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Abstract: Interaction of iron and boron at elevated temperatures results in the formation of an E
(Fe + Fe2B) eutectic phase that plays a great role in enhancing mass transport phenomena during
thermal annealing and therefore in the densification of sintered compacts. When cooled down, this
phase solidifies as interconnected hard and brittle material consisting of a continuous network of
Fe2B borides formed at the grain boundaries. To increase ductile behaviour, a change in precipitates’
stoichiometry was investigated by partially replacing iron borides by titanium borides. The powder
of elemental titanium was introduced to blend of iron and boron powders in order to induce TiB2

in situ formation. Titanium addition influence on microstructure, phase composition, density and
mechanical properties was investigated. The observations were supported with thermodynamic
calculations. The change in phase composition was analysed by means of dilatometry and X-ray
diffraction (XRD) coupled with thermodynamic calculations.
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1. Introduction

Due to a stable microstructure and mechanical properties under exposure to long-term thermal
neutron irradiation, borated stainless steels find extensive applications in the nuclear industry [1,2].
Potential applications of boron steels in nuclear industry are, e.g., control/shutoff rods in nuclear
reactors, sensor for neutron counting, shapes for neutron shielding, dry transportation casks, spent fuel
rod storage racks. The advantage of borated stainless steel produced by powder metallurgy technology
in comparison to the conventionally produced cast/wrought products is that they contain much smaller
and more uniformly distributed boride particles [1,2]. Moreover, it is possible to obtain a material
whose properties have lesser decrease in ductility and impact toughness as the boron content increases
compared with similar boron-containing cast/wrought borated stainless steels. The application of
boron in powder metallurgy as addition to ferrous alloys has been of interest to numerous researchers
over the last years [3–12]. The main cause of this interest is the eutectic reaction between iron and boron,
resulting in the appearance of a liquid phase which efficiently improves mass transport by intensifying
a diffusion process [7]. Even small amounts of boron (0.4–0.6 wt %) added to ferrous powder may result
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in great densification of sintered compacts reaching almost full relative density [7,9]. In accordance
with a series of experiments [9,13–16], the sintering process is activated through the presence of a liquid
phase by acting in three stages: (i) rearrangement (liquid spreading), (ii) solution-reprecipitation of
a base material and (iii) microstructural coarsening [9]. Unfortunately, boron is almost non-soluble in
an iron-based solid matrix, so it remains at the grain boundaries after the sintering process in the form
of hard and brittle borides creating an almost continuous network surrounding the individual grains,
therefore significantly influencing the material properties. Controlling the borides’ morphology and/or
crystallographic network could considerably broaden the application field of steel parts manufactured
by Powder Metallurgy (PM). It was already proved that the addition of titanium to iron-based cast
alloys may result in the formation of titanium diboride (TiB2) [17,18]. Such an interaction, however,
was not yet investigated in sintered particular materials. The objective of the present paper was
to investigate the influence of titanium addition on phase changes and sintering behaviour in the
Fe-B system. This topic is of high importance due to the possibility of improving the ductility of the
particulate borated steels.

2. Materials and Methods

Water atomised iron powder of >99% purity delivered by Sigma Aldrich (St. Louis, MO, USA)
was used as a base powder. Boron of >99.7% purity (grain size < 1 µm) delivered by Sigma Aldrich
was added to the blend in an amount of 0.8 wt % in order to induce a eutectic liquid appearance
during the sintering process and consequently the appearance of Fe2B borides. The titanium of 99.9%
purity delivered by VWR company (Radnor, PA, USA) was also added to the blend as a powder in
a stepwise increasing amount in two different grain size classes as listed in Table 1. The varying grain
size distribution of titanium allowed for control of the initial reaction surface between titanium and the
eutectic liquid. Blends were mixed using a Turbula-type mixer for 12 h in order to assure homogeneity
of blends.

Table 1. Composition of utilised powder blends.

