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Abstract. For a long time multiplicative masking together with highly
regular exponentiation algorithms was believed to thwart all side-channel
based threats. Recent research results showed that the multiplicative
masking itself can be attacked in order to recover the used masks. In this
paper we propose a countermeasure which closes this security gap. The
basic idea is to protect the masking step by introducing a randomized
multiplication. The proposed method is cheap in terms of performance
overhead. The memory overhead is reasonable.
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1 Introduction

Nowadays, electronic processing and transmission of data is indispensable. If the
transmitted data contains sensitive information, security issues arise. Depending
on the application various security services are needed. Those are mainly proving
the authenticity of data or parties involved in the communication, data integrity,
and the secrecy of the data. Driven by the advances in microelectronics and
network technology even restricted devices like embedded systems are part of
such communication networks.

A preferable tool to achieve authenticity, integrity, and secrecy is cryptogra-
phy. Based on cryptographic primitives, protocols can be designed and imple-
mented to achieve the required properties. The security of cryptographic algo-
rithms relies on the fact that the so-called secret key is only known by authorized
entities. Furthermore, the security is based on the assumption, that it is not pos-
sible to derive or extract the key by analyzing the relationship between plaintexts
and corresponding ciphertexts.

Even if used algorithms like RSA, DSA, ECDSA, AES, or similar are be-
lieved to be secure against cryptanalysis, their implementations can be insecure.
Attacks which aim on the implementation of an algorithm rather than on the



algorithm itself are so-called implementation attacks. These attacks make use
of weaknesses of the device or the implementation inside the device. They try
to gather additional information, leaked by the device. This information is then
used to extract the key processed by the attacked device. There are several ways
an attacker can obtain such information. For instance the adversary can induce
a fault into the device in order to disturb the computation of the result. If such
a faulty result is used to recover the secret the notion fault attack is used. First
results have been shown by Boneh et al. [2] and Biham and Shamir [1] in 1997.
Another possibility is to observe information which is emitted physically by the
device. The usage of such data to gain knowledge about the internal states of
the device is denoted as side-channel attacks or Side-Channel Analysis (SCA)
attacks. They have been proposed by Kocher et al. in [8] and [9]. Examples for
measurable side-channel information are the power consumption, electromag-
netic emanation, or timing information. In [8], Kocher proposed timing attacks,
whereas the topic of [9] is power analysis attacks.

To perform power analysis attacks, the power consumption of the device un-
der attack is measured while the desired secret key is processed. In power analysis
attacks we distinguish between Simple Power Analysis (SPA), where the secret
key is extracted with the help of a single measurement trace (power trace), and
Differential Power Analysis (DPA) attacks, where multiple traces with differ-
ent input values have to be acquired. First results of power analysis attacks
on asymmetric algorithms like RSA [15] have been published by Messerges et
al. [12].

The most powerful SPA attacks are template attacks, which haven been
introduced by Chari et al. [5]. Template attacks are two-stage attacks. In the
first phase, an attacker uses a similar device which he can fully control, to model
the power consumption of the device under attack. He builds so-called templates
for each possible data value of a certain operation he wants to attack. In the
second phase of the attack one power trace is measured during the computation
and then matched against the built templates. The template which fits best
indicates the data value used in the measured operation with a high probability.
First practical results have been published in [14]. In [11] template attacks on
ECDSA have been presented.

Beside new and better attacks, international research also focused on the
design and implementation of countermeasures against SCA attacks. In general,
there are two groups of countermeasures, namely masking and hiding [10]. Mask-
ing brakes the link between the predicted intermediate values and the actually
occurring intermediates in the implementation, whereas hiding minimizes the
effect of the processed data on the power consumption of the device. Algorith-
mic countermeasures for RSA have already been published in [8]. In [6], Fu-
marolli et al. presented a blinded and fault resistant implementation of RSA us-
ing a Montgomery exponentiation ladder implementation. Most published side-
channel analysis countermeasures for asymmetric algorithms are based on mul-
tiplicative masking.



