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ABSTRACT
is paper presents the first probabilistic Byzantine Agreement algo-
rithm whose communication and time complexities are poly-logarithmic.
So far, the most effective probabilistic Byzantine Agreement algorithm
had communication complexity Õ

�p
n
�

and time complexity Õ (1).
Our algorithm is based on a novel, unbalanced, almost everywhere to
everywhere Agreement protocol which is interesting in its own right.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Systems

Keywords
Byzantine Agreement, randomized algorithm

1. INTRODUCTION

The Byzantine Agreement problem.
Given a system of size n in which a Byzantine adversary controls

at most t nodes (referred thereafter as Byzantine nodes), the Byzantine
Agreement problem [LSP82] is about having all non-Byzantine nodes
(or correct nodes) reach an agreement. e constraints imposed on
the agreement are that all the correct nodes have to agree on a single
output, which the adversary cannot impose to be bad.

Here bad can be subject to various interpretations:

• when the output is a single bit, it is required to be the input of
one of the correct nodes;

• when the output is a string of O (log n) random bits, the adver-
sary should not be able to bias too many bits of the output¹.

Like [PR10, BOPV06, BO83, Rab83], we consider the latter case.

∗On leave from ENS de Cachan, Brittany campus, France.
¹Here, “too many” will be made precise later on.
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Deterministic setting.
Lamport, Shostak and Pease [LSP82, PSL80] have shown that the

Byzantine Agreement problem cannot be solved without transferable
authentication (or some other form of non-equivocation) when n ≤
3t . Furthermore, they gave a solution whose time complexity is t+1.
Later, Fischer and Lynch, in [FL82], proved that t+1 is a lower bound
on the time complexity in the worst case, while a lower bound on
message complexity of Ω

�
n2
�

was given in [DR85].
e result of [LSP82, PSL80] was improved in [GM98], in which

the authors proposed an algorithm using t +1 steps, and whose com-
putation and message complexities are polynomial. e case where
transferable signatures are available was considered in [DR85]; under
this condition, algorithms to solve the Byzantine Agreement prob-
lem exist without any restriction on the number of Byzantine nodes
t [LSP82, PSL80]. e authors also proposed an algorithm using
O
�

n+ t 2
�

messages, and an optimality proof.

Randomized algorithms.
To circumvent these lower bounds on time and communication

complexities, randomization is crucial. Randomized Byzantine Agree-
ment algorithms with constant expected time complexity were first
proposed in [Rab83, DPPU86]. In [PR10], an algorithm with con-
stant expected time complexity and Õ

�
n2
�

communication² com-
plexity was proposed, under the assumption that communication chan-
nels are private. is algorithm works for asynchronous systems, but
tolerates only t < n/4 malicious nodes.

In [HKK08], the authors proved an Ω
�

3
p

n
�

lower bound on both
message (for at least one node) and time complexities for Byzantine
Agreement algorithms in synchronous systems, under some restrictive
assumptions.

Almost-everywhere agreement.
A relaxed version of the Byzantine Agreement problem, namely the

almost-everywhere Byzantine Agreement problem, was introduced by
Dwork et al. in [DPPU86]. is problem is a relaxation of the clas-
sical Byzantine Agreement problem, in the sense that it only requires
that all but an O

�
log−1 n
�

fraction of the nodes agree on a common
output.

is problem was first efficiently solved in [KSSV06], in which the
authors proposed an algorithm whose message and computation com-
plexity are poly-logarithmic in n for each node, and so is the number of
rounds required. Later, an efficient almost-everywhere reduction (con-
struction of Byzantine Agreement from almost-everywhere Byzantine
Agreement) was proposed in [KS09, KLST11], using Õ

�p
n
�

bits per
node and poly-logarithmic time. is yields an algorithm for Byzan-
tine Agreement with the same complexity, which, up to our knowl-

²Õ is the same as O up to a poly-logarithmic factor.
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edge, was the most efficient Byzantine Agreement protocol in terms of
communication complexity until the present paper.

