Forgery Attacks on FlexAE and FlexAEAD

Maria Eichlseder Daniel Kales Markus Schofnegger Cryptography and Coding – IMACC 2019

SCIENCE PASSION TECHNOLOGY

> www.iaik.tugraz.at

*

Motivation

The NIST LWC Competition

Background

- FlexAEAD
- Differential Cryptanalysis

Differential Cryptanalysis of FlexAEAD

- Designers' Security Arguments
- Differential Cryptanalysis of the Block Cipher
- Application to the Mode

Discussion and Conclusion

- Status of FlexAEAD
- Conclusion

Lightweight Cryptography

Lightweight (Symmetric) Cryptography

- Secure constrained devices: low energy, low area, low latency, ...
- Symmetric crypto like AES is already quite lightweight
 - Simplicity
 - I Side-channel/fault protection
 - Robustness
 - Lightweight hashing

Lightweight (Symmetric) Cryptography

- Secure constrained devices: low energy, low area, low latency, ...
- Symmetric crypto like AES is already quite lightweight, but...
 - Simplicity
 - Side-channel/fault protection
 - Robustness
 - Lightweight hashing

Competitions for Lightweight Cryptography

CAESAR Competition for Authenticated Encryption: Security, Applicability, Robustness
 Use-case 1: Lightweight cryptography
 Use-case 2: High SW performance
 Use-case 3: Robustness

2013	2014	2015	2016	2018	2019	* *
Call	Round 1	Round 2	Round 3	Finalists	Portfolio	~, (*

NIST LWC LightWeight Cryptography Standardization Process Authenticated Encryption (AEAD)

T Hashing (optional)

2018	2019	2019	 , NIST
Call	Round 1	Round 2	 National Institute of Standards and Technolog
	56 candidates	32 candidates	U.S. Department of Commerce

FlexAEAD

- sis an AEAD design by Marsola do Nascimento and Moreira Xexéo
- was a Round-1 candidate in the NIST LWC competition [NX19a]
- evolved from the previously published design FlexAE [NX17]

- uses a **non-ideal** (distinguishable) internal block cipher PF_κ as its **primitive**
- is still claimed to be secure since data traverses multiple block cipher calls

Main Results

We show that the designers' claim is incorrect and derive **attacks**:

- We introduce differences not **only via the data**, but via the **mode's control flow**.
- We exploit a strong differential **clustering** effect in the block cipher.
- We propose forgery attacks on all FlexAEAD variants and FlexAE:

	Key size	Tag size	$-\log_2($ Success probability)
FlexAEAD-64	128 bits	64 bits	46 (with 1 short CP query)
FlexAEAD-128	128 bits	128 bits	54 (with 1 short CP query)
FlexAEAD-256	256 bits	256 bits	70 (with 1 short CP query)
FlexAE-64-128	128 bits	64 bits	54 (with 0 queries!)
•••			•••

• We discuss some additional problems of the mode (easier to fix).

Design & Cryptanalysis

Authenticated Encryption with Associated Data (AEAD)

An AEAD scheme defines an authenticated encryption function \mathcal{AE}_{κ} that maps a key *K*, nonce *N*, associated data *A*, and message *P* to a ciphertext *C* and tag *T*. Its verified decryption function \mathcal{AD}_{κ} returns either the message *P* or an error \bot .

$$\begin{aligned} \mathcal{AE}_{\kappa} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{*} \to \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{t}, & \mathcal{AE}_{\kappa}(N, A, P) = C, T \\ \mathcal{AD}_{\kappa} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{t} \to \mathbb{F}_{2}^{*}, & \mathcal{AD}_{\kappa}(N, A, C, T) = P \end{aligned}$$

Authenticated Encryption with Associated Data (AEAD)

An AEAD scheme defines an authenticated encryption function \mathcal{AE}_{κ} that maps a key *K*, nonce *N*, associated data *A*, and message *P* to a ciphertext *C* and tag *T*. Its verified decryption function \mathcal{AD}_{κ} returns either the message *P* or an error \bot .

$$\mathcal{AE}_{\kappa} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{*} \to \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{t}, \qquad \mathcal{AE}_{\kappa}(N, A, P) = C, T$$
$$\mathcal{AD}_{\kappa} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{*} \times \mathbb{F}_{2}^{t} \to \mathbb{F}_{2}^{*}, \qquad \mathcal{AD}_{\kappa}(N, A, C, T) = P$$
Goal: protect the confidentiality of *P* and the authenticity of *P* and *A*.

