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Abstract. Cloud-based services enable easy-to-use data-sharing between
multiple parties, and, therefore, have been widely adopted over the last
decade. Storage services by large cloud providers such as Dropbox or
Google Drive as well as federated solutions such as Nextcloud have
amassed millions of users. Nevertheless, privacy challenges hamper the
adoption of such services for sensitive data: Firstly, rather than exposing
their private data to a cloud service, users desire end-to-end confidential-
ity of the shared files without sacrificing usability, e.g., without repeat-
edly encrypting when sharing the same data set with multiple receivers.
Secondly, only being able to expose complete (authenticated) files may
force users to expose overmuch information. The receivers, as well as the
requirements, might be unknown at issue-time, and thus the issued data
set does not exactly match those requirements. This mismatch can be
bridged by enabling cloud services to selectively disclose only relevant
parts of a file without breaking the parts’ authenticity. While both chal-
lenges have been solved individually, it is not trivial to combine these
solutions and maintain their security intentions.
In this paper, we tackle this issue and introduce selective end-to-end data-
sharing by combining ideas from proxy re-encryption and redactable
signature schemes. Proxy re-encryption provides us with the basis for
end-to-end encrypted data-sharing, while redactable signatures enable
to redact parts and selectively disclose only the remaining still authenti-
cated parts. We overcome the issues encountered when naively combining
these two concepts, introduce a security model, and present a modular in-
stantiation together with implementations based on a selection of various
building blocks. We conclude with an extensive performance evaluation
of our instantiation.

Keywords: Data-sharing · End-to-end confidentiality · Proxy re-encryption ·
Redactable signatures.

1 Introduction

The advancement of cloud-based infrastructure enabled many new applications.
One prime example is the vast landscape of cloud storage providers, such as
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Google, Apple, Microsoft, and others, but also including many solutions for fed-
erated cloud storage, such as Nextcloud. All of them offer the same essential and
convenient-to-use functionality: users upload files and can later share these files
on demand with others on a per-file basis or a more coarse level of granularity.
Of course, when sharing sensitive data (e.g., medical records), the intermediate
cloud storage provider needs to be highly trusted to operate on plain data, or
a protection layer is required to ensure the end-to-end confidentiality between
users of the system. Additionally, many use cases rely on the authenticity of the
shared data. However, if the authenticated file was not explicitly tailored to the
final receivers, e.g., because the receivers were yet unknown at the issuing time,
or because they have conflicting information requirements, users are forced to ex-
pose additional unneeded parts contained in the authenticated file to satisfy the
receivers’ needs. Such a mismatch in the amount of issued data and data required
for a use case can prevent adoption not only by privacy-conscious users but also
due to legal requirements (c.f. EU’s GDPR [24]). To overcome this mismatch, the
cloud system should additionally support convenient and efficient selective dis-
closure of data to share specific parts of a document depending on the receiver.
E.g., even if a doctor only issues a single document, the patient would be able
to selectively share the parts relevant to the doctor’s prescribed absence with
an employer, other parts on the treatment cost with an insurance, and again
different parts detailing the diagnosis with a specialist for further treatment.
Therefore, we aim to combine end-to-end confidentiality and selective disclosure
of authentic data to what we call selective end-to-end data-sharing.

End-to-End Confidentiality. In the cloud-based document sharing set-
ting, the näıve solution employing public-key encryption has its fair share of
drawbacks. While such an approach would work for users to outsource data
storage, it falls flat as soon as users desire to share files with many users. In a
näıve approach based on public-key encryption, the sender would have to en-
crypt the data (or in a hybrid setting, the symmetric keys) separately for each
receiver, which would require the sender to fetch the data from cloud storage,
encrypt them locally, and upload the new ciphertext again and again. Proxy re-
encryption (PRE), envisioned by Blaze et al. [6] and later formalized by Ateniese
et al. [2], solves this issue conveniently: Users initially encrypt data to themselves.
Once they want to share that data with other users, they provide a re-encryption
key to a so-called proxy, which is then able to transform the ciphertext into a
ciphertext for the desired receiver, without ever learning the underlying mes-
sage. Finally, the receiver downloads the re-encrypted data and decrypts them
with her key. The re-encryption keys can be computed non-interactively, i.e.,
without the receivers involvement. Also, proxy re-encryption gives the user the
flexibility to not only forward ciphertexts after they were uploaded, but also to
generate re-encryption keys to enable sharing of data that will be uploaded in
the future. However, note that by employing proxy re-encryption, we still require
the proxy to execute the re-encryption algorithms honestly. More importantly,
it is paramount that the proxy server securely handles the re-encryption keys.
While the re-encryption keys generated by a sender are not powerful enough to
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decrypt a ciphertext on their own, combined with the secret key of a receiver,
any ciphertext of the sender could be re-encrypted and, finally, decrypted.

Authenticity and Selective Disclosure. Authenticity of the data is easily
achievable for the full data stored in a file. Ideally, the issuer generates a signa-
ture only over the minimal subset of data that is later required by the receiver
for a given use case. Unfortunately, the issuer would need to know all relevant
use cases in advance at sign time to create appropriate signed documents for
each case or later interactively re-create signatures over specified sub-sets on
demand. The problem becomes more interesting when one of the desired fea-
tures involves selectively disclosing only parts of an authenticated file. Naively,
one could authenticate the parts of a file separately and then disclose individual
parts. However, at that point, one loses the link between the parts and the other
parts of the complete file. More sophisticated approaches have been proposed
over the last decades, for example, based on Merkle trees, which we summarize
for this work as redactable signature schemes (RSS) [27]. With RSS, starting
from a signature on a file, anyone can repeatedly redact the signed message and
update the signature accordingly to obtain a resulting signature-message pair
that only discloses a desired subset of parts. Thereby it is guaranteed, that the
redacted signature was produced from the original message and the signature
does not leak the redacted parts.