Until [7], multiplicative masking was believed to be secure. In this article it
is shown that by using template attacks and a sieving step, the random mask
used for multiplicative masking could be extracted. Subsequently, the interme-
diate values could be unmasked. Their attack is limited to processors with word
sizes up to 16 bit. In this paper we will propose a randomized Montgomery
multiplication to repel this attack. We will furthermore present a performance-
optimized software implementation of the general idea for an 8-bit platform. In
addition, we will give a security analysis and we show that the overall perfor-
mance of a blinded RSA implementation will not suffer by using a randomized
multiplication.

The remainder of this paper is organized as follows. Section 2 revisits the
attack on the multiplicative masking. In Section 3, the general idea of the coun-
termeasure is explained. The application of the idea to a Montgomery CIOS
(Coarsely Integrated Operand Scan) multiplication is described in Section 4. We
evaluate the security of our proposed countermeasure in Section 5. Finally, in
Section 6 conclusions are drawn.

2 Attack

Public key algorithms often use multiplicative masking as a protection against
side-channel attacks. Therefore, the message is multiplied by a random mask in
the beginning of the encryption. At the end, the result is divided by a value
related to the mask, thus the result is unmasked again. As a consequence, the
processed intermediate values seem all random to the observer who mounts a
side-channel attack. However, the multiplication which is needed for the initial
masking is not protected. The attack proposed in [7] aims at this initial masking.
The attack allows to recover the used random value after observing the masking
operation and hence to unmask the whole computation.

The attack itself can be divided into two phases: The observing phase and the
sieving phase. In the observing phase, the power consumption during the long
integer multiplication of the masking is measured. From the measured power
consumption, information about the mask can be derived. The mask is usually
longer than the word size of the device under attack. Hence, the mask consists of
several words. Every time one of these words is processed, the power consumption
of the processor contains information about the Hamming weight of the word.
The Hamming weight itself is extracted from the power traces using template
attacks. Thus, the result of the observing phase is the knowledge about the
Hamming weights of the words which are directly or indirectly related to the
unknown mask. The knowledge of these Hamming weights is then used to recover
the exact values of the processed words in the sieving phase. This second phase
filters out impossible candidates for the mask. If enough information is available
during this sieving phase then the possible mask space can be narrowed down
to one single candidate.

Before looking at the sieving step, we need to know how to gather enough
information for a successful sieving. Therefore, we revise a standard long integer



multiplication algorithm and template attacks. After reviewing the sieving step,
we discuss the feasibility of the attack.

2.1 Long Integer Multiplication

A typical long-integer multiplication algorithm can be seen in figure 1. This so-
called text-book method takes every word of operand A and multiplies it by
every word of operand B. The result of such a single precision multiplication
is added to the appropriate digit of the overall result. What is vital for the
attack is that the words of the operands and the results of the single precision
multiplications processed separately. Furthermore, it is advantageous that those
results are processed in two parts, the high word C and the low word T . It is also
important that the attacker knows exactly which algorithm is used and when
which word is processed.

Algorithm 1 Multi-precision integer multiplication

Require: Multi-precision integers A,B consisting of l words
Ensure: T = A ·B
1: T ← 0
2: for i from 0 to l − 1 do
3: C ← 0
4: for j from 0 to l − 1 do
5: (CS)← T [i + j] + A[i] ·B[j] + C
6: T [i + j]← S
7: end for
8: T [i + l]← C
9: end for

10: return T

2.2 Template Attacks

Template attacks present the most powerful simple power analysis techniques.
As well as other power analysis techniques like DPA, they are based on statistics.
A template represents a statistical model for the power consumption of a given
operation. It is assumed that the power consumption of a device follows a mul-
tivariate normal distribution (MVN). Such a distribution can be fully described
by a mean vector and a covariance matrix. Hence, looking at the points in a
power trace and their dependencies amongst each other, the power consumption
of a certain operation can be described by the mean vector m and the covariance
matrix C. A template is such a pair (m,C). However, in order to build such a
model the attacker needs a training device which behaves similarly to the de-
vice under attack. Under this assumption the adversary can for instance model
the power consumption of all nine MOV instructions with different Hamming
weights on an 8-bit processor.