FlexAEAD's Internal Block Cipher PF_K

- Block size ∈ {64, 128, 256} bits
 Key size ∈ {128, 256, 512} bits
- Even-Mansour construction with whitening keys $K_A \parallel K_B = K$
- *r* ∈ {5, 6, 7} rounds for FlexAEAD-{64, 128, 256}
 - Linear layer: Shuffling of 4-bit nibbles
 - S-box layer: 8-bit AES S-box

FlexAEAD's Mode of Operation [NX19a] (slightly simplified)

Block cipher PF_{κ} , increment INC32

Differential Cryptanalysis [BS90]

Differential

Attack Goals

Differential Cryptanalysis [BS90]

Diff. Characteristic

Attack Goals

Derivative for $\Delta X = \alpha$: $\Delta_{\alpha} E(X) := E(X \oplus \alpha) \oplus E(X)$ Collision / Forgery

Differential Cryptanalysis [BS90]

Diff. Characteristic

Attack Goals

Differential Cryptanalysis of FlexAEAD

Designers' Security Arguments

- At least 2 active S-boxes per round in any characteristic
- Maximum differential probability of the AES S-box is 2⁻⁶
- Differences in P_i pass through **3** *r* rounds (PF³) before attacker gets C_i
- 3 *r* · 2 · (−6) is much smaller than the blocksize in each variant, so differential cryptanalysis gives no advantage over generic attacks

Differences in the Counter Sequence

- Consider the difference between two counters, say, S₀ and S₁
- INC32 adds +1 to every 32-bit subword (little-endian integer)
- Equivalent to $\oplus 1$ with probability $\frac{1}{2}$ $2^{-2}, 2^{-4}, 2^{-8}$ for FlexAEAD-{64, 128, 256}
- E.g., for PF_K in FlexAEAD-64, consider $\Delta_{in} = 01000000 \ 01000000 \rightarrow$ $\Delta_{out} = ???$

Finding Differential Characteristics for PF_K

- Find a "nibble-truncated" characteristic with Mixed-Integer Linear Programming (MILP)
 - 2 binary variables (b_L, b_R) per byte b
 - 1 binary variable *s* per S-box, 1 *x* per nibble Xor

$$c_* = a_* \oplus b_*: \quad 2 \cdot x \le a_* + b_* + c_* \le 3 \cdot x$$

$$b = S(a): \quad a_{L} + a_{R} + b_{L} + b_{R} \le 4 \cdot s, \\ 2 \cdot s \le a_{L} + a_{R}, \quad 2 \cdot s \le b_{L} + b_{R}$$

Minimize sum of 7 · s for all S-boxes (bound)

Find a bitwise characteristic with SAT solver

Finding Differential Characteristics for PF_K

- 1 Find a "nibble-truncated" characteristic with Mixed-Integer Linear Programming (MILP)
 - 2 binary variables (b_L, b_R) per byte b
 - 1 binary variable s per S-box, 1 x per nibble Xor

•
$$c_* = a_* \oplus b_*$$
: $2 \cdot x \leq a_* + b_* + c_* \leq 3 \cdot x$

$$b = \mathcal{S}(a): \quad a_{\mathsf{L}} + a_{\mathsf{R}} + b_{\mathsf{L}} + b_{\mathsf{R}} \leq 4 \cdot s, \\ 2 \cdot s \leq a_{\mathsf{L}} + a_{\mathsf{R}}, \quad 2 \cdot s \leq b_{\mathsf{L}} + b_{\mathsf{R}}$$

■ Minimize sum of 7 · s for all S-boxes (bound)

2 Find a bitwise characteristic with SAT solver

Finding Differential Characteristics for PF_K

- 1 Find a "nibble-truncated" characteristic with Mixed-Integer Linear Programming (MILP)
 - 2 binary variables (b_L, b_R) per byte b
 - 1 binary variable s per S-box, 1 x per nibble Xor

•
$$c_* = a_* \oplus b_*$$
: $2 \cdot x \leq a_* + b_* + c_* \leq 3 \cdot x$

$$b = \mathcal{S}(a): \quad a_{\mathsf{L}} + a_{\mathsf{R}} + b_{\mathsf{L}} + b_{\mathsf{R}} \leq 4 \cdot s, \\ 2 \cdot s \leq a_{\mathsf{L}} + a_{\mathsf{R}}, \quad 2 \cdot s \leq b_{\mathsf{L}} + b_{\mathsf{R}}$$

■ Minimize sum of 7 · s for all S-boxes (bound)

Clustering Differential Characteristics for PF_K

- 1 Find a "nibble-truncated" characteristic with Mixed-Integer Linear Programming (MILP)
 - 2 binary variables (b_L, b_R) per byte b
 - 1 binary variable *s* per S-box, 1 *x* per nibble Xor

•
$$c_* = a_* \oplus b_*$$
: $2 \cdot x \leq a_* + b_* + c_* \leq 3 \cdot x$

- $b = \mathcal{S}(a): \quad a_{\mathsf{L}} + a_{\mathsf{R}} + b_{\mathsf{L}} + b_{\mathsf{R}} \leq 4 \cdot s, \\ 2 \cdot s \leq a_{\mathsf{L}} + a_{\mathsf{R}}, \quad 2 \cdot s \leq b_{\mathsf{L}} + b_{\mathsf{R}}$
- Minimize sum of $4 \cdot (2s b_L b_R)$ for all S-boxes

Forgery Attacks for FlexAE – Example: Zero-Query Forgery

- Original FlexAE is simpler (PF²_K, not PF³_K)
- Forgeries with 0 encryption queries:
 - 1 Let $\Delta_{in} = 101010101010101010$ $\Delta_{out} = 010000001f000000$

2 Pick any
$$N$$
 and C_0

3 Set
$$T$$
 = $C_0 \oplus \Delta_{out}$

■ Success probability $\Delta_{in} \rightarrow \Delta_{out}$ is $\geq 2^{-54}$ for FlexAE-64-128

Discussion and Conclusion

Experimental verification suggests that the success probability is even higher

- The designers were aware of high-probability characteristics for PF, but (incorrectly) argued that only PF \circ PF \circ PF is relevant
- This could be fixed with (much) more rounds for PF or a better diffusion layer
- The mode has some other bugs that lead to trivial attacks, but are easy to fix (domain separation, zero-length input, padding [Mèg19], long messages, ...)

