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Abstract—A plane wave incident perpendicular to one open end of a conductive tube, as part of a honeycomb-structure, is
attenuated on its way through it. In order to calculate its total attenuation for various frequencies the FE-method will be
used. This requires a reflectionless truncation of the FE-mesh for which a Surface Operator Boundary Condition (SOBC)
will be employed. In order to show the accuracy and applicability of the FEM with SOBC, the results will be compared
to entirely analytical solutions as well as to easy-to-use engineering formulae.
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I. INTRODUCTION

Previous works i.e. [1] have shown the implementation
of a surface operator boundary condition derived from
an analytical model into the FE-mesh. Honeycombs can
be considered waveguides-beyond-cutoff (WBC) and are
therefore employed as vents for large shielded enclosures,
like shielded rooms, while maintaining a certain degree
of attenuation of a plane wave incident on it.

The resulting attenuation imposed by a single con-
ductive tube will be calculated under different ratios of
length-to-diameter of the tube and at selected frequencies.

Existing literature like [2] provide engineering rules for
designing waveguides-beyond-cutoff (WBC) as a shield-
ing component whereas others like [3] present analytical
details on the physics of the transmission of electromag-
netic power in waveguides of various cross-sections. The
results, obtained through numerical computation in the
frequency range of 3GHz to 18GHz for a practical
design of a real life waveguide are then compared to
both approaches and subsequently discussed.

II. MODELLING

A. Surface Operator Boundary Conditions (SOBC)

Fig. 1 shows the setup used for the computation of the
plane wave field strength incident on the tube and exiting
it. The right-hand-side boundary is modelled by means
of SOBCs (Γtr) matching the impedance of free space
between the tube and the termination of the problem area.
A plane wave travelling along the x-axis will experience
a certain degree of attenuation by the waveguide as long
as the waveguide-beyond-cutoff (WBC) condition is met.
A fraction of the initial power of the wave penetrates the
waveguide and is terminated reflectionless at Γtr.

Based on results obtained through [5] and [4] the im-
plementation of this surface operator boundary condition
for the truncation surface Γtr of the FE-mesh can be
directly derived from the Maxwell equations

∇× ~E = −jωµ ~H, ∇× ~H = jωε ~E. (1)

After splitting the field vectors ~E and ~H as well as the
∇-operator into their normal and orthogonal tangential

Fig. 1. Modelling the Waveguide

components as in 2

~E = ~Et + ~nEn, ~H = ~Ht + ~nHn,∇ = ∇t +
∂

∂n
~n (2)

the Maxwell Equations can be reformulated as follows:

~n ~Hn = − 1

jωµ
∇t × ~Et (3)

~n ~En =
1

jωε
∇t × ~Ht. (4)

With these relations the normal components of the field
components En and Hn can be eliminated in equation 1.
A couple of mathematical operations finally yield

∂(~n× ~Et)

∂n
= −jωµ ~Ht − 1

jωε∇t × (∇t × ~Ht) (5)

∂(~n× ~Ht)

∂n
= jωε ~Et + 1

jωµ∇t × (∇t × ~Et). (6)

These equations are commonly valid, consequently on the
truncation surface (see fig. 1) too. On Γtr the situation
is as shown in fig. 2 in a local coordinate system.
The propagation of the wave can be represented by the
wave vector ~k. Due to the knowledge of the angle of
incidence on Γtr it can be decomposed into its normal
and tangential components as given in the following set
of equations:

~k = ~kt + ~β, β = ±
√
k2 − kt2, k = ω

√
µε. (7)



Fig. 2. Wave at any point on Γtr

The surface normal ~n is represented by the local coordi-
nate ~ζ. In order to get rid of the ∂

∂~n term on the left-hand-
side of equation 5 and equation 6 an integration along ζ
over the half-space must be performed. Assuming a lossy
media, the field components must decay to zero at infinity
which allows for∫ ∞

ζ=0

~Ht0e
−jβζdζ =

1

jβ
~Ht0 (8)∫ ∞

ζ=0

~Et0e
−jβζdζ =

1

jβ
~Et0.

~Ht0 and ~Et0 are the tangential field vectors at ζ = 0.
Together with equation 7, relations 5 and 6 can now be
rewritten as

~n× ~Et0 =
−ωµ ~Ht0√
k2 − kt2

+
∇t × (∇t × ~Ht0)

ωε
√
k2 − kt2

(9)

~n× ~Ht0 =
ωε ~Et0√
k2 − kt2

− ∇t × (∇t × ~Et0)

ωµ
√
k2 − kt2

. (10)

Transverse components of the outgoing wave may be
transformed into the Fourier domain, only to see, that its
tangential derivatives can be expressed as ∇t = −j ~kt.
Substitution in equation 9 and 10 leads to

~n× ~Et0 =
−ωµ ~Ht0√
k2 − kt2

−
~kt × (~kt × ~Ht0)

ωε
√
k2 − kt2

(11)

~n× ~Ht0 =
ωε ~Et0√
k2 − kt2

+
~kt × (~kt × ~Et0)

ωµ
√
k2 − kt2

. (12)

These relations between the tangential components of
~Et0 and ~Ht0 can now be used to model the so called

surface operator boundary conditions (SOBC) on Γtr.
Equations 11 and 12 allow for any angle of incidence of
the plane wave on a truncating surface Γtr. Since only
perpendicular incidence on the waveguide and on Γtr are
considered, the use of a first-order SOBC is reasonable
- ~kt = 0.