Since the adversary also knows the moments of time when which values are
processed within the power trace, he can extract those points and apply the pre-
viously built templates to them. That is, for sets of interesting points, where a rel-
evant Hamming weight can be observed, all built templates are matched against.
Matching means that the probability density function (PDF) is evaluated with
a template and the interesting points as input. For every template the result of
the matching is a probability value stating how likely it is that the modeled op-
eration/Hamming weight really occurred. According to the maximum-likelihood
decision-rule it is assumed that the operation with the highest probability was
actually performed.

After matching the templates against all interesting points, we know the
Hamming weights of the operands as well as those of the partial products of the
multiplication.

2.3 Sieving Step

The sieving step uses the previously gathered information about the occurring
Hamming weights and tries to narrow down the possible mask candidates. It is
assumed that only one operand is secret, the other one, for instance the message,
is known.

In the first phase of the sieving, the initially possible candidates for the
unknown input words A[i] are determined. For instance, if a Hamming weight
of two was observed for A[0] then there are only 28 values in question for this
word.

The second phase looks at the partial products. For every left candidate
of A[0], the hypothetical partial products with all words of B are computed.
Afterwards it is checked which candidate leads to the Hamming weights extracted
from the power trace. If a candidate leads to a partial-product hypothesis which
is not possible according to the extracted Hamming weights, the candidate is
dismissed.

The success rate of the sieving step increases with the operand length. It has
been shown in [7] that for common RSA operands, the recovery of the mask is
feasible. The attack basically does not depend on the word size of the architec-
ture. That is, the success rates are the same for 8- and 16-bit platforms However,
for 32-bit platforms the sieving step becomes computationally infeasible.

The maybe most surprising outcome of the paper is that the templates do
not need to be exact. That is, if a template indicates a Hamming weight different
from the occurring Hamming weight, this can be considered and tolerated if the
error stays within a certain range. It turned out that the attack works for 8-bit
platforms up to a tolerance of four. Hence, the attack also works in slightly noisy
environments.



3 Randomized Montgomery Multiplication

The general idea of the Randomized Montgomery Multiplication Counter-
measure (RMMC) is to randomize the calculation of the product. More pre-
cisely, the single partial products are calculated at different points in time for
each secured multi-precision multiplication. Even the summation of the different
partial products will take place in randomly changing order. Algorithm 1 gives
the pseudocode for a traditional text-book method, whereas Algorithm 2 is the
randomized version. Again, it is assumed that A holds the random mask and
that the known value (e.g. message) is processed in the outer (not randomized)
loop. The randomization is based on at least one randomization vector deter-
mining which partial product is calculated in the actual iteration of the inner
loop. Such randomization vectors can be generated in linear time by swapping
randomly indexed elements of a sequence. In Section 5 we will show why it can
be necessary to use a different randomization vector for each iteration of the
outer loop.

The most obvious difference between the traditional algorithm and the ran-
domized version is the fact that the calculation of the partial products and their
summation is split up into two parts in the randomized version. This is due to
the fact that the partial products are calculated in random order and hence,
the algorithm can not determine if the corresponding carry is already available.
Therefore, the first inner loop (lines 4 to 7 of Algorithm 2) calculates the par-

Algorithm 2 Randomized multi-precision integer multiplication

Require: Multi-precision integers A,B, where A consists of l + 1 and B of l words,
and a randomization vector rv consisting of a permutation of the values 0 to l. The
word of A with the index l is zero; A carry array C with (l + 2) elements and an
array T with (2l + 1) elements.