Applications of Selective End-to-End Data-Sharing. Besides the use
in e-health scenarios, which we use throughout this paper as an example, we be-
lieve this concept also holds value for a broader set of use cases, wherever users
want to share privacy-relevant data between two domains that produce and con-
sume different sets of data. A short selection is introduced below: 1) Expenses: To
get a refund for travel expenses, an employee selectively discloses relevant items
on her bank-signed credit card bill, without exposing unrelated payments which
may contain privacy-sensitive data. 2) Commerce: Given a customer-signed sales
contract, an online marketplace wants to comply with the GDPR and preserve its
customers’ privacy while using subcontractors. The marketplace redacts the cus-
tomer’s name and address but reveals product and quantity to its supplier, and
redacts the product description but reveals the address to a delivery company.
3) Financial statements: A user wants to prove eligibility for a discount/service
by disclosing her income category contained in a signed tax document, without
revealing other tax-related details such as marriage status, donations, income
sources, etc. Similarly, a user may need to disclose the salary to a future land-
lord, while retaining the secrecy of other details. 4) Businesses: Businesses may
employ selective end-to-end data-sharing to securely outsource data storage and
sharing to a cloud service in compliance with the law. To honor the users’ right
to be forgotten, the company could order the external storage provider to redact
all parts about that user, rather than to download, to remove, to re-sign, and to
upload the file again. 5) Identity Management: Given a government-issued iden-
tity document, users instruct their identity provider (acting as cloud storage)
to selectively disclose the minimal required set of contained attributes for the
receiving service providers. In this use case, unlinkability might also be desired.
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Contribution. We propose selective end-to-end data-sharing for cloud sys-
tems to provide end-to-end confidentiality, authenticity, and selective disclosure.

Firstly, we formalize an abstract model and its associated security properties.
At the time of encrypting or signing, the final receiver or the required minimal
combination of parts, respectively, might not yet be known. Therefore, our model
needs to support ad-hoc and selective sharing of protected files or their parts.
Besides the data owner, we require distinct senders, who can encrypt data for
the owner, as well as issuers that certify the authenticity of the data. Apart from
unforgability, we aim to conceal the plain text from unauthorized entities, such
as the proxy (i.e. proxy privacy), and additionally information about redacted
parts from receivers (i.e. receiver privacy). Further, we define transparency to
hide whether a redaction happened or not.

Secondly, we present a modular construction for our model by using cryp-
tographic building blocks that can be instantiated with various schemes, which
enables to tailor this construction to specific applications’ needs. A challenge for
combining was that RSS generally have access to the plain message in the redac-
tion process to update the signature. However, we must not expose the plain
message to the proxy. Even if black-box redactions were possible, the signature
must not leak any information about the plaintext, which is not a well-studied
property in the context of RSS. We avoid these problems by signing symmetric
encryptions of the message parts. To ensure that the signature corresponds to
the original message and no other possible decryptions, we generate a commit-
ment on the used symmetric key and add this commitment as another part to
the redactable signature.

Finally, we evaluate three implementations of our modular construction that
are built on different underlying primitives, namely two implementations with
RSS for unordered data with CL [11] and DHS [18,19] accumulators, as well as
an implementation supporting ordered data. To give an impression for real-world
usage, we perform the benchmarks with various combinations of part numbers
and sizes, on both a PC as well as a mobile phone.

Related Work. Proxy re-encryption, introduced by Blaze et al. [6], enables
a semi-trusted proxy to transform ciphertext for one user into ciphertext of the
same underlying message now encrypted for another user, where the proxy does
not learn anything about the plain message. Ateniese et al. [3] proposed the first
strongly secure constructions, while follow-up work focused on stronger security
notions [12, 30], performance improvements [16], and features such as forward
secrecy [20], key-privacy [1], or lattice-based instantiations [13].

Attribute-based encryption (ABE) [25, 34, 35] is a well-known primitive en-
abling fine-grained access to encrypted data. The idea is, that a central authority
issues private keys that can be used to decrypt ciphertexts depending on at-
tributes and policies. While ABE enables this fine-grained access control based
on attributes, it is still all-or-nothing concerning encrypted data.

Functional encryption (FE) [7], a generalization of ABEs, enables to define
functions on the encrypted plaintext given specialized private keys. To selec-
tively share data, one could distribute the corresponding private keys where the
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functions only reveal parts of the encrypted data. Consequently, the ability to
selectively share per ciphertext is lost without creating new key pairs.

Redactable signatures [27, 37] enable to redact (i.e., black-out) parts of a
signed document that should not be revealed, while the authenticity of the re-
maining parts can still be verified. This concept was extended for specific data
structures such as trees [8, 36] and graphs [29]. As a stronger privacy notion,
transparency [8] was added to capture if a scheme hides whether a redaction
happened or not. A generalized framework for RSS is offered by Derler et al. [22].
Further enhancements enable only a designated verifier, but not a data thief, to
verify the signature’s authenticity and anonymize the signer’s identity to reduce
metadata leakage [21]. We refer to [17] for a comprehensive overview.

Homomorphic signatures [27] make it possible to evaluate a function on the
message-signature pair where the outcome remains valid. Such a function can
also be designed to remove (i.e., redact) parts of the message and signature. The
concept of homomorphic proxy re-authenticators [23] applies proxy re-encryption
to securely share and aggregate such homomorphic signatures in a multi-user
setting. However, homomorphic signatures do not inherently provide support
for defining which redactions are admissible or the notion of transparency.

Attribute-based credentials (ABCs or anonymous credentials) enable to only
reveal a minimal subset of authentic data. In such a system, an issuer certi-
fies information about the user as an anonymous credential. The user may then
compute presentations containing the minimal data set required by a receiver,
which can verify the authenticity. Additionally, ABCs offer unlinkability, i.e.,
they guarantee that no two actions can be linked by colluding service providers
and issuers. This concept was introduced by Chaum [14,15] and the most promi-
nent instantiations are Microsoft’s U-Prove [33] and IBM’s identity mixer [9,10].
However, as the plain data is required to compute the presentations, this oper-
ation must be performed in a sufficiently trusted environment.

In our previous work [26], we have identified the need for selective disclosure
in a semi-trusted cloud environment and informally proposed to combine PRE
and RSS, but did not yet provide a formal definition or concrete constructions.

The cloudification of ABCs [28] represents the closest related research to our
work and to filling this gap. Their concept enables a semi-trusted cloud service
to derive representations from encrypted credentials without learning the un-
derlying plaintext. Also, unlinkability is further guaranteed protecting the users’
privacy, which makes it a very good choice for identity management where only
small amounts of identity attributes are exchanged. However, this property be-
comes impractical with larger documents as hybrid encryption trivially breaks
unlinkability. In contrast, our work focuses on a more general model with a con-
struction that is efficient for both small as well as large documents. In particular,
our construction 1) already integrates hybrid encryption for large documents
avoiding ambiguity of the actually signed content, and 2) supports features of
redactable signatures such as the transparency notion, signer-defined admissible
redactions, as well as different data structures. These features come at a cost:
the proposed construction for our model does not provide unlinkability.
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Fig. 1. Algorithms Performed by Actors (Dashed Lines Denote Trust Boundaries)

2 Definition: Selective End-to-End Data-Sharing

We present an abstract model for selective end-to-end data-sharing and define
security properties. It is our goal to formalize a generic framework that enables
various instantiations.