Sample Description Titanium Grain Size Class/µm Titanium/wt % Boron/wt % Iron/wt %

REF 0 0.00

0.80 balance

A63 45–63 0.47
B63 45–63 0.93
C63 45–63 1.40

A140 100–140 0.47
B140 100–140 0.93
C140 100–140 1.40

The mixed powders were single-axially compacted under a pressure of 600 MPa informs of (a)
4 mm × 4 mm × 20 mm cuboid (dilatometric samples); (b) a 5 mm × 20 mm cylinder (microstructure
and density check) and (c) a cuboid 6 mm × 12 mm × 30 mm for Transverse Rupture Strength test
(TRS). During the consolidation of the samples, no lubricant was used. Dilatometric tests were carried
out in a Netzsch DIL 402C dilatometer (NETZSCH-Gerätebau GmbH, Selb, Germany) under hydrogen
atmosphere of 99.9999% purity and a flow rate of 100 mL/min. The heating rate was equal to 20 ◦C/min,
the cooling rate was 10 ◦C/min while the isothermal temperature and time were 1240 ◦C and 30 min,
respectively. Nabertherm P330 tubular (Nabertherm, Lilienthal, Germany) furnace was used for
sintering both the TRS and the cylindrical samples under the same conditions as dilatometric samples.
Material porosity was checked using the standard water displacement method. Scanning Electron
Microscope (SEM, TESCAN Brno s.r.o., Brno, Czech Republic) TESCAN Mira3-SEM equipped with
an Energy Dispersive X-Ray (EDX) spectrometer was used to evaluate the localisation of titanium in
the microstructure. Specular X-ray diffraction patterns were collected on a PANalytical Empyrean
diffractometer (Malvern Panalytical, Herrenberg, Germany) using a wavelength of 0.154 nm. On the
primary side, the machine was equipped with a 1/8◦ receiving slit, a 10 mm beam mask and a multilayer
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mirror for monochromatisation and formation of a parallel beam. On the secondary side, an 8 mm
anti-scatter slit, 0.02 Rad Soller slits and a PANalytical PIXcel 3D detector (Malvern Panalytical,
Herrenberg, Germany) in scanning line mode were used. All thermodynamic calculations were
performed using Thermo-Calc software v.3.0 (Thermo-Calc Software, Solna, Sweden) with the TCFE6
database appended. State of full equilibrium was assumed.

3. Results and Discussion

3.1. Thermodynamic Calculations

Figure 1a presents the calculated phase diagram in the Fe-B-Ti system along with the temperature
increase for various amounts of titanium addition. The calculations indicate that an increasing amount
of titanium results in disappearance of Fe2B boride which gets replaced by TiB2 (Figure 1c). According to
literature, the reason for this replacement is the relatively high difference in Gibbs free energy of
formation between the two borides reaching 150 kJ/mol throughout the whole temperature range
between 400–1800 ◦C [18]. Such a replacement should be also accompanied by a decreasing amount of
a eutectic liquid at sintering temperature of 1240 ◦C as presented in Figure 1b.
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Figure 1. (a) Calculated phase diagram of the system (Iron + 0.8B wt %) + Ti, where: α, Ferrite; γ,
Austenite; δ, Delta Ferrite; L, Liquid; (b) calculated phase fraction of a liquid phase at the sintering
temperature of 1240 ◦C; (c) calculated mole fraction of borides as a function of titanium addition at the
room temperature.

Figure 1b presents the mole fraction of a liquid phase for the constant sintering temperature of
1240 ◦C, showing a decreasing amount of liquid phase with an increasing titanium addition. This is
connected to changes in borides composition due to the replacement of Fe2B by TiB2 borides (Figure 1c).
As a result of the difference in molar volume (Fe2B: 16.76 mol/cm3, TiB2: 15.37 mol/cm3) and the
difference in metal-boron stoichiometry (each mole of TiB2 contains two times more boron than a mole
of Fe2B), titanium diboride is capable of binding the same amount of boron in lesser volume as
compared to Fe2B (Figure 1c). Moreover, due to the high melting point of TiB2 it is solid in the sintering
temperature; therefore, calculations indicate the decreasing amount of a liquid phase in Figure 1b.
For the experimental studies, the compositions of blends (Table 1) were selected based on the presented
thermodynamic calculations to assure a considerable but linear decrease of the eutectic liquid amount
at the sintering temperature (Figure 1a,b).
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3.2. Dilatometric Analysis and Density Changes