Ensure: T = A ·B
1: for i from 0 to l − 1 do
2: T ← 0
3: C ← 0
4: for j from 0 to l do
5: index← rv[j]
6: (C[index], T [index + i])← T [index + i] + A[index] ·B[i]
7: end for
8: for u from 0 to l − 1 do
9: for j from 0 to l do

10: index← rv[j]
11: (X,T [index + i + 1])← T [index + i + 1] + C[index]
12: C[index]← 0
13: C[index + 1]← C[index + 1] + X
14: end for
15: end for
16: end for
17: return T



tial products of A[index] · B[i] where index is the value of the randomization
vector rv at position j. The high word of the result is stored in the carry vector
C and the low word in the accumulated result T . The second big difference is
that the accumulation of the partial products has to be done in a nested loop
(lines 8 to 15 of Algorithm 2). The reason for this is the fact that because of the
random order of the summation it has to be made sure that the carry can prop-
agate from the lowest word to the highest word. The carry propagation must be
performed in randomized order. Otherwise, an attacker could extract the order
of the randomized multiplications or at least minimize the possibilities. If the
carry is propagated in a straight-forward way, an observer can learn the Ham-
ming weights from the single carry bytes. Now he can try to use this information
to reorder the partial products according to this information. For the worst case
this carry propagation can only be ensured by performing the summation step
l ∗ (l − 1) times.

Why does the randomization now defeat a template attack on the multipli-
cation? For the sieving step it is essential that the attacker knows which element
has been multiplied with which one. Otherwise the sieving cannot be successful.
One possibility for an attacker would now be to guess the randomization. With
a probability of 1/(l!) this would succeed but only if one randomization vector
is used for the entire multiplication. If a different randomization vector is used
for each iteration of the outer loop, the probability of guessing the correct ran-
domization vectors for all rounds will drop to (l!)−l. Using different vectors also
helps to defeat an attack which can be a threat to the randomized multiplication
algorithm when applied to the CIOS version of the Montgomery multiplication.
This attack is sketched in Section 5.

The stated probabilities of l! and (l!)−l are the maximum values if no ad-
ditional information about the randomization vectors or the mask is available.
Such additional information is the sequence of Hamming weights of the random-
ization vector. Also knowing the Hamming weights of the mask in correct order
provides such an additional information.

4 Protected CIOS

After presenting the basic concept of our countermeasure in Section 3 we will
show how to apply the general idea to an implementation of the so-called Mont-
gomery multiplication algorithm due to Peter L. Montgomery [13] in this section.
We have decided to implement a special version of the multiplication, namely
the CIOS. The CIOS method has been analyzed in [4] concerning its timing and
memory requirements. Based on this analysis the CIOS method seems to be a
good choice for implementations on restricted devices like 8-bit or 16-bit micro-
controllers. Amongst the compared methods CIOS has the highest performance
while the RAM usage is kept small. Another reason why we chose to implement
a CIOS multiplication is that our randomization approach can be integrated
easily. For more details on CIOS see [4].



Algorithm 3 Randomized Montgomery CIOS Multiplication

Require: Two multi-precision integers A, B with l b-bit words; the modulus N ;
n′ = −N−1 (mod W ); an array r1 consisting of l elements which are the per-
mutation of the numbers 0 to (l − 1); an array r2 consisting of l+ 2 elements which
are a permutation of the numbers 0 to (l + 1); A carry array C with (l+3) elements
and an array T with (l + 2) elements; W is 2b.