Our contribution.
We propose a new almost-everywhere to everywhere algorithm with

amortized communication complexity Õ (1) per node, denoted AER.
Its time complexity is constant for synchronous executions, with non-
rushing Byzantine nodes (defined in Section 2.1), and O

�
log n

log log n

�
for asynchronous ones. Composed with an almost-everywhere agree-
ment protocol (along the lines of [KSSV06]), this yields the most effec-
tive protocol for Byzantine Agreement to date, using poly-logarithmic
communication and time; this novel protocol is denoted BA.

e high-level idea underlying AER is the following: each node
starts with a candidate string. e hypothesis is that more than half
of the nodes are both correct and have the same candidate string, i.e.
the correct one. Each node starts to diffuse its candidate string dur-
ing a first phase (called push phase, Section 3.1.1). en in a second
phase (pull phase, Section 3.1.2), the bogus strings are discarded so
that each node keeps only the correct string. e originality of our
protocol, compared to previous ones, is that we relax load-balancing
and we introduce new sampler properties so as to reduce communica-
tion complexity.

Comparison with existing protocols.
e complexity of push-pull protocols³, like [KLST11], is dictated

by the complexity of the first phase and the size of the candidate lists
it produces.

To yield a more efficient protocol (in communication), we propose
a solution to limit the total number of candidate strings in the whole
system, and a way to diffuse them at a lower cost. Moreover, we intro-
duce a way for each node to filter push requests. However, a Byzantine
adversary can seize control of several Input Quorums⁴, associated to a
few nodes, and force these nodes to verify an almost-linear number of
strings: as such, AER is not load-balanced.
AER has additional properties that are quite distinctive:

• this algorithm remains correct and efficient under asynchrony;

• unlike many randomized protocols, success is guaranteed when
there is no Byzantine fault;

• against a non-rushing adversary, the algorithm terminates in con-
stant expected time.

BA is, up to our knowledge, the first Byzantine Agreement protocol
with poly-logarithmic complexity in both time and communication.
Figure 1 compares with the state of the art, under various models:

S(N)R synchronous model, with (non-)rushing adversary;
APC asynchronous model, with private communication channels.

Roadmap.
We introduce our model and some background notions in Sec-

tion 2. Section 3 describes our protocol and Section 4 describes its
analysis. We discuss some future work in Section 5.

³Push-pull protocols are defined more precisely in Section 2.3
⁴Quorums are defined in Section 2.2

Figure 1: Comparison with other protocols

(a) « almost-everywhere to everywhere »
[KLST11] AER AER
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(b) Byzantine Agreement
[BOPV06] [KLST11] BA [PR10] [KS13]
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2. PRELIMINARIES

2.1 Model
We consider the model of Lamport, Shostak & Peace's original

Byzantine Agreement paper [LSP82], further used in [KS09, KLST11]:
a fully-connected network of n nodes with an adversary controlling t
nodes.

Unlike these papers, we assume the network to be asynchronous,
except in Lemma 8 and Lemma 9. We also require that each node
possesses a private random number generator.

An event is said to occur with high probability (w.h.p.) iff it occurs
with probability greater than 1−O

�
n−3
�
.

Network.
e network is fully-connected, and communication channels are

authenticated - the identity of the sender is known to the recipient;
transferable authentication is not required, nor any weaker form of non-
equivocation. However, we require the network to be reliable: a mes-
sage sent (to a non-faulty node) will be eventually delivered. In the
synchronous case, we also assume that a message sent during round r
will be delivered during round r + 1.

Adversary.
A node controlled by the adversary is called Byzantine and can devi-

ate arbitrarily from the algorithm. Furthermore, the adversary has full
knowledge of the network and can coordinate the nodes it controls.

In particular, the actions of Byzantine nodes can depend on any
messages sent, especially those sent by correct nodes. Two variations
are considered:

• A rushing adversary knows the messages sent by the correct nodes
at a given time step before choosing which messages to send.
• A non-rushing adversary chooses the messages it sends at a given

time step independently of the messages sent by the correct
nodes during the same time step.

e results we present assume some arbitrary ϵ > 0 is fixed, and
(3+ ϵ) · t < n; however other bounds on t are used and mentioned
for related work. It is also assumed that 1/2+ ϵ fraction of the nodes
are both correct and know a common string gstring, taken with uni-
form probability. is is equivalent to the assumption that all but
a 1/4 fraction of the correct nodes know gstring. Such an assumption
can be ensured by the use of the protocol presented in [KSSV06], as
mentioned in the introduction.