Data Flow. As an informal overview, Figure 1 illustrates the model’s algo-
rithms in the context of interactions between the following five actors: 1) The
issuer signs the plain data. For example, a hospital or government agency may
certify the data owner’s health record or identity data, respectively. 2) The
sender encrypts the signed data for the owner. 3) The owner is the entity, for
which the data was originally encrypted. Initially, only this owner can decrypt
the ciphertext. The owner may generate re-encryption keys to delegate decryp-
tion rights to other receivers. 4) The proxy redacts specified parts of a signed
and encrypted message. Then, the proxy uses a re-encryption key to transform
the remaining parts, which are encrypted for one entity (the owner), into cipher-
text for another entity (a receiver). 5) Finally, the receiver is able to decrypt
the non-redacted parts and verify their authenticity. Of course, multiple of these
roles might be held by the same entity. For example, an owner signs her data (as
issuer), uploads data (as sender), or accesses data she outsourced (as receiver).

Notation. In our following definitions, we adapt the syntax and notions
inspired by standard definitions of PRE [2] and RSS [22].

Definition 1 (Selective End-to-End Data-Sharing). A scheme for selec-
tive end-to-end data-sharing (SEEDS) consists of the PPT algorithms as defined
below. The algorithms return an error symbol ⊥ if their input is not consistent.

SignKeyGen(1κ)→ (ssk, spk): On input of a security parameter κ, this probabilis-
tic algorithm outputs a signature keypair (ssk, spk).

EncKeyGen(1κ)→ (esk, epk): On input of a security parameter κ, this probabilis-
tic algorithm outputs an encryption keypair (esk, epk).

ReKeyGen(eskA, epkB)→ rkA→B: On input of a private encryption key eskA of
user A, and a public encryption key epkB of user B, this (probabilistic)
algorithm outputs a re-encryption key rkA→B.

Sign(ssk,m,ADM)→ σ: On input of a private signature key ssk, a message m
and a description of admissible messages ADM, this (probabilistic) algorithm
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outputs the signature σ. The admissible redactions ADM specifies which mes-
sage parts must not be redacted.

Verify(spk,m, σ)→ valid: On input of a public key spk, a signature σ and a
message m, this deterministic algorithm outputs a bit valid ∈ {0, 1}.

Encrypt(epkA,m, σ)→ cA: On input of a public encryption key epkA, a message
m and a signature σ, this (probabilistic) algorithm outputs the ciphertext cA.

Decrypt(eskA, cA)→ (m,σ): On input of a private decryption key eskA, a signed
ciphertext cA, this deterministic algorithm outputs the underlying plain mes-
sage m and signature σ if the signature is valid, and ⊥ otherwise.

Redact(cA,MOD)→ c′A: This (probabilistic) algorithm takes a valid, signed ci-
phertext cA and modification instructions MOD as input. MOD specifies
which message parts should be redacted. The algorithm returns a redacted
signed ciphertext c′A.

ReEncrypt(rkA→B , cA)→ cB: On input of a re-encryption key rkA→B and a signed
ciphertext cA, this (probabilistic) algorithm returns a transformed signed ci-
phertext cB of the same message.

Correctness. The correctness property requires that all honestly signed,
encrypted, and possibly redacted and re-encrypted ciphertexts can be correctly
decrypted and verified.

∀κ ∈ N,∀(ssk, spk)← SignKeyGen(1κ)

∀(eskA, epkA)← EncKeyGen(1κ)

∀(eskB , epkB)← EncKeyGen(1κ)

∀rkA→B ← ReKeyGen(eskA, epkB)

∀m, ∀ADM � m, ∀σ ← Sign(ssk,m,ADM)

∀cA ← Encrypt(epkA,m, σ)

∀cB ← ReEncrypt(rkA→B , cA),

∀MOD�
ADM

m, ∀c′A ← Redact(cA,MOD)

∀c′B ← ReEncrypt(rkA→B , c
′
A),

:

Decrypt(eskA, cA) = (m,σ),

Decrypt(eskB , cB) = (m,σ),

Verify(spk,m, σ) = 1,

(m′, σ′)← Decrypt(eskA, c
′
A),

Verify(spk,m′, σ′) = 1,

(m′, σ′′)← Decrypt(eskB , c
′
B),

Verify(spk,m′, σ′′) = 1,

with m′ MOD←−−− mi.

Oracles. To keep the our security experiments concise, we define various or-
acles. The adversaries are given access to a subset of these oracles in the security
experiments. These oracles are implicitly able to access public parameters and
keys generated in the security games. The environment maintains the following
initially empty sets: HU for honest users, CU for corrupted users, CH for challenger
users, SK for signature keys, EK for encryption keys, and Sigs for signatures.
Add User Oracle, AU(i, t): Generates and
tracks all key pairs for a user.

if i ∈ HU ∪ CU ∪ CH or t = CH: return ⊥
add i to set of type t
EK[i]← (eski, epki)← EncKeyGen(1κ)
SK[i]← (sski, spki)← SignKeyGen(1κ)
if t = CU: return ((eski,epki), (sski,spki))

if t = HU: return ((⊥, epki), (⊥, spki))

Sign Oracle, SIG(i,m,ADM): Signs mes-
sages for the challenge and honest users,
and tracks all signatures.

if i /∈ CH ∪ HU or SK[i][0] = ⊥: return ⊥
σ ← Sign(SK[i][0],m,ADM)
Sigs← Sigs

∪{m′ | ∀MOD�
ADM

m ∀m′ MOD←−−− m}
return (m,σ)
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Sign Encrypt Oracle, SE(i, j,m,ADM):
Signs and encrypts messages for any user,
and tracks all signatures.

if i, j /∈ CH ∪ HU ∪ CU: return ⊥
σ ← Sign(SK[i][0],m,ADM)
CA ← Encrypt(EK[j][1],m, σ)
Sigs← Sigs

∪{m′ | ∀MOD�
ADM

m ∀m′ MOD←−−− m}
return CA

Re-Encryption Key Generator Or-
acle, RKG(i, j): Generates keys for re-
encryptions keys except for re-encryptions
from the challenge user to a corrupted
user.

if i ∈ CH and j ∈ CU: return ⊥
if i, j /∈ HU∪ CU∪ CH or i = j: return ⊥
return ReKeyGen(EK[i][0], EK[j][1])

Re-Encrypt Oracle, RE(i, j, cj): Performs
re-encryption of a ciphertext as long as the
target user is not corrupted and the cipher-
text is not derived from the challenge.

if i, j /∈ HU ∪ CU ∪ CH or i = j: return ⊥
if ci is not a proper 2nd level ciphertext
for EK[i][0]: return ⊥
if 1) the oracle is called in the guess
phase, and 2) j ∈ CU, and 3) ci is a
derivative of C∗, that is if (m,σ) ←
Decrypt(EK[i][0], ci) and m ⊆ m0 or m ⊆
m1: return ⊥
rki→j ← ReKeyGen(EK[i][0], EK[j][1])
return ReEncrypt(rki→j , ci).