To study the influence of the particle size of the additional titanium on the dilatometric behaviour,
length changes of the investigated samples were recorded over a broad temperature range (Figure 2a).
Figure 2b,c shows the results for the different particle sizes. Quantification of the dilatometric changes
was performed by calculating the length changes in specific regions (measurement scheme and detailed
values in supplementary). Independently of the titanium particle size, the measurements showed rapid
swelling of the sample at the temperature of 478 ± 2.3 ◦C and ends up at the temperature of 509 ± 1.9 ◦C.
It is then followed by a rapid shrinkage starting at 646 ± 0.3 ◦C. The former reflects the temporary
formation of titanium hydride (TiHx) due to interaction of elemental titanium and hydrogen derived from
the atmosphere. With an increase of titanium content, the swelling effect was more pronounced. On the
other hand, the shrinkage observed at around 646 ± 0.3 ◦C reflects the intensive release of hydrogen due
to thermally induced dehydrogenation, i.e., decomposition of TiHx. This decomposition is finished before
the temperature of 905 ◦C is reached because TiHx becomes unstable below this temperature [19,20].
This also means that above 905 ◦C, titanium is available in elemental form. These observations stay in
a good agreement with previous studies [19–21]. The swelling of titanium particles originated from its
hydrogenation can introduce large tensile stress on neighbouring iron particles and therefore can be
a potential source of an additional porosity in the sintered compact. After the dehydrogenation process,
the transition of the base iron powder from the crystallographic form of BCC to FCC starts at 905 ± 4.4 ◦C
and ends at 934 ± 0.3 ◦C (Figure 2b,c).
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Consequent heating results in the eutectic reaction between iron and boron starting at a temperature
around 1172 ◦C, which is in good agreement with previous studies [8,10]. The presence of the eutectic
liquid enhances mass transport causing densification of the material. As a consequence, shrinking
becomes a more dominant effect than thermal expansion. This is observed as a length reduction of the
sample in the dilatometric curves. This effect is presented in Figure 3a,b in detail. As can be easily seen
in Figure 3a,b the more titanium was introduced the higher was swelling at temperatures of eutectic
liquid occurrence. This shows that the more titanium was added the less effectively mass transport
occurred at a temperature above 1172 ◦C. Moreover, the total dimensional changes (Figure 3c) show
the same trend. The dilatometric results suggest that fine titanium particles reacted more effectively
with the eutectic liquid rather than coarse ones.
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Such an observation indicates a decreasing amount of the liquid phase along with the increasing
addition of the titanium. The smaller was the particle size of titanium the stronger was its influence
dilatometric behaviour. As presented in Figure 3c, use of high additions of titanium of fine particles
(C63) may lead even to swelling in respect to the compacted sample. This may affect negatively the
final relative density of the sintered compacts. The cooling part of dilatometric curves (Figure 2a–c)
shows no evidence of elemental titanium presence as it was observed in the heating stage. The only
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visible effects are a solidification of borides at 1147 ± 2.1 ◦C and transformation of austenite back to
ferrite starting at 893 ± 2.4 ◦C.