Ensure: T = A ·B (mod N)
1: for i from 0 to (l − 1) do
2: T ← 0
3: C ← 0
4: for j from 0 to (l − 1) do
5: index1 = r1[j]
6: (C[index1 + 1], T [index1]) = T [index1] + A[index1] ·B[i]
7: end for
8: for u from 0 to (l + 1) do
9: for j from 0 to (l + 1) do

10: index2 = r2[j]
11: (X,T [index2]) = T [index2] + C[index2]
12: C[index2] = 0
13: C[index2 + 1] = C[index2 + 1] + X
14: end for
15: end for
16: C ← 0
17: m = T [0] · n′[0] modW
18: for j from 0 to (l − 1) do
19: index1 = r1[j]
20: (C[index1 + 1], T [index1]) = T [index1] + N [index1] ·m
21: end for
22: for u from 0 to (l + 1) do
23: for j from 0 to (l + 1) do
24: index2 = r2[j]
25: (X,T [index2]) = T [index2] + C[index2]
26: C[index2] = 0
27: C[index2 + 1] = C[index2 + 1] + X
28: end for
29: end for
30: for j from 0 to (l + 1) do
31: index2 = r2[j]
32: C[index2] = T [index2]
33: end for
34: for j from 0 to (l + 1) do
35: index2 = r2[j]
36: T [index2] = C[index2 + 1]
37: end for
38: end for
39: Final Compare and Subtract(T ,N);



In Algorithm 3, a straightforward integration into a CIOS multiplication of
the concept described in Section 3 is given. The randomization is ensured via the
randomization vectors r1 and r2. The elements of the vectors are a permutation
of the numbers 0 to l − 1 and 0 to l + 1 respectively. We are randomizing the
partial multiplications which take place in the loop performed in lines 4 to 7.
This is done by using the entry at position j in the randomization vector r1
to index the elements in A, T , and C. As already mentioned in Section 3 the
multiplication and the summation have to be split up in two loops, because due
to the randomization one can not be sure that the preceding partial product
has already been calculated. Therefore, the carry which has to be added to the
actual partial product is unknown. The summation of the carry takes place in
the lines 8 to 15. Due to the fact that here more than l elements have to be
added, another randomization vector is needed. The calculation of the partial
products in CIOS is immediately followed by a reduction step.

This reduction step is a simple addition of T and the product m·N . The value
m is calculated in line 17. This partial multiplication of m ·N and addition to T
is performed randomized in the lines 18 to 21 of Algorithm 3. The summation of
the carries is randomized in the nested loops in lines 22 to 29. The final step of
the inner loop of the CIOS method is the shifting of the accumulated result T
by one word to the right. If performed in a randomized way this has to be done
in two steps, which are given in the lines 30 to 37.

When analyzing this implementation it is immediately visible that the perfor-
mance scales with l3. Compared to CIOS which scales with l2 this leads to a big
loss in performance. Furthermore, one can see that two separated randomization
vectors are necessary and that the high words of each partial product have to be
stored. A more detailed performance and memory comparisons are given later
on. To overcome the performance gap between an unprotected and a protected
implementation we have designed a second algorithm which uses a carry-save
strategy in software. This allows to omit the nested loops. Algorithm 4 gives the
implementation of our proposed countermeasure in a more sophisticated way.
The main differences to Algorithm 3 are the additional second carry vector, the
absence of a second randomization vector, and the removal of the nested loop.
However, to achieve this better scalability we have to spend memory for the
realization of the carry-save strategy. We use two carry vectors and swap them
just before performing the partial multiplications in the lines 5 and 12. This
carry-save representation of the numbers has to be resolved at the end of the
algorithm (lines 26 to 29 of Algorithm 4). A further tweak is realized in line 15 of
Algorithm 4. Compared to line 8 the high word of the result is not written to the
next position of the carry vector. This can be done because in the lines 17 to 24
the accumulated result T is shifted one position to the right. To save this shift-
ing step for the carry we write it to the correct position immediately. It turns
out that the invested memory not only increases the speed but also the second
randomization vector is obsolete and therefore no additional memory is used.

Table 1 gives the performance and memory figures for our two proposed algo-
rithms when implemented in assembly on an 8-bit ATmega163 microcontroller.