Finally, as in [LSP82], we consider a non-adaptive adversary: cor-
rupt nodes are chosen before the algorithm is executed.

58



Complexity.
We consider two metrics for the complexity of the algorithm:

• Time complexity is the number of steps taken before all correct
nodes return an agreement value.
• Communication complexity is the total number of exchanged

bits (in worst case) divided by the number of nodes. is is
called amortized⁵ complexity, and is the same as worst case com-
plexity for load-balanced algorithms.

Furthermore, we use the Õ notation, which is the same as O , up to
a poly-logarithmic factor.

2.2 Samplers
Like [KLST11, KKK+, CD89], our work relies on the notion of

samplers. e intuition is as follows:

• if nodes choose deterministically the nodes they contact, either
there are a linear number of them (thus Ω(n) communication
complexity) or there are few enough for the adversary to corrupt
a majority;
• if uniformly-random sets (called quorums) are chosen, the byzan-

tine nodes can follow the algorithm, but contact many disjoint
sets, which would then need communicate amongst quorums:
again, this yields unreasonably high worst-case complexity.

Samplers are a middle ground, in the sense that the choice of quo-
rums is directed by both deterministically-known information (like the
identity of a node), and random sources (either a local RNG⁶ or gstring,
which is known almost-everywhere).

Definitions.
First, we introduce some notations:

• [n] denotes the set of integers from 1 to n.
• [n]d is the set of size d strings, with elements in [n].
• D is the agreement domain, of cardinal D = nc

• R is the domain of random labels, used in our algorithm. Its
cardinal, R, is polynomial.

D  ([KLST]). A function S : X → Y is a (θ,δ)-
sampler if for any set S ⊆ Y at most a δ fraction of the inputs x have
|S(x)∩S |
| S | >

| S |
n +θ.

We define H (i , x) = S(i · n+ x) for i ∈D and x ∈ [n]:
e separation in two variables will be used to define push quorums
and pull quorums (Sections 3.1.1 and 3.1.2).

Furthermore, we denote by H−1(i , x) the set of nodes y such that
x ∈H (i , y). A node x is said to be overloaded by H (for some constant
a) if there is a i ∈D such that

��H−1(i , x)
��> a · d

Lemmata.
e following lemma is about the existence of samplers:

L  ([KLST]). For every constant c , for s = n, δ = D−1

and any θ > 0, there is a (θ,δ)-sampler H : D × [n] → [s]d with
d =O
�

log(1/δ)
θ2

�
such that for all i ∈D, no x ∈ [n] is overloaded.

We further use the following lemma:

⁵Note that the amortization is over the set of nodes, not time. How-
ever, average complexity would refer to averaging over possible (ran-
dom) runs of the algorithm.
⁶Random Number Generator, assumed uniformly-random and pri-
vate

L  (S .). ForR with cardinality polynomial in n,
there exists d = O (log n) such that there is a mapping J : [n]×R →
[n]d such that for any subset of [n] of size (1/2+ϵ) · n, whose elements
are called good nodes, we have:

1. At most n elements of [n]×R are mapped to a set containing a
minority of good nodes.

2. For any L⊂ [n]×R , s.t. ∀x ∈ [n], |L∩ ({x}×R) | ≤ 1 and
|L |=O
�

n
log n

�
, with L⊥ = {y | ∃r ∈R s.t. (y, r ) ∈ L}:
∑
(x,r )∈L

��� J (x, r ) \ L⊥
���> 2d |L |

3

Property 1 comes from [KLST11], and forbids the Byzantine ad-
versary from corrupting too many potential quorums. Property 2 is a
novel property that prevents the Byzantine adversary from “cornering”
a set of nodes and isolate it from the rest of the network. It is used in
Algorithms 2 and 3.