Application of the Galerkin method to the well-known
~A, v-formulation makes use of the ~n × ~Ht on the Neu-

mann Boundary (see [6]).

−
∫
Ω

∇× ~Ni · 1
µ∇× ~AdΩ

+
∫

ΓH

~Ni · (~n× (
1

µ
∇× ~A))︸ ︷︷ ︸

~n× ~H

dΓ

+
∫
Ω

~Ni · (σ + jωε)jω( ~A−∇v)dΩ = 0. (13)

On the Neumann boundary (ΓH ) the underbraced term
in equation 13 is substituted by the Fourier transformed
integral of equation 6 which prescribes the truncation of
the FE-mesh directly.

B. Surface Impedance Boundary Conditions (SIBC)

An increased incident angle results always in a larger
wave vector ~kt and obviously the curl curl-terms in
equations 11 and 12 become more and more relevance
to achieve accurate boundary conditions. If the wave
propagates perpendicularly to Γtr, the vector ~kt equals
zero. This is the considered case for all results presented
herein. Hence the second term on the right-hand-side in
equations 11 and 12 equal zero and first order SIBCs
remain:

~n× ~Et0 =
−ωµ ~Ht0

k
= −

√
µ

ε
~Ht0 = −Z0

~Ht0 (14)

~n× ~Ht0 =
ωε ~Et0
k

= −
√
ε

µ
~Et0 =

1

Z0

~Et0 (15)

The impedance of the mesh-terminating plane Γtr can
now be directly prescribed.

III. SETUP

Fig. 1 shows the setup used for the computation of the
plane wave field strength incident on the tube and exiting
it. The right-hand-side of the problem area is terminated
by means of the introduced SOBC. A plane wave origi-
nating from the stimulus plane penetrates the tube. Only
a fraction of the incident power ”leaks” through it, since
at the frequencies considered it represents a waveguide-
beyond-cutoff (WBC). This small fraction of the incident
wave is terminated reflectionless at Γtr. The detail of the
aluminium tube with a square cross-section and lengths
ranging from 20mm ... 80mm is shown in fig. 3.

The grid shown in figure 3 represents the macro
elements used for modelling only.

IV. RESULTS

A. Finite Element Method with SOBC

Since frequencies above 1GHz are of interest, simula-
tions at distinct frequencies in the range of 3 ... 18GHz at
a stepwidth of 3GHz are considered. At each frequency
the length of the tube is stepped through by 10mm in
the range between 20mm and 80mm. The cross-section
of the waveguide is kept constant. Fig. 4 shows the
resulting attenuation of a plane wave on its way through



Fig. 3. Details of the waveguide-beyond-cutoff

the WBC. At 15GHz the attenuation of the incident
wave starts to approach zero and the tube becomes a
waveguide as known from RF-applications and has also
been described in [3]. As long as the frequencies are

Fig. 4. Attenuation of a plane wave at distinct lengths and frequencies

below the cutoff-frequency, the attenuation does not only
depend on the ratio between f , the frequency used, and
the cutoff-frequency fc of the structure, but also depends
on the length of the tube. The relationship is non-linear
and therefore clearly contrasting the engineering rules-
of-thumb as provided in the following section.

The following figure (Fig. 5) shows the computation
of the field strengths on either side of the waveguide-
beyond-cutoff. It is operated at 9GHz and the right-
hand-side is terminated by means of the SOBC described
before. The colors in the figure refer to the absolute value
of the field strengths of the electrical component of the
plane wave at a particular moment. Due to the necessity
of a fine mesh for the computation of fields along the
waveguide (coloured grey), no field strengths are visible.
Following the general formula of the power density of a
plane wave

S =
1

2
Re( ~E × ~H∗) (16)

and the impedance of free space of

Z0 =

√
µ0

ε0

Fig. 5. A waveguide 30mm in length, operated at 9GHz

the attenuation of the power through the waveguide can
be calculated. With

at = 20lg
|Emaxin|
|Emaxout|

(17)

the degree of the attenuation (at)[dB] can be determined
based on the field strength of the electrical component
of the plane wave on the left-hand-side of the tube
(|Emaxin|) and on the right-hand-side (|Emaxout|). The
maxima of the respective field strengths are taken from
a line parallel to the x-axis along the centre of the tube.