Algorithm 4 Randomized Montgomery CIOS Multiplication with Carry Save

Require: Two multi precision integers A,B with l b-bit words; the modulus N ;
n′ = −N−1 (mod W );the variables A and N consist of l + 1 words where the
most significant word is zero; an array r3 consisting of l + 1 elements which are a
permutation of the numbers 0 to l; Two carry arrays (CI;CO) with (l+2) elements
and a result array T with (l + 2) elements, W is 2b.

Ensure:
1: T ← 0
2: CI ← 0
3: CO ← 0
4: for i from 0 to (l − 1) do
5: swap(CI,CO)
6: for j from 0 to l do
7: index3 = r3[j]
8: (CO[index3 + 1], T [index3]) = T [index3] + A[index3] ·B[i] + CI[index3]
9: end for

10: refresh(r3)
11: m = T [0] · n′[0] (mod W )
12: swap(CI,CO)
13: for j from 0 to (l) do
14: index3 = r3[j]
15: (CO[index3], T [index3]) = T [index3] + N [index3] ·m + CI[index3]
16: end for
17: for j from 0 to l do
18: index3 = r3[j]
19: CI[index3 + 1] = T [index3 + 1] // Note T [0] is dismissed because it is 0
20: end for
21: for j from 0 to l do
22: index3 = r3[j]
23: T [index3] = CI[index3 + 1]
24: end for
25: end for
26: temp carry = 0
27: for j from 0 to (l + 1) do
28: (temp carry, T [j]) = T [j] + CO[j] + temp carry
29: end for
30: Final Compare and Subtract(T ,N);

The performance and memory figures of an assembly implementation of the plain
CIOS multiplication method on the same platform are given for comparison. The
memory requirements are measured in a multiple of the number of words denoted
by l. The performance values for the randomized CIOS multiplication highlight
the bad scaling factor of the performance for increasing operand sizes. For the
randomized version of the CIOS multiplication using the carry-save strategy
performance is scaled down by a factor of 3 in relation to the plain CIOS imple-
mentation. Randomization not only decreases the performance but also increases



the memory usage. Compared to the non-randomized implementation we need
3l words of additional memory for both implementations.

Algorithm 5 Blinded Fault-Resistant
Montgomery ladder by Fumaroli et
al. [6]

Require: x ∈ G, k =
∑t−1

i=0 ki2
i ∈ N

Ensure: xk ∈ G
1: Pick a random r ∈ G
2: R0 ← r; R1 ← rx; R2 ← r−1

3: init(CKS)
4: for j = t− 1 down to 0 do
5: R¬kj ← R¬kjRkj

6: Rkj ← R2
kj

7: R2 ← R2
2

8: update(CKS,kj)
9: end for

10: R2 ← R2 ⊕ CKS ⊕ CKSref

11: return R2R0

Algorithm 6 Blinded Fault-Resistant
Exponentiation by Boscher et al. [3]

Require: x ∈ G, k =
∑t−1

i=0 ki2
i ∈ N

Ensure: xk ∈ G
1: Pick a random r ∈ G
2: R0 ← r; R1 ← r−1; R2 ← x
3: for j = 0 to t− 1 do
4: R¬kj ← R¬kjR2

5: R2 ← R2
2

6: end for
7: if (R1R2x = R2) then then
8: return (r−1R0)
9: else

10: return (”Error”)
11: end if

The loss of performance is immediately put into perspective when regarding
a secured RSA implementation, e.g. masked Montgomery ladder. As explained
in [7] the weak points of multiplicative masking as security measure are the
masking step and the mask-update step. Our randomized multiplication can be
used in these steps to secure the multiplication. Furthermore, the Montgomery
conversion of the mask has to be protected. This multiplication can also be per-
formed with our randomized multiplication algorithm. All other multiplications
during the calculation of the RSA algorithm are then protected by the multi-
plicative masking. Calculating an RSA encryption with a 512-bit exponent using
Algorithm 5 takes roughly 1, 550 multiplications. When using our randomized
carry-save approach one multiplication takes 3 times longer. But not all mask
updates (line 7) have to be protected for RSA. Since calculating the square root
is not possible modulo n, we only need to protect a reasonable amount of mask
squarings in the beginning. This is because an attacker who recovers R2t−1−j