2.3 Pulls and Pushes
In our context, it is convenient to model communication as pushes

and pulls, two ways according to which a node x can get information.
A push occurs when x receives information from other nodes with-

out asking for it, whereas in a pull, x sends a request to one or more
other nodes, and receives information as a consequence. Notice that
nodes may ignore pushes and pull requests. Pushes have the advantage
of requiring less communication. On the other hand, a node receiving
a push has not selected the sender, enabling Byzantine nodes to flood
the network.

In this work, we design filters according to which push requests are
accepted, preventing the Byzantine nodes from harming AER:

• When pull requests are initiated by x, it yields some guarantees
on the nodes to which pull requests are addressed.
Here, they are selected randomly, ensuring w.h.p. (with high
probability) a majority of correct nodes.
• As in [KS09], pull requests are filtered to prevent Byzantine nodes

from triggering too many replies (poor worst case complexity).

3. ALMOST EVERYWHERE TO
EVERYWHERE

e almost-everywhere to everywhere problem [KS09] consists of
propagating a piece gstring of information that is detained by many
nodes to all nodes of the system.

e main contribution of this paper is an algorithm which solves
this problem w.h.p. with amortized communication complexity Õ (1)
under the hypothesis that gstring is c log n bits long for some large
enough constant c , and that 2/3+ ϵ of its bits are uniformly random.

Together with the algorithm presented in [KSSV06], AER yields a
Byzantine Agreement protocol, noted BA, with amortized complexity
Õ (1).

3.1 Overview of our protocol

Preconditions.
AER enables all the nodes to agree on a common string called gstring,

under two assumptions. First, all nodes must share three sampling
functions: I , H and J :

• I defines the Push Quorums used to diffuse candidate strings.
Lemma 1 yields a (θ,δ)-sampler I :D × [n]→ [n]d for θ =
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O (1), δ = n−c and d = O (log n) such that no x ∈ [n] is
overloaded;
• H define Pull Quorums with the same properties;
• J generates Poll Lists during the pull phase.

It has the properties described in Lemma 2.

Secondly, each node x knows a candidate sx :

• sx can be equal to gstring, random, set to a default value, or even
chosen by the adversary.
• However, more than half of the nodes must be correct and know

gstring, i.e. they have sx = gstring. Under the assumption that
t < (1/3−ϵ) ·n, it is equivalent to assume that 3/4 of the correct
nodes know gstring.
• gstring is c log n bits long for some large enough constant c , and

2/3+ ϵ of its bits were chosen uniformly at random.

The protocol.
AER proceeds in two phases:

Push is first phase consists of several pushes which provide each
node x with a list Lx of at most O (n) candidates for gstring,
containing gstring w.h.p. is phase has a message complexity of
Õ (n), and the sum of the sizes of the lists is O (n), amortizing
to O (1) per node.

Pull Each node x sends a pull query to a set of sample nodes to verify
each candidate s ∈ Lx , to find gstring. We will show how to
answer the pull queries, so as to identify gstring without having
high worst case complexity.

3.1.1 Push
To each pair of string s and node x, the sampler I assigns a set of

O (log n) nodes. x may receive pushes for s from nodes in I (s , x):
the Push Quorum of x according to s . If more than half of the nodes
of I (s , x) push for s , s is added to x 's candidates list, Lx .

Since nodes do not react to the reception of messages by sending
messages, this phase is impervious to flooding : the adversary cannot
increase the communication complexity of this phase by sending many
candidate strings to all nodes.

However, flooding may increase the number of candidate strings
for each node. e filter defined by I prevents this: Lemma 4 states
that the sum of the size of the candidate list is O (n), while Lemma 3
implies that the number of messages sent during the first phase by any
good node is Õ (1).

In Figure 2a, a node x adds a string s1 to its list of candidate strings
(which originally contains only sx , its initial candidate string), and
ignores another string s2. Indeed x receives s1 from more than half
of the nodes of I (x, s1), while it receives s2 from less than half of the
nodes of I (x, s2).

3.1.2 Pull
Checking a string s involves simultaneously a Poll List J (x, rx ) (where

rx is taken at random) which is deemed authoritative, and Pull Quo-
rums of the form H (·, s). ey can be seen as proxies, used to forward
and filter x 's pull requests, so as to prevent it from flooding the net-
work.