Decrypt Oracle, D(i, ci): Decrypts a ci-
phertext as long as it is not derived from
the challenge ciphertext.

if i /∈ HU ∪ CU ∪ CH: return ⊥
if ci is not a proper ciphertext for
EK[i][0]: return ⊥
if the oracle is called in the guess phase,
and ci is a derivative of C∗, that is if
(m,σ) ← Decrypt(EK[i][0], ci) and m ⊆
m0 or m ⊆ m1: return ⊥
return (m,σ)← Decrypt(EK[i][0], ci)

Unforgeability. Unforgeability requires that it should be infeasible to com-
pute a valid signature σ for a given public key spk on a message m without
knowledge of the corresponding signing key ssk. The adversary may obtain sig-
natures of other users and therefore is given access to a signing oracle (SIG). Of
course, we exclude signatures or their redactions that were obtained by adaptive
queries to that signature oracle.

Experiment ExpUnfSEEDS,A(1κ)

CH← {0}, SK[0]← (ssk∗, spk∗)← SignKeyGen(1κ), O ← {SIG}, (m,σ)← AO(spk∗)
if Verify(spk∗,m, σ) = 1 and m /∈ Sigs, then return 1, else return 0

Experiment 1: Unforgeability Experiment for Signatures of SEEDS Schemes

Definition 2 (Unforgeability). A SEEDS scheme is unforgeable, if for any
PPT adversary A there exists a negligible function ε such that

Pr
[
ExpUnfSEEDS,A(1κ) = 1

]
< ε(κ)

Proxy Privacy. Proxy privacy captures that proxies should not learn any-
thing about the plain data of ciphertext while processing them with the Redact
and ReEncrypt operations. This property is modeled as an IND-CCA style game,
where the adversary is challenged on a signed and encrypted message. Since the
proxy may learn additional information in normal operation, the adversary gets
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access to several oracles: Obtaining additional ciphertexts is modeled with a
Sign-and-Encrypt oracle (SE). A proxy would also get re-encryption keys en-
abling re-encryption operations between corrupt and honest users (RE, RKG).
Furthermore, the adversary even gets a decryption oracle (D) to capture that the
proxy colludes with a corrupted receiver, who reveals the plaintext of ciphertext
processed by the proxy. We exclude operations that would trivially break the
game, such as re-encryption keys from the challenge user to a corrupt user, or
re-encryptions and decryptions of (redacted) ciphertexts of the challenge.

Experiment ExpPPSEEDS,A(1κ)

SK[0]← (ssk∗, spk∗)← SignKeyGen(1κ), EK[0]← (esk∗, epk∗)← EncKeyGen(1κ)
CH← {0}, b←R {0, 1}, O1 ← {AU, SE, RKG, RE, D}, O2 ← {SE, RE, D}
(m0,ADM0,m1,ADM1, st)← AO1(spk∗, epk∗)
if m0 6∼ m1, or ADM0 6∼ ADM1: abort

σ ← Sign(ssk∗,mb,ADMb), c
∗ ← Encrypt(epk∗,mb, σ), b′ ← AO2(st, c∗)

if b = b′, then return 1, else return 0

Experiment 2: Proxy Privacy Experiment for Ciphertexts of SEEDS Schemes
(X ∼ Y ... |X| = |Y | and corresponding items xi, yi have same length)

Definition 3 (Proxy Privacy). A SEEDS scheme is proxy private, if for any
PPT adversary A there exists a negligible function ε such that∣∣∣Pr

[
ExpPPSEEDS,A(1κ) = 1

]
− 1/2

∣∣∣ < ε(κ)

Receiver Privacy. Receiver privacy captures that users only want to share
information selectively. Therefore, receivers should not learn any information
on parts that were redacted when given a redacted ciphertext. Since receivers
may additionally obtain decrypted messages and their signatures during normal
operation, the adversary gets access to a signature oracle (SIG). The experiment
relies on another oracle (LoRRedact), that simulates the proxy’s output. One of
two messages is chosen with challenge bit b, redacted, re-encrypted and returned
to the adversary to guess b. To avoid trivial attacks, the remaining message
parts must be a valid subset of the other message’s parts. If the ciphertext leaks
information about the redacted parts, the adversary could exploit this to win.

Definition 4 (Receiver Privacy). A SEEDS scheme is receiver private, if for
any PPT adversary A there exists a negligible function ε such that∣∣∣Pr

[
ExpRPSEEDS,A(1κ) = 1

]
− 1/2

∣∣∣ < ε(κ)

Transparency. Additionally, a SEEDS scheme may provide transparency.
For example, considering a medical report, privacy alone might hide what treat-
ment a patient received, but not the fact that some treatment was administered.
Therefore, it should be infeasible to decide whether parts of an encrypted mes-
sage were redacted or not. Again, the adversary gets access to a signature oracle
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Experiment ExpRPSEEDS,A(1κ)

SK[0]← (ssk∗, spk∗)← SignKeyGen(1κ)
EK[0]← (esk∗, epk∗)← EncKeyGen(1κ)
CH← {0}, b←R {0, 1}
O ← {AU, SIG, LoRRedact(· · · · ··, b)}
b′ ← AO(spk∗, epk∗)
if b = b′, then return 1
else return 0

LoRRedact(i,j,m0,MOD0,m1,MOD1,ADM,b):

if i /∈ CH or j /∈ HU ∪ CU: return ⊥
rkA→B ← ReKeyGen(EK[i][0], EK[j][1])
for both c ∈ {0, 1}

σc ← Sign(SK[i][0],mc,ADM)
cA,c ← Encrypt(EK[i][1],mc, σc)
c′A,c ← Redact(cA,c,MODc)
c′B,c ← ReEncrypt(rkA→B , c

′
A,c)

(m′c, σ
′
c)← Decrypt(EK[j][0], c′B,c)

if m′0 = m′1: return c′B,b
else: return ⊥

Experiment 3: Receiver Privacy Experiment for SEEDS Schemes

(SIG) to cover the decrypted signature message pairs during normal operation of
receivers. The experiment relies on another oracle (RedactOrNot), that simulates
the proxy’s output. Depending on the challenge bit b, the adversary gets a ci-
phertext that was redacted or a ciphertext over the same subset of message parts
generated through the sign operation but without redaction. If the returned ci-
phertext leaks information about the fact that redaction was performed or not,
the adversary could exploit this to win.