The results of dilatometric tests (Figure 3c) correspond well with the density of sintered samples
(Figure 4) in respect to the direction of changes. There is, however, no agreement between these results
in respect to the magnitude of changes. The shrinkage observed in dilatometric samples was heavily
impaired by the evaporation of the boron from the sample surface [22]. Missing boron resulted in creation
of smaller amount of eyectic phase. This effect is the more pronounced the smaller is the sample and the
larger is its surface. As can be easily seen, the higher the addition of titanium, the lower the density after
the sintering process. This effect was more pronounced for the 45–63 µm titanium particle size compared
to the size of 100–140 µm. This shows that the reaction between the titanium and the eutectic phase was
more effective when fine particles of high specific surface area were added.
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3.3. Phase Identification

Results of specular X-ray diffraction experiments are shown in Figure 5a together with peak
positions from literature in Figure 5b. As a measure for expected intensity, the absolute value of the
squared structure factor is used. For clarity, the experimental curves are shifted vertically. A major
Bragg peak can be observed at 2 Theta = 44.7◦, corresponding to the 110 reflex of the cubic iron phase
(a = 2.8665 Å) [23]. Additional peaks of this phase can be found at 65.1◦, 82.4◦, 99.0◦ and 116.5◦,
originating from the (200), (211), (220) and (310) planes (Figure S1 in supplementary data). In the
reference sample as well as all samples with titanium addition, additional peaks due to the presence of
Fe2B can be observed (35.1◦ and 42.6◦, corresponding to the 200 and 002 plane) [24]. At high titanium
concentrations, a simultaneous presence of these peaks and the peak of the 100 reflex of TiB2 [25]
can be found. Such observations stay in a good agreement with results of [17,18] who observed the
formation of TiB2 at the expense of Fe2B borides in cast iron-based alloys during the solidification
process. Moreover, a weak presence of crystalline titanium (40.2◦) was noticed, informing that the
reaction between titanium and boron was not complete [23].

Comparison of observed borides (REF and C63 samples) was presented in Figure 6a,b. Figure 6a
shows borides in a network of rib-like structures observed in REF sample, whereas Figure 6b shows
interconnected globular structures observed in titanium modified sintered compacts. This change in
morphology was caused by crystallization of TiB2 as a result of the reaction of titanium and boron.
The crystallisation process requires binding boron from a eutectic liquid resulting in precipitation of
iron atoms in surrounding space. As the TiB2 is solid at sintering temperature it consisted a barrier
for grain growth. This can be seen as uneven grain boundaries in samples with titanium addition
(Figure 6b). Without the presence of titanium, Fe2B crystallizes at lower temperatures as the last phase
(Figure 1a), therefore its morphology is determined by already existing spherical grains. Ex situ SEM
EDX measurements (Figure 6c,d) after the sintering process showed the presence of small and nearly
spherical titanium based particles in all samples with titanium additions. Moreover, the addition of
titanium causes separation of previously (REF) connected borides, which enhances the connection among
neighbouring grains (figures available in supplementary data in the folder: Eutectics distribution).
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Furthermore, the titanium addition influences also the microstructure of the sintered material
as presented in Figure 7a–e. The reference sample characterizes with a nearly continuous network
of borides located on grain boundaries and uniaxial grains. Contrary to the REF sample, the more
titanium was introduced, the more developed the grains’ shapes became. The presence of the TiB2 in
the matrix of the material may effectively hinder the grain growth, as was demonstrated in research
carried out, e.g., by Namini et al., Sobhani et al. and Gan et al. [26–28]. Moreover, the more titanium
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was added, the more and the larger pores were observed. This is believed was a side effect of limiting
the amount of liquid phase during the sintering process.
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Figure 7. Representative microstructure micrographs of the tested samples: (a) REF; (b) A63; (c) A140;
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A comparison of a grain size presented in Figure 8 shows that the introduction of titanium of
particle size of 63 µm (Figure 8a) results in grain refinement, which stays in good agreement with
other researchers’ findings [26–28]. A similar trend was observed when titanium was introduced in
the form of bigger particles (140 µm). The grain size refinement is caused by the presence of a TiB2,
which consists of an effective barrier for grain growth.
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The presence of TiB2 (induced by addition of Ti) changed also the grain shape, i.e., grains in REF
sample were of polygonal shape with rounded corners due to presence of large amount of borides.
Moreover, the more titanium was added, the more irregular was the shape of the grains and the more
dispersed were the borides. Furthermore, as appears from the analysis of grain size distribution a large
amount of titanium (1.40 wt % – C) promotes also the appearance of large grains (diameter 100–150 µm)
in the case of series 140. The medium-sized (50–100 µm) grains are promoted when titanium is added
in the form of a particle of size 63 µm.