In Figure 2b, a node x performs a pull request to verify a string
s ∈ Lx . An arrow to a quorum represents a message sent to all the
nodes of the quorum, and similarly, an arrow from a quorum means
that all the correct nodes of the quorum send the message.

Algorithm 1: Sending pull requests

Data: Lx , list of candidates for node x
has_decided, a boolean denoting whether x has decided or not
Result: String agreed upon, w.h.p.
Bit complexity: O

�|Lx | · log n
�

messages, of O (log n) size
Time complexity: 1 if all messages are sent in a single round.

|Lx | otherwise
for s ∈ Lx do

rx,s ←UniformRand()
Send Poll
�

s , rx,s

�
to all nodes in J (x, rx,s )

Send Pull
�

s , rx,s

�
to all nodes in H (s , x)

Upon event 〈Unicast.deliver | w [Answer(s)] 〉 do
if w ∈ J (x, rx,s ) and w hasn't sent another Answer(s) message
yet then

counts ++

if counts > 1/2
��� J (x, rx,s )
��� then

has_decided← t r ue
sthis← s
return s

Sending queries.
As formalized in Algorithm 1, each node x verifies each string s ∈

Lx by polling a set of nodes:

• x chooses a random string rx,s to define the Poll List J (x, rx,s ).
A different random string is used for each candidate string.
• x sends a pull request (containing rx,s ) to the Poll List J (x, rx,s )

and its Pull Quorum H (s , x).

Answering.
is second part corresponds to Algorithms 2 and 3.

• A node y ∈ H (s , x) forwards a request received from x iff s is
its initial candidate string (sy ). e request is forwarded to the
nodes in J (x, rx ) through their Pull Quorums.
• A node z in the Pull Quorum of w ∈ J (x, rx ) (z ∈ H (s , w))

forwards the request to w iff s = sz and z received the request
from more than half of the nodes of H (s , x).
• Finally, a node w ∈ J (x, rx ) replies to a pull request from x if:

1. the pull request was received from a majority of H (s , w);
2. either it one of its pull requests was answered (thus w

knows gstring w.h.p.), and sw was changed accordingly;
3. or it currently has received less than log2 n pull requests.

If x receives answers from a majority of nodes in J (x, rx ), s is deemed
to be the global string.

4. ANALYSIS OF AER
In this section, we prove that AER brings all correct nodes to agree

on gstring w.h.p., with poly-logarithmic time and space complexity; but
first, we must prove Lemma 2.

4.1 Proof of Lemma 2
In this section, we use graph theoretic considerations in order to

prove Lemma 2:

L 2. ForR with cardinality polynomial in n, there exists d =
O (log n) such that there is a mapping J : [n]×R → [n]d such that
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x

Lx = {sx, s1}

I (x, s2)I (x, s1)

(a) Push to a node x

w1 w2 w3y3y2y1

x

J (x, rx)H (s , x)

H (s , w1)
H (s , w2)

H (s , w3)

(b) Pull request from a node x

Figure 2: Push and Pull phases of AER

Algorithm 2: Routing pull requests

Data: e current node (called this) believes gstring to be sthis
FwCounts ,x and Fw2Counts ,x , sets of counters, initialized at 0
Upon event 〈Unicast.deliver | x [Pull(s , r )] 〉 do

if s = sthis and this ∈H (s , x) then
// Keep track of senders to prevent

flooding
for w ∈ J (x, r ) do

Send Fw1(x, s , r, w) to H (s , w)

Upon event 〈Unicast.deliver | y [F w1(x, s , r, w)] 〉 do
if this ∈H (s , w), y ∈H (s , x), s = sthis and w ∈ J (x, r ) then

FwCounts ,x ++
if FwCounts ,x > 1/2 |H (s , x) | then

Send Fw2(x, s , r ) to w
FwCounts ,x ←−∞ // Forward only once

for any subset of [n] of size (1/2+ϵ) ·n, whose elements are called good
nodes, we have:

1. At most n elements of [n]×R are mapped to a set containing a
minority of good nodes.

2. For any L⊂ [n]×R , s.t. ∀x ∈ [n], |L∩ ({x}×R) | ≤ 1 and
|L |=O
�

n
log n

�
, with L⊥ = {y | ∃r ∈R s.t. (y, r ) ∈ L}:
∑
(x,r )∈L

��� J (x, r ) \ L⊥
���> 2d |L |

3

Henceforth, these properties will be called Properties 1 and 2. In
[KLST11], Lemma 4 state that Property 1 happen with probability at
least 1/2.

