the encoded comparison operation interacts with the actual
conditional branch operation. Furthermore, the link between
comparison and CFI state update is shown which ensures that
errors during the branch operation can be detected via the CFI
scheme.

Details: Ordinary comparisons use an initial subtraction
and then evaluate the sign of the difference to retrieve the
comparison result. This is even applies when the input data
is already encoded with, e.g., an AN-code. Since such an
operation removes all redundancy from the data encoding, we
cannot use that for the comparison. However, we still use an

Algorithm 1: AN-encoded < comparison.
Data: xc, yc ∈ AN-code, 0 < C < A.
Result: cond ∈ {C1, C2}.
begin

diff ←− (unsigned) xc − yc + C
cond ←− diff % A

end

initial subtraction. Since AN-codes are closed under subtraction,
the difference is again a valid AN-code, either positive or
negative. By casting this difference to an unsigned value, we
intentionally destroy the code property for negative numbers
due to the two’s complement representation (we assume 32-
bit numbers in this work). This cast is followed by a modulo
operation using the encoding constant A of the AN-code, which
maps the casted difference either to 0 or 232%A. This mapping
is a syndrome with a sufficiently large Hamming distance.
To avoid a zero condition value, which is possibly easier to
fault, we add a constant C at the beginning of the comparison
algorithm. A less-than comparison following this approach is
described in Algorithm 1. The same principle applies to all
other comparison predicates by either swapping the operands
of the first subtraction, swapping the true and false constant of
the comparison output, or by assembling the result from two
encoded comparison operations.

Results: We implemented this protection scheme for
conditional branches into the same RISC-V core that already
supports SCFP by adding a new instruction named bpdeq.
This instruction implements a conditional branch that tests
for equality and uses the first operand for a CFI state
update at the branch target. In other words, bpdeq provides
the whole functionality in Figure 3 except for the encoded
comparison itself. To further ease the application of this
countermeasure, we extended the compiler to automatically
identify conditional branches in annotated functions. The
operands of the conditional branch, as well as all dependent
operations, get automatically encoded to the protected AN-code
domain. Furthermore, the branch conditions are computed with
our encoded comparison algorithms and bpdeq instructions
get inserted for the actual conditional branches. The evaluation
shows, the overhead of the countermeasure is on par with state-
of-the-art duplication approaches, where the conditional branch
is replicated many times. However, by using AN-encoded data,
our protection scheme not only protects the conditional branch
alone, but also adds data protection.

C. Pointer Protection and Protected Memory Accesses [25]

Memory accesses are beside computation the most frequently
used operations in today’s programs. However, these operations
are typically not protected although they often deal with critical
data. An attacker capable of inducing faults can redirect a
memory access and then gets access to possibly sensitive data.
Two attack vectors need to be considered when designing such
a protection mechanism. First, modifying the pointer allows an



63 55 51 46 43 40 39 0

r4,p r3,p r2,p r1,p r0,p

M
M

IO p

Figure 4. Encoded pointer representation. The actual 40-bit pointer value p,
the MMIO tag bit, and 23 bits of redundancy rp comprise an encoded 64-bit
pointer.

attacker to redirect the memory access. Second, an attacker can
modify the memory access directly, i.e., by faulting the bus
access. Current countermeasures, which try to protect against
these attacks are too expensive [22] and are therefore not used.
We overcome this problem and develop a new light-weight
and secure memory architecture based on RISC-V to protect
all memory accesses of a system.

Approach: In order to trust a pointer, the pointer requires
redundancy. For this purpose, there are two main requirements.
First, it must be easy to retrieve the original pointer value to
support fast access to the actual memory location. Second, it
is favorable to have an encoding scheme supporting arithmetic
operations in order to extend the scope of protection to also
include pointer arithmetic. When using such an encoding
scheme, faults on a pointer up to a certain number of bit
flips are detectable. Furthermore, also its pointer arithmetic is
protected.

While the encoding scheme protects the pointer value, the
actual memory access is still unprotected. To protect the access,
the goal is to bind the redundant address information to the
data when storing a register value to the memory. Instead of
directly writing a register value DReg into memory at a specific
address p (i.e., mem [p] = DReg), a little more work has to be
performed in our scheme. Namely, as shown in Equation 1, the
linking function lp has to be evaluated in order to determine
the value that is actually written to the memory at address p.

mem [p] = l (p,DReg) = lp (DReg) (1)

Details: To efficiently protect pointers, we use multi-
residue codes [19] providing us with several advantages. The
protection level of the code can be scaled by changing the
number of residues. Furthermore, residue codes are separable
codes, which give direct access to the plain pointer value,
and support arithmetic directly in the encoded domain. To
avoid any overhead regarding storage, we store the redundancy
information of the code directly in the pointer by reducing the
address space and make space for the residues. Concretely, we
reduce the address to 40-bits, allowing us to store up to 24-bits
of redundancy information. In Figure 4, the final pointer layout
comprising the redundancy bits and one tag bit is shown.