2 can
guess the already processed key and thus recover a small set of possible inter-
mediate values. The intermediate values can then be used to mount a template
attack like in [11]. Thus, roughly 40 out of the 1, 550 Montgomery multiplica-
tions have to be replaced. For the complete RSA, this results in a performance
overhead of about 5% percent or even less for larger exponents as the overhead
halves as the keylength doubles. Note that all mask updates have to be protected
if calculating square roots is possible, like for ElGamal. This would result in a
constant overhead of approximately 65%.

Recently, Boscher et. al [3] introduced another exponentiation algorithm
which addresses side-channel and fault issues. This algorithm (Algorithm 6)
needs only two multiplications per exponent bit. If we want to apply our coun-
termeasure to this algorithm, we need to address the lines 2 and 4. Line 2 needs



to be protected because the authors propose to generate r and its inverse by
means of exponentiation with a small exponent. We assume 80 multiplications
here, for more, using the extended GCD algorithm is likely to be the cheaper
solution. The problem with line 4 is that the attack can be used to recover xk′r,
where k′ is the already processed part of k (or the bit-complement, depending
on kj). This is because R2 can be assumed as known (via the timing). If j is

close enough to 0, there are 2j possible values for xk′ and each of them yields
a different mask. In a next step a template attack like in [11] can be mounted
for every mask. The attack works analog if j is close to t− 1. As a consequence
the algorithm has to be protected during the first few and the last few bits of k.
Assuming that it is impossible to follow the sketched approach for more than 40
bits, it suffices to protect 80 multiplications in line 4 and another 80 in line 2.
Hence, we have to protect 160 out of (1024+80) multiplications which results in
an overhead of roughly 29%. Again, the overhead halves for double the bitlength
of k. For Boscher et. al.’s algorithm, this variable overhead would also apply for
ElGamal.

Depending on the exponentiation algorithm and the public knowledge about
the underlying group, the overhead can be non-negligible, especially for embed-
ded systems. However, if the protection profile requires security against template
attacks, there is (up to our best knowledge) no solution which is less performance-
intensive per multiplication. Moreover, we have to bear in mind that this is a
software countermeasure which can be applied to all processor-driven devices
and that no dedicated hardware is necessary.

Table 1. Performance results on an 8-bit ATmega163 microcontroller for our random-
ized CIOS implementation in comparison to an optimized CIOS multiplication

Implementation l = 64 l = 32 l = 16 Memory
Cycles Cycles Cycles Words

CIOS multiplication 149,934 38,190 9,966 4l + 10

Randomized CIOS
multiplication 14,395,427 1,966,243 289,763 7l + 10

Randomized CIOS
multiplication
with carry save 438,350 112,846 29,966 7l + 11

5 Security Evaluation

Randomization in time is a well known countermeasure for DPA attacks. There,
the correlation is reduced by a factor of R which is identical to the randomization
degree. If strong attacking techniques like windowing are applied [16], the gain
is reduced to

√
R. However, it is important to consider the difference between a

DPA attack scenario and a template attack scenario. In our scenario it is vital for



the attacker to know the correct order in which the operand is processed. This is
because the attacker is only given a single trace and the attack fails immediately
if a correct candidate is removed from the set of possible candidates.
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Fig. 1. Result of DPA attack on the lower
byte of A[1] ·B[0] for 1,000 traces without
randomization
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Fig. 2. Result of DPA attack on the lower
byte of A[1]·B[0] for 5,000 traces with ran-
domization

To show the effectiveness of the randomization we performed a DPA attack
on the partial products A[1] · B[0]. It can be seen that there are two DPA
peaks when the words of operand A are not randomized (Figure 1). The other
small peaks arise due to the fact that the partial products are not completely
independent. This is because they depend on the same word of B. However, as
soon as randomization is introduced, the peaks decrease by the number of words
l in A (see Figure 2, with l = 4). This does not directly thwart the template
attack. However, if the partial products are randomized, the matching step of
the template attack fails.