In the following subsection, we show that Property 2 holds w.h.p.
It follows that, for all n big enough, there is a digraph satisfying both
properties; this proves Lemma 2.

We use a graph-based formulation adapted from [Zuc97], which is
a powerful tool for proving the existence of a family of samplers.

Algorithm 3: Answering pull requests

Data: e current node (called this) believes gstring to be sthis

Counts , set of counters, initialized at 0
Polled, set of pairs (n, s ) corresponding to received poll requests
Upon event 〈Unicast.deliver | z [F w2(x, s , r )] 〉 do

if Counts > log2 n then
Wait for has_decided

if this ∈ J (x, r ), z ∈H (s , this) and s = sthis then
Fw2Counts ,x ++
if Fw2Counts ,x > 1/2 |H (s , this) | and (x, s) ∈ Polled
then

Counts ++
Send Answer(s) to x
Fw2Counts ,x ←−∞ // Forward once

Upon event 〈Unicast.deliver | x [Poll(s , r )] 〉 do
if this ∈ J (x, r ) then

Polled← Polled∪{(x, s )}
if Fw2Counts ,x > 1/2 |H (s , this) | then

// Necessary in the asynchronous case
Counts ++
Send Answer(s) to x
Fw2Counts ,x ←−∞ // Forward once

4.1.1 Graph-theoretic formulation

Model.
We consider random digraphs on vertex set V = [n]∪ ([n]×R).

We call R the set of labels. We call a vertex of [n]×R a labeled
vertex, and a vertex from [n] an unlabeled one.

We use ∂ L, a notion similar to the border of a subgraph, defined as
follow.
For L⊆ [n]×R such that ∀x ∈ [n], |L∩ ({x}×R) | ≤ 1:

∂ L= EG ∩
�

L× �[n] \ L⊥
��

.

In other words, ∂ L is the set of edges from the labeled vertices in
L to the unlabeled vertices in [n] \ L⊥. Given this, we use a metric
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R

L⊥ [n] \ L⊥

Figure 3: Our digraph model

closely related to the isoperimetric number [Bol88]:

iα =min

( |∂ L |
|L |
����� 1≤ |L | ≤ αn

)
e digraph G we consider (which is illustrated in the following

figure) is taken uniformly such that:

1. e vertices of G in [n] ×R have exactly d out-neighbors
(counting with multiplicity) in [n] for d = log n.

2. E ⊆ ([n]×R)× [n]: a vertex (labeled with a point in R) is
connected to unlabeled vertices.

3. E is uniformly random; it implies that edges are chosen inde-
pendently.

Let P (u, s) be the probability that there is a set L⊂ [n]×R with
|L|= u and ∀x ∈ [n], |L∩ ({x}×R) | ≤ 1 such that |∂ L |= s .

Result.
P (u, s ) = o(2−n) for 0 < u ≤ n

log n and s < 2/3 · d · u ; hence, G
satisfies Property 2 with probability 1− o(n22−n).

4.1.2 Proof
Since edges are taken uniformly, we can fix the set L ⊂ [n]×R

and have:

P (u, s)≤
�n

u

�
·P[|∂ U |= s |P]

Enumeration.
We consider u vertices with d edges, which makes nd ·u possibilities

for the edges.
ere are Ru · �d ·us �(n − u)s ud u−s sets E such that our property

holds:

• We must choose u labels with values inR :
there are Ru possibilities.

• We must choose s edges (amongst the d · u in U ) that will be
in ∂ U .

• ese s edges go to vertices in [n] \ L⊥:
there are (n− u)s possibilities.

• e remaining vertices are connected to nodes in P :
ud u−s possibilities.