B. Engineering Rules

For applications using frequencies below approxi-
mately 1GHz [2] proposes the use of simple ”design
rules”:

fc = 150
b , fc[GHz], diameter[mm] (18)

at = 27.3
b l, at[dB], diameter, length[mm] (19)

b =
√

2a, forsquare cross− section[mm]

f ≤ fc
10 , usablefrequencyf (20)

with fc being the cutoff-frequency in [GHz], at rep-
resenting the shielding effectiveness in [dB] and any
dimension given in [mm]. Formulae 18 to 20 show that
the cutoff-frequency only depends on the diameter of the
tube which is, to some degree, in accordance with [3].
It has to be distinguished whether a square, rectangular
or circular waveguide is used. As for the rectangular
cross-sections [3] reads that the larger dimension governs
the cutoff-frequency fc. For circular shapes the diameter
counts. One may also have noticed that the engineering
rules do not account for any matter in the waveguide
but free space. Since the WBC is used as a vent with
shielding properties its cutoff-wavelength follows

λc =
c0
fc
≈ 2a. (21)

This is in line with [3] and equation 22 if ε = ε0 and
µ = µ0. Waveguides filled with dielectric matter for
transmission properties are beyond the scope of this work
since they are neither useful as vents nor as a shielding
component.



As long as the frequency of interest is below the
highest usable frequency as given in equation 20 the
tube yields an attenuation according to equation 19.
Application of this set of formulae to the waveguide
under consideration at 12GHz provides the following
graph (fig. 6):

Fig. 6. Engineering rules applied at 12GHz

Figure 6 shows the application of the engineering rules
at the cutoff-frequency fc = 12GHz. The calculation
of the shielding effectiveness with the engineering rules
(blue dashed line) naturally exceed the limits obtained
by means of the numerical value since equation 20 has
not been considered so far. This equation is obviously a
very rough estimate of the maximum usable frequency.
It requires this waveguide not to be used above 1.2GHz.
This is very conservative, since the green solid line
(the uppermost line) shows the course of the shielding
effectiveness at 9GHz of this particular waveguide. The
engineering rules yield similar results, but on the safe
side. Since it is not clear which limit in terms of shielding
effectiveness underlies this set of easy-to-use engineering
rules, one has to be very careful with its application. Even
if it was possible to adjust equation 20 to this result, the
behaviour of a waveguide may render this unreliable due
to its nonlinear attenutation of a plane wave as fig. 4
clearly shows.

C. Analytical Approach

When considering a waveguide-beyond-cutoff (WBC)
for shielding purposes, the lowest mode of a TE or TM-
wave propagating through it is of interest. It represents
the cutoff-frequency fc. For waveguides with a square
cross-section [3] reads for TE10-mode

fc =
1

2
√
εµ

1

a
(22)

with a being the length of the edge of the square. For a
waveguide as used for this work, fc = 14.99GHz which
matches the result shown in figure 4. With increasing
frequencies the attenuation of the plane waves vanishes
above approximately 15GHz regardless of the length of
it. In other words, illuminating this particular waveguide
at frequencies≥ 15GHz will render it useless as a shield.

Since waveguides are generally used for transmission
of electromagnetic energy there are, apart from the engi-
neering rules above, no analytical formulations available
to determine the attenuation of a plane wave penetrating a
waveguide below its cutoff-frequency - there is no distinct
mode of energy flow in the waveguide. For the same
reason there are no analytical formulations known for
plane waves penetrating a waveguide at other angles than
perpendicular to the cross-section of it (see section V).

V. CONCLUSION

This paper shows how Surface Operator Boundary
Conditions (SOBC) can be implemented in an ~A − v
formulation to be used with the Galerkin method. The
SOBC are used to model a Neumann Boundary Condition
which allows for reflectionless termination of a problem
area. The use of the SOBC allows for a significant
speed-up of the computation of the problem because the
absorbing boundary is only a single term which does not
require additional finite elements to be modelled. For the
construction of vents in a shielded room, waveguides be-
low their cutoff-frequencies are employed. The described
model has been used for the computation of the shielding
effectiveness of waveguides at frequencies exceeding
1GHz and compared and contrasted to an analytical
approach and a set of easy-to-use engineering rules. It
can now clearly be shown, that well known and verified
analytical solutions can be met by numerical models
as far as the cutoff-frequency of square waveguides is
concerned. By the same token, it can be shown that
simple design rules are very conservative i.e. delivering
smaller numbers of shielding attenuation than actually
can be yielded in real designs. It can not be said, that this
set of easy-to-use rules are valid only below ≈ 1GHz.

So far, only plane waves incident perpendicular to
an open end of the waveguide have been modelled and
computed. Future efforts will be put on different angles
of incidence. There exist hints, that stacked arrays of
waveguides (honeycomb structures) suffer a deterioration
of total shielding effectiveness compared to the attenua-
tion provided by a single tube. This behaviour may also
be investigated in the future.
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