- Experimental verification suggests that the success probability is even higher
- The designers were aware of high-probability characteristics for PF, but (incorrectly) argued that only PF \circ PF \circ PF is relevant
- This could be fixed with (much) more rounds for PF or a better diffusion layer
- The mode has some other bugs that lead to trivial attacks, but are easy to fix (domain separation, zero-length input, padding [Mèg19], long messages, ...)

- Experimental verification suggests that the success probability is even higher
- The designers were aware of high-probability characteristics for PF, but (incorrectly) argued that only PF \circ PF \circ PF is relevant
- This could be fixed with (much) more rounds for PF or a better diffusion layer
- The mode has some other bugs that lead to trivial attacks, but are easy to fix (domain separation, zero-length input, padding [Mèg19], long messages, ...)

- Experimental verification suggests that the success probability is even higher
- The designers were aware of high-probability characteristics for PF, but (incorrectly) argued that only PF \circ PF \circ PF is relevant
- This could be fixed with (much) more rounds for PF or a better diffusion layer
- The mode has some other bugs that lead to trivial attacks, but are easy to fix (domain separation, zero-length input, padding [Mèg19], long messages, ...)

Related Work

- Other, independent cryptanalysis:
 - Truncated differential and Yoyo distinguisher on PF_K [RSP19a; RSP19b]
 - Simple padding domain separation attack for associated data [Mèg19]
- Tweaks proposed by the designers [NX19c; NX19b]:
 - Changing the increment in INC32 from 0x00000001 to 0x11111111
 - Reducing data limits to at most 2³² blocks per encryption
 - Modifying the associated data padding and domain separation
 - Strengthening the linear layer

Conclusion

- We show forgery attacks against the NIST LWC Round-1 candidate FlexAEAD and its predecessor FlexAE
- Some of the attacks have practical complexity (ymmv)
- We exploit high-probability clusters of differential characteristics for PF_{κ} instead of $PF_{\kappa} \circ PF_{\kappa} \circ PF_{\kappa}$ as analyzed by the designers
- The designers proposed many fixes which may mitigate most attacks
- FlexAEAD did not make it to Round 2 of NIST LWC

Bibliography I

- [BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Advances in Cryptology – CRYPTO 1990. Vol. 537. LNCS. Springer, 1990, pp. 2–21. DOI: 10.1007/3-540-38424-3_1.
- [Mèg19] Alexandre Mège. OFFICIAL COMMENT: FlexAEAD. Posting on the NIST LWC mailing list. June 3, 2019. URL: https://groups.google.com/a/list.nist.gov/d/msg/lwcforum/DPQVEJ5oBeU/YXW0QjfjBQAJ.
- [NX17] Eduardo Marsola do Nascimento and José Antônio Moreira Xexéo. A flexible authenticated lightweight cipher using Even-Mansour construction. IEEE International Conference on Communications – ICC 2017. IEEE, 2017, pp. 1–6. URL: https://doi.org/10.1109/ICC.2017.7996734.

Bibliography II

[NX19a] Eduardo Marsola do Nascimento and José Antônio Moreira Xexéo. FlexAEAD. Submission to Round 1 of the NIST Lightweight Cryptography Standardization process. 2019. URL: https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf.

[NX19b] Eduardo Marsola do Nascimento and José Antônio Moreira Xexéo. FlexAEAD v1.1 – A Lightweight AEAD Cipher with Integrated Authentication. Journal of Information Security and Cryptography (Enigma) 6.1 (2019), pp. 15–24. DOI: 10.17648/jisc.v6i1.74.

[NX19c] Eduardo Marsola do Nascimento and José Antônio Moreira Xexéo. OFFICIAL COMMENT: FlexAEAD. Posting on the NIST LWC mailing list. 2019. URL: https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/FlexAEADofficial-comment.pdf.

Bibliography III

[RSP19a] Mostafizar Rahman, Dhiman Saha, and Goutam Paul. Attacks Against FlexAEAD. Posting on the NIST LWC mailing list. May 22, 2019. URL: https://groups.google.com/a/list.nist.gov/d/msg/lwcforum/VLWtGnJStew/X3Fxexg1AQAJ.

[RSP19b] Mostafizar Rahman, Dhiman Saha, and Goutam Paul. Interated Truncated Differential for Internal Keyed Permutation of FlexAEAD. IACR Cryptology ePrint Archive, Report 2019/539. 2019. URL: https://eprint.iacr.org/2019/539.