Upper bound on the probability.
is yields the exact value of P[|∂ L |= s]:

P[|∂ L |= s] =
Ru · �d ·us �(n− u)s ud u−s

nd ·u

We can now upper-bound P (u, s):

P (u, s) ≤
�n

u

�
· Ru · �d ·us �(n− u)s ud u−s

nd ·u

≤
�n

u

��d u

s

�
·Ru ·
� u

n

�d u ·
� n

u
− 1
�s

≤
�ne

u

�u
Ru ·
� u

n

�d u ·
�

d ue

s

�s � n
u
− 1
�s

using inequality
�n

x

�
≤
�n · e

x

�x
≤
�neR

u

�u
·
� u

n

�d u ·
�

d (n− u)e

s

�s
≤
�neR

u

�u
· (log n)

−d n
log n ·
�

d ne

s

�s
since 0< u ≤ n

log n

≤
�neR

u

�u
· log−n n ·
�

d ne

s

�s
because d = log n

≤ (eR log n)
n

log n · log−n n · (3/2 · d e)2/3·n

because
�α

x

�x
increases until

α

e
and s ≤ 2/3 · d · u

≤
 (eR log n)

1
log n · (3/2 · e)2/3

3
p

log n

n

≤
 O(1)

3
p

log n

n because (R log n)
1

log n is bounded

P (u, s) = o
�
2−n� □

4.2 Push phase

L 3. e communication complexity of the Push is O (s log n)
on each node (s =O (log n) being the size of gstring).

P. By the definition of I (Lemma 1), no node is overloaded.
Hence, each correct node y sends its candidate string to O (log n)
nodes, namely the nodes x such that y ∈ I (sy , x).
erefore, during the Push, the number of messages sent by any correct
nodes is O (log n), each containing a string having the same size as
gstring.

L 4. e sum of the sizes of the candidates list of the correct
nodes is O (n).

P. A node y accepts a candidate string s iff more than half of
the nodes of I (s , y) sent it. By assumption, 1/2+ϵ fraction of the nodes
are both correct and have gstring as initial string. erefore, since I is
a sampler, at most O (n) quorums have a majority of nodes sending a
string different from gstring. ese quorums inject at most O (n)wrong
strings (in total) to the lists of candidate strings of the correct nodes.
erefore the sum of the size of the candidates list is O (n).

L 5. ere is a constant c such that, when gstring is c log n bits
long, and 2/3+ ϵ of the bits are uniformly random, w.h.p. each node of
the system has gstring in its candidate list at the end of the Push phase.
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P. Looking at the Input Quorums, since I is a sampler, what-
ever are the nodes corrupted by the adversary and the knowledgeable
nodes, at most O (n) of the quorums do not have an correct and
knowledgeable majority. If a node x does not have gstring in its can-
didate list Lx , it means that I (gstring, x) does not have an correct and
knowledgeable majority; we call such an Input Quorum bad. It is
sufficient to prove that the probability of I (gstring, x) to be bad is neg-
ligible.

gstring has length c log n for some constant c (that we choose there-
after), and the Byzantine nodes generate a 1/3− ϵ fraction of its bits.
Among all the choices, O (nc ) of them lead to good Input Quorums
for all of the nodes of the network, and O (n) lead to at least one bad
Input Quorum.

e probability for a chosen string to match a specific string leading
to a bad Input Quorums is upper bounded by 2−2/3·c log n . By the union
bound over the n such strings, we get that the probability to choose
one of them is less than n−c ′ for some constant 0< c ′ < 2/3c .

From this, we conclude that each correct node has gstring in its can-
didate list with probability greater than 1− n−c ′ .

4.3 Pull phase
It now remains to analyze the pull phase.

L 6. Any polling request (for gstring) is answered in O
�

log n
log log n

�
time steps.

P. A node receives a message from an correct node in its poll
list iff it is not overloaded or if it has already received an answer from
a majority of nodes in its pull request.