Experiment ExpTransSEEDS,A(1κ)

SK[0]← (ssk∗, spk∗)← SignKeyGen(1κ)
EK[0]← (esk∗, epk∗)← EncKeyGen(1κ)
CH← {0}, b←R {0, 1}
O ← {AU, SIG, RedactOrNot(·, ·, ·, ·, b)}
b′ ← AO(esk∗, epk∗, spk∗)
if b = b′, then return 1
else: return 0

RedactOrNot(i,m,MOD,ADM, b):

if i /∈ CH: return ⊥
σ ← Sign(SK[i][0],m,ADM)
c← Encrypt(EK[i][1],m, σ)
c′0 ← Redact(c,MOD)
(m′, σ′)← Decrypt(EK[i][0], c′0)
σ′ ← Sign(SK[i][0],m′,ADM)
c′1 ← Encrypt(EK[i][1],m′, σ′)
return c′b.

Experiment 4: Transparency Experiment for Ciphertexts of SEEDS Schemes

Definition 5 (Transparency). A SEEDS scheme is transparent, if for any
PPT adversary A there exists a negligible function ε such that∣∣∣Pr

[
ExpTransSEEDS,A(1κ) = 1

]
− 1/2

∣∣∣ < ε(κ)

3 Modular Instantiation

Scheme 1 instantiates our model by building on generic cryptographic mecha-
nisms, most prominently proxy re-encryption and redactable signatures, which
can be instantiated with various underlying schemes.

Signing. Instead of signing the plain message parts mi, we generate a redact-
able signature over their symmetric ciphertexts ci. To prevent ambiguity of the
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actually signed content, we commit to the used symmetric key k with a com-
mitment scheme, giving (O,C), and incorporate this commitment C as another
part when generating the redactable signature σ̂. Neither the ciphertexts of the
parts, nor the redactable signature over these ciphertexts, nor the (hiding) com-
mitment reveals anything about the plaintext. To verify, we verify the redactable
signature over the ciphertext as well as commitment and check if the message
parts decrypted with the committed key match the given message.

Selective Sharing. We use proxy re-encryption to securely share (encrypt
and re-encrypt) the commitment’s opening information O with the intended re-
ceiver. With the decrypted opening information O and the commitment C itself,
the receiver reconstructs the symmetric key k, which can decrypt the cipher-
texts into message parts. In between, redaction can be directly performed on the
redactable signature over symmetric ciphertexts and the hiding commitment.

Admissible Redactions. The admissible redactions ADM describe a set of
parts that must not be redacted. For the redactable signature scheme, a canon-
ical representation of this set also has to be signed and later verified against
the remaining parts. In combination with proxy re-encryption, the information
on admissible redactions also must be protected and is, therefore, part-wise en-
crypted, which not only allows the receiver to verify the message, but also the
proxy to verify if the performed redaction is still valid. Of course, hashes of parts
that must remain can be used to describe ADM to reduce its size. In the con-
struction, the commitment C is added to the signature but must not be redacted,
so it is internally added to ADM.

Subject Binding. The signature is completely uncoupled from the encryp-
tion, and so anyone who obtains or decrypts a signature may encrypt it for
herself again. Depending on the use case, the signed data may need to be bound
to a specific subject, to describe that this data is about that user. To achieve
this, the issuer could specify the subject within the document’s signed content.
One example would be to add the owner’s epk as the first message item, enabling
receivers to authenticate supposed owners by engaging in a challenge-response
protocol over their spk. As we aim to offer a generic construction, a concrete
method of subject binding is left up to the specific application.

Tailoring. The modular design enables to instantiate the building blocks
with concrete schemes that best fit the envisioned application scenario. To sup-
port the required data structures, a suitable RSS may be selected. Also, per-
formance and space characteristics are a driving factor when choosing suitable
schemes. For example, in the original RSS from Johnson et al. [27] the signature
grows with each part that is redacted starting from a constant size, while in
the (not optimized) RSS from Derler et al. [22, Scheme 1], the signature shrinks
with each redaction. Further, already deployed technologies or provisioned key
material may come into consideration to facilitate migration. This modularity
also becomes beneficial when it is desired to replace a cryptographic mechanism
with a related but extended concept. For example, when moving from ”classical”
PRE to conditional PRE [38] that further limits the proxy’s power.
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As public parameters, fix a proxy re-encryption scheme PRE, a symmetric encryption
scheme S, a commitment scheme C with fixed parameters cpp← C.KeyGen(1κ), and a
redactable signature scheme RSS.

SignKeyGen(1κ)→ (ssk, spk): return RSS.KeyGen(1κ)
EncKeyGen(1κ)→ (esk, epk): return PRE.KeyGen(1κ)
ReKeyGen(eskA, epkB)→ rkA→B: return PRE.ReKeyGen(eskA, epkB)

Sign(ssk,m,ADM)→ σ:

k ← S.KeyGen(1κ)
c← {S.Enc(k,mi) | mi ∈M}
cADM ← {ci ∈ c | mi ∈ ADM}
(C,O)← C.Com(k)
(·, σ̂)← RSS.Sign(ssk,{C}∪c,{C}∪cADM)
return σ ← (O,C, c, σ̂)

Verify(spk,m, σ)→ valid ∈ {0, 1}:
Parse m as {mi}ni=1

Parse σ as (O,C, {ci}ni=1, σ̂)
if the following holds, return 1

RSS.Verify(spk, {C}∪c, σ̂) = 1
∀i ∈ [1...n] : mi = S.Dec(k, ci)
with k ← C.Open(C,O)

else: return 0

Encrypt(epkA,m, σ)→ cA:

Parse σ as (O,C, c, σ̂)
OA ← PRE.Enc2(epkA, O)
return cA ← (OA, C, c, σ̂)

Decrypt(eskA, cA)→ (m,σ):

Parse cA as (OA, C, {ci}ni=0, σ̂)
O ← PRE.Decj(eskA, OA),

with j as ciphertext-level
k ← C.Open(O,C)
m← {mi}ni=1, mi ← S.Dec(k, ci)
σ ← (O,C, c, σ̂)
if Verify(spk,m, σ) = 1: return (m,σ)
else: return ⊥
We assume that spk can always be cor-
rectly derived from any ciphertext cA.