The second part of the protection scheme is linking the redun-
dant address information p with the data DReg in order to detect
wrong bus accesses. This linking function lp can be created
in different forms, but at least requires two properties to be
fulfilled. First, it needs to be a permutation and therefore being
a bijective mapping having an inverse function l−1p . This inverse
is used when performing the unlink operation during a memory
read. The second requirement is to ensure that addressing faults
are detectable. Here, data encoded under one address should

d0d7 d6 d5 d4 d3 d2 d1

. . .p7,0 p0,0

Xor-reduced 
pointer p7

Xor-reduced 
pointer p0

Figure 5. Byte-wise data linking of a 64-bit word. Each byte gets xored with
its respective xor-reduced encoded address.

yield a modified value when being decoded under a different
address, i.e., ∀p, p′, DReg : p 6= p′ → l−1p′ (lp (DReg)) 6= DReg .
Note, the modified value should yield an invalid code word in
terms of the used data encoding scheme.

In our work, we explore a lightweight approach and show
that a simple xor operation is enough and fulfills the required
properties. Here, when storing data in memory, it is linked by
xor-ing the address to the data, i.e., mem [p] = pr⊕DReg . When
reading data back, the inverse unlinking operation DReg =
p⊕ mem [p] is performed. While this approach applies to any
data granularity, it has two disadvantages. First, by using the
address directly to perform the linking operation, close bytes
likely have the same linking pad. Second, real-life applications
often use misaligned data accesses with arbitrary size, which
often arises with memory functions like, e.g., memcpy.

To overcome these limitations, we compute a dedicated
linking pad for every byte in a transfer. Each byte address is
still a multi-residue encoded value to provide the necessary
diffusion during the linking. However, since the data and its
address have different bit sizes, an xor-based compression
function is used to compute the final linking pad. In particular,
each 64-bit address is reduced to an 8-bit value by xor-ing
each sub-byte, i.e., p′ =

⊕7
i=0 pi. In Figure 5, we show this

linking approach for a 64-bit data word.

Results: The concept of multi-residue encoded pointers
and linked memory accesses is integrated into a 64-bit RISC-V
prototype implementation based on the open-source RI5CY
core [32], which is part of the PULP project [31]. To efficiently
deal with encoded pointers, we extended the instruction set and
added new instructions to add, subtract, encode, and decode
pointers. Furthermore, we added new memory operations to
load and store data with the proposed linking approach.

In order to efficiently use this countermeasure without
manually instrumenting all code on assembly level, we integrate
it to the LLVM compiler project. The compiler identifies
all pointers and transforms them and their respective pointer
arithmetic to the encoded multi-residue domain. Finally, all
memory accesses are replaced by their protected counterpart.
On average, the overhead on our prototype platform regarding
code size is about 10 % and the runtime overhead is less than
7 %.



IV. DISCUSSION

In this paper, we presented parts of our ongoing work
to counteract the emerging threat of physical attacks on
general purpose processors. However, of course there is also
other notable research in the context of physical attacks.
ATRIUM [35], for example, that was also presented with a
RISC-V prototype, is a runtime remote attestation mechanism
that permits to detect errors in instructions. Another interesting
approach that, similar to SCFP, provides confidentiality of code
and CFI in the presence of faults is SOFIA [6], [7].

Also in the field of side channels attacks, or more generically
passive physical attacks, a lot of interesting research is
performed. For example, cryptographic accelerators [23] and
memory encryption techniques [33] based on re-keying [20] are
a promising approach to counteract side channels on an algorith-
mic level. On the logic level, modern masking approaches [9],
which traditionally secure cryptographic implementations, can
also protect the datapath of a RISC-V ALU [8].

In summary, physical attacks and countermeasures are getting
more important. Free and open-source ISAs like RISC-V,
support this development and provide academia and industry
with powerful architectures that facilitate the needed research.

ACKNOWLEDGMENT

This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 681402) and by the Austrian Research Promotion Agency
(FFG) via the competence center Know-Center (grant number
844595), which is funded in the context of COMET - Compe-
tence Centers for Excellent Technologies by BMVIT, BMWFW,
and Styria.

REFERENCES

[1] “The xbox 360 reset glitch hack,” https://free60project.github.io/wiki/
Reset Glitch Hack.html, accessed: 2018-11-26.

[2] R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant
devices,” in Security Protocols Workshop – SPW, 1997.

[3] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J. Seifert, “Fault attacks
on RSA with CRT: concrete results and practical countermeasures,” in
Cryptographic Hardware and Embedded Systems – CHES, 2002.

[4] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE,
vol. 94, 2006.

[5] T. Barry, D. Couroussé, and B. Robisson, “Compilation of a countermea-
sure against instruction-skip fault attacks,” in Workshop on Cryptography
and Security in Computing Systems – CS2@HiPEAC, 2016.

[6] R. de Clercq, J. Götzfried, D. Übler, P. Maene, and I. Verbauwhede,
“SOFIA: software and control flow integrity architecture,” Computers &
Security, vol. 68, 2017.