Nevertheless, looking at the partial product of A[0] · B[0] in Figure 3 and
Figure 4 an additional peak occurs which even remains in the randomized setup.
This peak is caused by the code in line 11 of Algorithm 4. Here, the lowest word
of the result (the low-byte of A[0] · B[0]) is accessed to calculate the summand
for the reduction. This part is hard to randomize, except with the addition of
dummy cycles. However, what is worse is that it poses a threat to the whole
randomization. If the same permutation vector is used for all rounds, the follow-
ing attack would work to recover the permutation sequence: The result used for
line 11 also occurs in the multiplication above. Hence, it matches with a sub-
set of the n positions for the partial products. By performing this matching for
several rounds of the outer loop, the position where A[0] · B[i] is processed can
be recovered. Now that this position is known, the position of A[1] ·B[i] can be
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Fig. 3. Result of DPA attack on the lower
byte of A[0] ·B[0] for 1,000 traces without
randomization
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Fig. 4. Result of DPA attack on the lower
byte of A[0]·B[0] for 5,000 traces with ran-
domization

attacked following a similar strategy. The link between A[0]·B[i] and A[1]·B[i] is
the carry byte. Hence, the full randomization vector can be obtained. However,
this can be prevented if every round is randomized with another permutation
vector.

6 Conclusion

In this article we presented a method to protect multiplicative masking. This
approach allows to repel for instance the attack described in [7]. Our proposed
countermeasure is based on a randomized multiplication. This is because ran-
domization is effective against single-shot attacks where knowledge about the
order of the operations is vital for their success. Besides the general idea of the
countermeasure we presented a straightforward implementation for an 8-bit AT-
mega163 microcontroller. We also showed how to improve the performance of
the basic realization. This was done by using a carry-save representation for the
intermediate results. It turned out that such an approach increases the runtime
by a constant factor of about 3. However, only a fraction of the multiplications
for a protected RSA has to be replaced. Thus the overhead is below 5% for
Fumaroli et. al.’s algorithm. For Boscher et. al.’s algorithm, the overhead can
stated with below 30%. The memory requirements increase by 3l, where l is the
number of words of the message. In order to overcome the countermeasure and
to recover the mask, an adversary would need to guess the used randomization
vectors. This would require an effort of l!l. The proposed countermeasure is in-
tended to close the security gap for protected RSA implementations presented
in [7].



Acknowledgements. The work described in this paper has been supported in
part through the Austrian Government funded projects ARTEUS and POWER-
TRUST established under the Trust in IT Systems program FIT-IT. The infor-
mation in this document reflects only the authors’ views, is provided as is and
no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

References

1. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 17-
21, 1997, Proceedings, volume 1294 of Lecture Notes in Computer Science, pages
513–525. Springer, 1997.

2. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract). In W. Fumy, editor, Ad-
vances in Cryptology - EUROCRYPT ’97, International Conference on the Theory
and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15,
1997, Proceedings, volume 1233 of Lecture Notes in Computer Science, pages 37–
51. Springer, 1997.

3. A. Boscher, H. Handschuh and E. Trichina. Blinded Fault Resistant Exponen-
tiation Revisited. In L. Breveglieri, I. Koren, D. Naccache, E. Oswald and J.-P.
Seifert, editors, Fault Diagnosis and Tolerance in Cryptography, Sixth International
Workshop, FDTC 2009, Lausanne, Switzerland, September 6, 2009, Proceedings,
pages 3–9.
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