Redact(cA,MOD)→ c′A:

Parse cA as (OA, C, c, σ̂)
({C}∪c′, σ̂′)←

RSS.Redact({C}∪c, σ̂,MOD)
return c′A ← (OA, C, c

′, σ̂′)

ReEncrypt(rkA→B , cA)→ cB:

Parse cA as (OA, C, c, σ̂)
OB ← PRE.ReEnc(rkA→B , OA)
return cB ← (OB , C, c, σ̂)

Scheme 1: Modular Instantiation

Theorem 1. Scheme 1 is unforgeable, proxy-private, receiver-private, and trans-
parent, if the used PRE is IND-RCCA2 secure, S is IND-CPA secure, C is binding
and hiding, and RSS is unforgeable, private, and transparent.

The proof is given in Appendix A.

4 Performance

We evaluate the practicability of Scheme 1 by developing and benchmarking
three implementations that differ in the used RSS and accumulator schemes.
To give an impression for multiple scenarios, we test with various numbers of
parts and part sizes, ranging from small identity cards with 10 attributes to
100 measurements à 1kB and from documents with 5 parts à 200kB to 50 high-
definition x-ray scans à 10MB.
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Table 1. Cryptographic Building Blocks for Our Three Implementations

Impl. 1: Sets & CL Impl. 2: Sets & DHS Impl. 3: Lists & CL

PRE Chow et al. [16], 3072bit

S AES-CBC, 128bit

C Hash Commitment (SHA3), 256bit

Hash SHA3, 256bit

RSS DPSS [22, Scheme 1] DPSS [22, Scheme 1] DPSS [22, Scheme 2]

Accu. CL [11], 3072bit DHS [19, Scheme 3], 384bit CL [11], 3072bit

DSS RSA, 3072bit ECDSA, 256bit RSA, 3072bit

Implementations. Our three implementations of Scheme 1 aim for 128
bit security. Table 1 summarizes the used cryptographic schemes and their
parametrization according to recommendations from NIST [5] for factoring-
based and symmetric-key primitives. The groups for pairing-based curves are
chosen following recent recommendations [4, 31]. These implementations were
developed for the Java platform using the IAIK-JCE and ECCelerate libraries3.
We selected the accumulators based on the comparison by Derler et al. [18].

Evaluation Methodology. In each benchmark, we redact half of the parts.
While Redact and ReEnc are likely to be executed on powerful computers, for
example in the cloud, the other cryptographic operations might be performed by
less powerful mobile phones. Therefore, we performed the benchmarks on two
platforms: a PC as well as an Android mobile phone. Table 2 summarizes the
execution times of the different implementations for both platforms, where we
took the average of 10 runs with different randomly generated data. Instead of
also performing the signature verification within the Dec algorithm, we list Verify
separately. We had to skip the 500MB test on the phone, as memory usage is
limited to 192MB for apps on our Google Pixel 2.

General Observations. The growth of execution times is caused by two
parameters: the number of parts and the size of the individual parts. Sign sym-
metrically encrypts all parts and hashes the ciphertexts, so that the RSS sig-
nature can then be generated independently of the part sizes. Verify not only
hashes the ciphertexts of all remaining parts to verify them against the RSS
signature but also symmetrically decrypts the ciphertexts to match them to the
plain message. Redact shows very different characteristics in the individual im-
plementations. In contrast, the times for Enc and ReEnc respectively are almost
identical, independent of both parameters, as they only perform a single PRE
operation on the commitment’s opening information from which the symmetric
key can be reconstructed. Dec again depends on the number and size of (re-
maining) parts, as besides the single PRE decryption, all remaining parts are
symmetrically decrypted.

Impl. 1 for Sets using CL Accumulators. Impl. 1 provides the best
overall performance for verification. For the first implementation, we use an RSS
scheme for sets [22, Scheme 1] with CL accumulators [11], where we hash the

3 https://jce.iaik.tugraz.at/

https://jce.iaik.tugraz.at/
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Table 2. Execution Times (in Milliseconds) of Three Implementations for Scheme 1
(Dec∗ denotes decryption without additional signature verification)

Impl. 1: Sets & CL Impl. 2: Sets & DHS Impl. 3: Lists & CL

# size S
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PC (Intel i7-4790, 3.6 GHz, 16GB RAM)

10x 1kB 26 1 12 1 1 13 13 2 <1 2 1 47 37 1 36 1 1 18

25x 1kB 54 1 28 1 1 28 19 2 <1 1 1 89 97 1 129 1 1 43

100x 1kB 179 1 97 1 1 89 63 2 <1 1 1 302 852 1 1591 1 1 265

5x 200kB 23 1 6 1 3 16 12 1 <1 1 4 38 28 1 16 1 3 18

25x 1MB 142 1 39 1 40 85 101 1 <1 1 33 143 189 1 151 1 33 111

50x 10MB 1871 1 393 1 749 1100 1777 1 <1 1 752 1216 2310 1 905 1 733 1285

Mobile Phone (Google Pixel 2)

10x 1kB 198 13 112 7 21 121 716 13 <1 6 20 2327 212 11 204 6 19 153

25x 1kB 360 12 199 6 22 211 1171 12 <1 6 21 4649 451 12 623 6 20 258

100x 1kB 1194 12 695 6 24 607 3578 12 1 6 27 15982 2631 12 6835 6 27 973

5x 200kB 177 12 73 6 28 106 657 12 <1 6 28 1896 188 12 92 6 24 110

25x 1MB 777 12 370 6 111 480 1654 12 <1 7 111 4936 893 11 808 6 111 533

message parts before signing. With this accumulator, it is possible to optimize
the implementation, as described in [22], to generate a batch witness against
which multiple values can be verified at once. These batch operations are con-
siderably more efficient than generating and verifying witnesses for each part.
However, with this optimization, it becomes necessary to update the batch wit-
ness during the Redact operation. As only a single witness needs to be stored
and transmitted, the RSS signature size is constant.

Impl. 2 for Sets using DHS Accumulators. In the second implemen-
tation, we use the same RSS scheme for sets [22, Scheme 1] but move towards
elliptic curves by instantiating it with ECDSA signatures and DHS accumula-
tors [19, Scheme 3] (extended version of [18]), which is a variant of Nguyen’s
accumulator [32]. This accumulator does not allow for the optimization used in
the first implementation. Consequently, Redact is very fast, as no witnesses need
to be updated. Instead, a witness has to be generated and verified per part. On
the PC, Sign is slightly faster compared to the first implementation, as signing
with ECDSA, evaluating a DHS accumulator, and creating even multiple wit-
nesses is overall more efficient. However, the witness verification within Verify is
more costly, which causes a significant impact with a growing number of parts.
Interestingly, phones seem to struggle with the implementation of this accumula-
tor, resulting in far worse times than the otherwise observed slowdown compared
with the PC. Considering space characteristics, while it is necessary to store one
witness per part instead of a single batch witness, each DHS witness is only a
single EC point which requires significantly less space than a witness from the
CL scheme. Assuming 384-bit EC (compressed) points per witness and an EC
point for the DHS accumulator, compared to one 3072-bit CL accumulator and
batch witness, the break-even point lies at 15 parts.