Now, notice that to overload a node x whose original string gstring,
the adversary must have O

�
log2 n
�

of its nodes to send a pull request
to x . is pull request will be considered by x iff it is for gstring. ere-
fore, the adversary must send O

�
log2 n
�

pull requests corresponding
to gstring. But then, w.h.p., the quorum associated to gstring are all cor-
rect, which implies that the adversary can send pull requests at most
once for each node it controls, as otherwise the pull requests will not
be forwarded by the associated quorums. erefore, the adversary can
overload O
�

n
log n

�
nodes with request associated to gstring (each node

can send O (log n) requests, and a node is overloaded if it receives
more than log2 n requests).

e adversary can also overload a node x whose original string is
s ̸= gstring and that was chosen by the adversary. But to overload such
a node, the adversary need to corrupt the quorum H (x, s ) and H (a, s)
for log2 n nodes a controlled by the adversary, as otherwise the pull
requests would not be forwarded. erefore, in this case also, the ad-
versary can overload at most O

�
n

log n

�
nodes.

e adversary knows⁷ the nodes to which pull requests are addressed,
before choosing its own pull requests. erefore, it can overload all the
nodes x ′ to which a given node x has sent pull requests. It can further
overload all the nodes to which all x ′ have sent their pull requests and
so on.

From the properties of J , we know that each set L of at most n
log n

nodes send at least 2/3 · d |L | pull requests to nodes outside L. is
implies that by overloading n

log n nodes, the adversary can at most

overload a sequence of length O
�

log n
log log n

�
in such a way. ere-

⁷In the asynchronous (or synchronous rushing) model; the case of
the (less general) synchronous model with non-rushing adversary is
addressed in Lemma 8.

fore, in O
�

log n
log log n

�
steps, each node receives answer from its pull

requests.

L 7. Any node decides on gstring w.h.p.

P. ere are two ways for a node not to decide on gstring:

1. its poll request for gstring isn't answered;

2. a poll request for another string s was answered first.

Lemma 6 ensures that, w.h.p., 1. does not happen.
Assuming x decides on s , then J (x, rx ) is composed in majority of

nodes that are either Byzantine or that decided on s . Taking the first
node to decide on s , the sample J (x, rx )must be composed mostly of
Byzantine nodes. W.h.p. this doesn't happen, because rx is uniformly
random, J is a sampler, and the adversary chose the Byzantine nodes
before rx was chosen.

L 8. Any polling request (for gstring) is answered in O (1) time
steps w.h.p., if the adversary is non rushing.

P. If the adversary is not rushing, it does not know which
nodes an correct node address its pull requests to. erefore, w.h.p.,
each correct node pulls a majority of nodes that are both correct and
not overloaded. It follows that w.h.p. each correct node receives an
answer in a constant number of steps.

4.4 Result
From this we obtain the following two lemmata:

L 9. For n nodes in a synchronous full information message
passingmodel with a non-adaptive non-rushing Byzantine adversary which
controls less than a 1/3− ϵ fraction of the nodes, if more than 3/4 of the
correct nodes know a string gstring (random enough), there is an algorithm
such that w.h.p.:

• At the end of the algorithm, each correct node knows gstring.
• ealgorithm takesO (1) rounds and Õ (n)messages are exchanged
in total.

L 10. For n nodes in a asynchronous full information message
passing model with a non-adaptive Byzantine adversary which controls
less than a 1/3− ϵ fraction of the nodes, if more than 3/4 of the correct
nodes know a string gstring (random enough), there is an algorithm such
that w.h.p.:

• At the end of the algorithm, each correct node knows gstring.

• e algorithm takes O
�

log n
log log n

�
rounds and Õ (n) messages are

exchanged in total.

Note that, to obtain an amortized communication complexity of
Õ (1), the condition that the algorithm is load-balanced was relaxed.

5. CONCLUSION
We propose an asynchronous almost-everywhere to everywhere agree-

ment protocol with poly-logarithmic complexity, which yields the first
poly-logarithmic algorithm for Byzantine Agreement. Future work
could focus on almost-everywhere Agreement, for which no efficient
asynchronous protocol is known. Another interesting and challeng-
ing question is to find the best complexity that is achievable by a load-
balanced algorithm in the general case, and - more generally - charac-
terize the trade-off between load-balancing and communication com-
plexity.
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