[7] R. de Clercq, R. D. Keulenaer, B. Coppens, B. Yang, P. Maene, K. D.
Bosschere, B. Preneel, B. D. Sutter, and I. Verbauwhede, “SOFIA:
software and control flow integrity architecture,” in Design, Automation
& Test in Europe – DATE, 2016.

[8] H. Groß, M. Jelinek, S. Mangard, T. Unterluggauer, and M. Werner,
“Concealing secrets in embedded processors designs,” in Smart Card
Research and Advanced Applications – CARDIS, 2016.

[9] H. Groß, S. Mangard, and T. Korak, “An efficient side-channel protected
AES implementation with arbitrary protection order,” in Topics in
Cryptology – CT-RSA, 2017.

[10] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in IEEE Symposium on Security and Privacy – S&P, 2018.

[11] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in Detection of Intrusions
and Malware & Vulnerability Assessment – DIMVA, 2016.

[12] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” IACR Cryptology ePrint Archive, vol. 2016, 2016. [Online].
Available: http://eprint.iacr.org/2016/204

[13] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: Cold boot attacks on encryption keys,” in USENIX Security
Symposium, 2008.

[14] D. Kaplan, J. Powell, and T. Woller, “AMD memory en-
cryption,” http://developer.amd.com/wordpress/media/2013/12/AMD
Memory Encryption Whitepaper v7-Public.pdf, accessed: 2017-04-17.

[15] D. Karaklajic, J. Schmidt, and I. Verbauwhede, “Hardware designer’s
guide to fault attacks,” IEEE Trans. VLSI Syst., vol. 21, 2013.

[16] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in International
Symposium on Computer Architecture – ISCA, 2014.

[17] T. Korak and M. Hoefler, “On the effects of clock and power supply
tampering on two microcontroller platforms,” in Fault Diagnosis and
Tolerance in Cryptography – FDTC, 2014.

[18] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab,
and L. Lamster, “Nethammer: Inducing rowhammer faults through
network requests,” CoRR, vol. abs/1805.04956, 2018. [Online]. Available:
http://arxiv.org/abs/1805.04956

[19] J. L. Massey and O. N. Garcı́a, “Error-correcting codes in computer
arithmetic,” in Advances in Information Systems Science, 1972.

[20] M. Medwed, F. Standaert, J. Großschädl, and F. Regazzoni, “Fresh
re-keying: Security against side-channel and fault attacks for low-cost
devices,” in Progress in Cryptology – AFRICACRYPT, 2010.

[21] D. Samyde, S. P. Skorobogatov, R. J. Anderson, and J. Quisquater, “On
a new way to read data from memory,” in Security in Storage Workshop
– SISW, 2002.

[22] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer, “ANB- and anbdmem-
encoding: Detecting hardware errors in software,” in Computer Safety,
Reliability and Security – SAFECOMP, 2010.

[23] R. Schilling, T. Unterluggauer, S. Mangard, F. K. Gürkaynak,
M. Muehlberghuber, and L. Benini, “High speed ASIC implementations
of leakage-resilient cryptography,” in Design, Automation & Test in
Europe – DATE, 2018.

[24] R. Schilling, M. Werner, and S. Mangard, “Securing conditional branches
in the presence of fault attacks,” in Design, Automation & Test in Europe
– DATE, 2018.

[25] R. Schilling, M. Werner, P. Nasahl, and S. Mangard, “Pointing
in the right direction - securing memory accesses in a faulty
world,” CoRR, vol. abs/1809.08811, 2018. [Online]. Available:
http://arxiv.org/abs/1809.08811

[26] B. Selmke, S. Brummer, J. Heyszl, and G. Sigl, “Precise laser fault
injections into 90 nm and 45 nm sram-cells,” in Smart Card Research
and Advanced Applications – CARDIS, 2015.

[27] S. Skorobogatov, “Low temperature data remanence in static ram,”
University of Cambridge, Tech. Rep., 2002. [Online]. Available:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf

[28] ——, “The bumpy road towards iphone 5c NAND mirroring,” CoRR,
vol. abs/1609.04327, 2016. [Online]. Available: http://arxiv.org/abs/1609.
04327

[29] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in Cryptographic Hardware and Embedded Systems – CHES, 2002.

[30] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer attacks over the network and
defenses,” in USENIX Annual Technical Conference – USENIX, 2018.

[31] P. Team, “Pulp - open hardware, the way it should be!” https://www.
pulp-platform.org/, 2018, accessed: 2018-05-15.

[32] ——, “Ri5cy: Risc-v core,” https://github.com/pulp-platform/riscv, 2018,
accessed: 2018-11-22.

[33] T. Unterluggauer, M. Werner, and S. Mangard, “Meas: memory encryption
and authentication secure against side-channel attacks,” Journal of
cryptographic engineering, 2018.

[34] M. Werner, T. Unterluggauer, D. Schaffenrath, and S. Mangard, “Sponge-
based control-flow protection for iot devices,” in European Symposium
on Security and Privacy – EURO S&P, 2018.

[35] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A. Sadeghi, “ATRIUM: runtime attestation resilient under memory
attacks,” in Conference on Computer-Aided Design – ICCAD, 2017.