Impl. 3 for Lists using CL Accumulators. For the third implementa-
tion, we focused on supporting ordered data by using an RSS scheme for lists [22,
Scheme 2], while otherwise the same primitives as in our first implementation are
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used. Of course, with a scheme for sets, it would be possible to encode the order-
ing for example by appending an index to the parts. However, after redaction,
a gap would be observable, which breaks transparency. Achieving transparency
for ordered data comes at a cost: Scheme 2 of Derler et al. [22] requires addi-
tional accumulators and witnesses updates to keep track of the ordering without
breaking transparency, which of course leads to higher computation and space re-
quirements compared to the first implementation. Using CL accumulators again
allows for an optimization [22] around batch witnesses and verifications. This
optimization also reduces the RSS signature size from O(n2) to O(n).

5 Conclusion

In this paper, we introduced selective end-to-end data-sharing, which covers
various issues for data-sharing in honest-but-curious cloud environments by pro-
viding end-to-end confidentiality, authenticity, and selective disclosure. First, we
formally defined the concept and modeled requirements for cloud data-sharing as
security properties. We then instantiated this model with a proven-secure modu-
lar construction that is built on generic cryptographic mechanisms, which can be
instantiated with various schemes allowing for implementations tailored to the
needs of different application domains. Finally, we evaluated the performance
characteristics of three implementations to highlight the practical usefulness of
our modular construction and model as a whole.

Acknowledgments. This work was supported by the H2020 EU project cre-
dential under grant agreement number 653454.
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A Proof of Theorem 1

We prove Theorem 1 by proving Lemma 1-4 to show the properties unforgeabil-
ity, proxy privacy, receiver privacy, and, finally, transparency. For proofs using
a sequence of games, we denote the event that an adversary wins game i by Si.

Lemma 1. If RSS is unforgeable and C is binding, then Scheme 1 is unforgeable.

Proof. We prove this lemma using a sequence of games.

Game 0: The original SEEDS unforgeability game.
Game 1: We adapt Game 0 to also abort when the signatures were generated

by SIG.

SIG(i,m,ADM):

if i /∈ CH∪ HU or SK[i][0]=⊥: return ⊥
σ ← Sign(SK[i][0],m,ADM)
Parse σ as (O,C, c, σ̂)
Sigs← Sigs

∪{m′ | ∀MOD�
ADM

m ∀m′ MOD←−−− m}
Coms← Coms ∪ {C}
return (m,σ)

Game 1:

(ssk∗, spk∗)← SignKeyGen(1κ)
CH← {0}, SK[0]← (ssk∗, spk∗)
O ← {SIG}
(m,σ)← AO(spk∗)
Parse σ as (O,C, c, σ̂)

if C ∈ Coms: return 0
if Verify(spk∗,m, σ) = 1 and m /∈
Sigs, then return 1, else return 0
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Transition 0⇒ 1: Game 1 behaves the same as Game 0 unless A returned a
valid pair (m,σ) where the included RSS signature σ̂ on {C}∪c was generated
by SIG. We denote this failure event as F , thus |Pr[S0]− Pr[S1]| ≤ Pr[F ].
In this case, since C, c, and σ̂ are fixed, two different messages can only
be obtained, by decrypting with different keys k1 and k2. From the fixed
C, different keys can only be recovered with different opening informations
O1 and O2. To achieve this, the adversary would have to break the binding
property of C, therefore Pr[F ] = εBindC (κ).

Finally, we build an efficient adversary B from an adversary A winning Game
1 for the unforgeability of RSS in RUnfRSS → G1. We can simulate SIG except for
i = 0, where we obtain the RSS signatures using its signing oracle. Note that
all values are consistently distributed. Now, if we obtain a forgery (m,σ) from
A, then parse σ as (O,C, c, σ̂) and forward {C} ∪ c, σ̂ as a forgery. Therefore,

Pr[S1] = εUnfRSS (κ), resulting in Pr[S0] = εBindC (κ) + εUnfRSS (κ), which is negligible.

Reduction RUnfRSS → G1(pk):

(m,σ)← ASIG(pk)
Parse σ as (O,C,C, σ̂)
return ({C}∪c, σ̂)

SIG(0,m,ADM):

k ← S.KeyGen(1κ)
c← {S.Enc(k,mi) | mi ∈M}
cADM ← {ci | ci ∈ c,mi ∈ ADM}
σ ← (O,C, c,OSign(sk, {C}∪c, {C}∪cADM))

Sigs← Sigs ∪ {m′ | ∀MOD�
ADM

m ∀m′ MOD←−−− m}
Coms← Coms ∪ {C}
return (m′, σ)

Lemma 2. If the PRE is IND-RCCA-2 secure, C is hiding, S is IND-CPA se-
cure, and RSS is unforgeable, then Scheme 1 is proxy private.

Proof. We prove proxy privacy using a sequence of games.

Game 0: The original SEEDS proxy privacy game.
Game 1: We restrict the decryption oracles to ciphertexts that contain mes-

sages signed by the signature oracle. Therefore, we adapt SE as SIG in
Lemma 1 to track the generated commitments, Coms← Coms ∪ {C} . Also,

we adapt D to parse ci as (OA, C, c, σ̂) and if C /∈ Coms: return ⊥ .
Transition 0⇒ 1: The two games proceed identically unless the adversary sub-

mits a valid signature to D. In that case the adversary produced a forgery,
i.e. |Pr[S0]− Pr[S1]| ≤ εUnfSEEDS(κ).

Game 2: In the used Encrypt algorithm, we replace the opening information
with a random r from the same domain, and simulate the oracles accordingly:

Encrypt:

Parse σ as (O,C, c, σ̂)

r←R Domain(CO)

OA ← PRE.Enc2(epkA, r )
Map← Map ∪ {(OA, C,O)}
return cA ← (OA, C, c, σ̂).