3.4. Mechanical Properties

Transverse Rupture Strength (TRS) tests were performed in order to estimate the influence of the
changed phase composition on the mechanical behaviour of the samples. The results were presented in
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a way to highlight the influence of the increasing amount of titanium addition on mechanical behaviour
(Figure 9a–c). The results bring the conclusion that high addition of titanium (C-series, 1.40 wt % Ti)
causes an increase in the maximum observed deformation on the expense of maximum force (Figure 9a,b)
and hence, the TRS as well (Figure 9c). Other additions of titanium (A and B) show intermediate
states—samples with 0.47 wt % titanium addition (A) show a decrease of both TRS and maximum
deformation, whereas the B-series (0.93 wt % titanium addition) is characterized by lower peak force and
higher maximum deformation with respect to the reference sample (Figure 9). The increase of ductility
remains in the agreement of the other works [17,18]. The drop of the mechanical properties, however,
stays in opposition to the recent findings [17,18]. The increase in ductility of sample (C series) can be
attributed to joint effect of few phenomena: (i) the grains are not anymore separated with a network of
brittle borides; therefore, grains are connected with each other; (ii) formation of TiB2 reinforces the matrix;
(iii) grains are not uniaxial anymore and their shape is irregular; therefore, mutual interlocking is possible.
The irregular shape of grains is attributed to the joint effect of grain growth in conditions of solid-state
sintering (induced by eutectic phase disappearance) and liquid phase sintering. These changes were
possible mainly due to the change of manufacturing process change—in previous works, the casting was
used whereas is the present work the liquid phase sintering process was applied. For the densification
of the sample, effective mass transport is required, and when the titanium is added, it is impeded as
presented in Figure 4, which leads to the drop of the density (in relation to the REF sample).Materials 2020, 13, x FOR PEER REVIEW 10 of 13 
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Fracture surfaces investigated using SEM (Figure 10) reveal that the more titanium was added the
more ductile was the behaviour of the fracture surfaces, which can be seen by the development of the
fracture surface in Figure 10a–e. The more titanium was introduced the less flat intra-granular fractures
were observed and the more signs of ductility were present, i.e., “mountain-chain shapes and valleys”.
The extent of the changes was relatively small. This, however, suggests a lesser amount of precipitated
brittle borides at the grains boundaries compared to the material without titanium addition (REF).
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4. Conclusions

The influence of increasing titanium addition on the iron-boron system was under investigation.
Titanium was introduced in three various amounts of two different grain size distributions each. It was
shown that the addition of titanium partially binds the boron from the Fe2B + Fe eutectic liquid phase
and, therefore, reduces the shrinking rate by influencing the amount of the eutectic liquid phase. It was
also shown that the addition of titanium changes the phase composition of the final material by creating
crystalline TiB2 borides besides crystalline Fe2B borides. Changes in the morphology from a network
of rib-like structures for the pure Fe-B system to interconnected globular structures in case of titanium
additions were also observed due to TiB2 appearance. Both, increasing amount of titanium addition and
its fine grain size distribution, impede the shrinking of Fe-B system by decreasing the amount of liquid
phase. The addition of titanium enhances the plastic behaviour of a sintered material at the expense of
transverse rupture strength. This change was attributed to (i) grain refinement; (b) irregular shape of
grains, which allowed for mutual interlocking, and (iii) decreasing amount of brittle borides on the grain
boundaries, which enhanced the connection among the neighbouring grains.

Contrary to the casting process, the sintering process was found to be not suitable for strengthening
iron-based sintered compacts via TiB2 in situ formation due to a negative influence on the densification
behaviour of the sintered material.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/24/4188/s1,
Figure S1: Specular X-ray diffraction patterns of the Fe-B system with titanium additions over the full measured
range. Grey lines denote expected peak positions of the cubic iron phase.
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