RE(i, j, k, cj):

Parse cj as (OA, C, c, σ̂)
Look up (OA, C,O) ∈ Map

if not contained: run RE unmodified
else

OB ← PRE.ReEnc(rki→j , OA)
Map← Map ∪ {(OB , C,O)}
return (OB , C, c, σ̂)
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D(i, ci):

Parse ci as (OA, C, c, σ̂)
Lookup (OA, C,O) ∈ Map

if not contained: run D unmodified.
else

k ← C.Open(O,C)
m← {S.Dec(k, cl) | cl ∈ c}
σ ← (O,C, c, σ̂)

if Verify(spk,m, σ) 6= 1 or m is a subset of chosen/forwarded m0,m1:
return ⊥

return (m,σ)

Transition 1⇒ 2: From a distinguisher D1→2, we build an IND-RCCA-2 ad-
versary against the PRE scheme. Indeed, let C be an IND-RCCA-2 challenger.
We modify Encrypt in the following way: Simulate everything honestly, but
sample r uniformly at random from the domain of openings of C and run
OA ← C(O, r) , where c ← C(m0,m1) denotes a challenge ciphertext with
respect to m0 and m1. The RE oracle calls the challenger’s RE oracle instead
of PRE.ReEnc. Consequently, |Pr[S1]− Pr[S2]| ≤ εIND−RCCA−2PRE (κ).

Game 3: For the signature contained in the challenge ciphertext, we commit
to a random value, i.e., we set r←R Domain(Sk) and (C,O)← C.Com( r ).

Transition 2⇒ 3: From a distinguisher D2→3, we obtain a hiding adversary
against C. Let C be a hiding challenger. We modify Sign in the following
way: Simulate everything honestly, but choose r uniformly at random from

the same domain as the S keys and run C ← C(k, r) , where C ← C(m0,m1)
denotes a challenge commitment with respect to m0 and m1. Therefore,
|Pr[S2]− Pr[S3]| ≤ εHideC (κ).

Game 4: In the challenge ciphertext, we replace the message parts with random
values drawn from an identical domain with the same corresponding lengths,

i.e. for i ∈ [1..|M |]: ri←R Domain(m) and c← {S.Enc(k, ri ) | mi ∈ m}.
Transition 3⇒ 4: A distinguisher D3→4 is a (hybrid) IND-CPA adversary

against S. Let C be an IND-CPA challenger. We modify Sign in the fol-
lowing way: Simulate everything honestly, but for each message part choose

ri uniformly at random from the message space and run ci ← C(mi, ri) ,
where c← C(m0,m1) denotes a challenge ciphertext with respect to m0 and
m1. Therefore, |Pr[S4]− Pr[S3]| ≤ |m| · εIND−CPAS (κ), with |m| polynomial
in the security parameter κ.

Finally, we have that Pr[S4] = 1/2, since the adversary now cannot do better
than guessing. Combining the claims, we see that the following is negligible:

|Pr[S0]− 1/2| ≤εUnfSEEDS(κ) + εIND−RCCA−2PRE (κ) + εHideC (κ) + |m| · εIND−CPAS (κ)

Lemma 3. If RSS is private, then Scheme 1 is receiver private.

Proof. Assuming there is an efficient adversary A against the receiver privacy of
Scheme 1, we build an adversary B against the privacy of RSS:
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Reduction RPrivRSS →RP
SEEDS (pk):

(esk∗, epk∗)← SEEDS.EncKeyGen(1κ)
CH← {0}
EK[0]← (esk∗, epk∗), SK[0]← (⊥, pk)
O ← {AU, SIG, LoRRedact(· · · · · · ·, b)}
return b∗ ← AO(pk, epk∗)

AU(i, t): This oracle is simulated honestly.

SIG(i,m,ADM): For i ∈ HU and i ∈ CU

everything is computed honestly, while we
use OSign for i ∈ CH as in Lemma 1.

LoRRedact(i,j,m0,MOD0,m1,MOD1,ADM,b):
For i 6= 0 or j 6∈ HU ∪ CU everything is
computed honestly, otherwise we run:

rk← ReKeyGen(EK[i][0], EK[j][1])
k ← S.KeyGen(1κ;ω)
(C,O)← C.Com(k)
OB ← PRE.ReEnc(rk,PRE.Enc(EK[i][1], O))
for both c ∈ {0, 1}:

cc ← {S.Enc(k,mi) | mi ∈ mc}
cADM,c ← {ci | ci ∈ cc,mi ∈ ADM}

X ← OLoRRedact(sk, pk,
({C}∪cc, {C}∪cADM,c,MODc)c∈{0,1}, b)

if X = ⊥: return ⊥
Parse X as ({C}∪cb′ , σ̂′b)
return (OB , C, c

′
b, σ̂
′
b)

The reduction extends the RSS public key to a SEEDS public key, and forwards it
to A. The oracle LoRRedact sets up everything honestly and obtains signatures
from LoRRedact of RSS. All values are distributed consistently, and B wins the
privacy experiment of RSS with the same probability as A breaks the SEEDS
receiver privacy of Scheme 1.

Lemma 4. If RSS is transparent, then Scheme 1 is transparent.

Proof. Assuming there is an efficient adversary A against the transparency of
Scheme 1, we construct an adversary B against the transparency of the RSS:

Reduction RTransRSS →Trans
SEEDS (pk):

(esk∗, epk∗)← SEEDS.EncKeyGen(1κ)
CH← {0}
EK[0]← (esk∗, epk∗), SK[0]← (⊥, pk)
O ← {AU, SIG, RedactOrNot}
return b′ ← AO(esk∗, epk∗, pk)

AU(i, t): This oracle is simulated honestly.

SIG(i,m,ADM): For i ∈ HU and i ∈ CU ev-
erything is computeed honestly, while we
use OSign for i ∈ CH as in Lemma 1.

RedactOrNot(i,m,MOD,ADM, b): For
i 6= 0 everything is computed honestly,
otherwise we run the following:

k ← S.KeyGen(1κ;ω)
(C,O)← C.Com(k)
OA ← PRE.Enc(EK[i][1], O)
c← {S.Enc(k,mi) | mi ∈ m}
cADM ← {ci | ci ∈ c,mi ∈ ADM}
({C} ∪ c′, σ̂′)← OSign/Redact(sk, pk,

{C}∪c,MOD, {C}∪cADM, b)
return c′A,b ← (OA, C, c

′, σ̂′)

The reduction extends the RSS public key to a SEEDS public key hon-
estly, and forwards it together with the secret encryption key to A. Similarly,
RedactOrNot sets up everything honestly and queries the RSS oracleOSign/Redact
to obtain the signature. Finally, it outputs a consistent ciphertext, hence, B wins
with the same probability as A.
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