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First-principles quantum transport simulation of CuPc on Au(111) and Ag(111)
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We investigate equilibrium and transport properties of a copper phthalocyanine (CuPc) molecule adsorbed on
Au(111) and Ag(111) surfaces. The CuPc molecule has essentially three localized orbitals close to the Fermi
energy resulting in strong local Coulomb repulsion not accounted for properly in density functional calculations.
Hence, they require a proper many-body treatment within, e.g., the Anderson impurity model (AIM). The
occupancy of these orbitals varies with the substrate on which CuPc is adsorbed. Starting from density functional
theory calculations, we determine the parameters for the AIM embedded in a noninteracting environment that
describes the residual orbitals of the entire system. While correlation effects in CuPc on Au(111) are already
properly described by a single orbital AIM, for CuPc on Ag(111) the three orbital AIM problem can be simplified
into a two orbital problem coupled to the localized spin of the third orbital. This results in a Kondo effect with a
mixed character, displaying a symmetry between SU(2) and SU(4). The computed Kondo temperature is in good
agreement with experimental values. To solve the impurity problem we use the recently developed fork tensor
product state solver. To obtain transport properties, a scanning tunneling microscope (STM) tip is added to the
CuPc molecule absorbed on the surface. We find that the transmission depends on the detailed position of the
STM tip above the CuPc molecule in good agreement with differential conductance measurements.
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I. INTRODUCTION

Copper phthalocyanines (CuPc) C32H16CuN8 are mag-
netic, organic, semiconducting molecules with a brilliant blue
color [1,2]. An isolated CuPc molecule is depicted in Fig. 1(a).
The electronic properties of transition metal phthalocyanines
(TMPc) in general have been studied extensively in several en-
vironments using different methods, in both, experiment and
theory, e.g.: pristine CuPc [3,4], TMPc between monoatomic
chains [5–7], or TMPc on metal surfaces [8–17]. Especially
in the latter, one of the cooperative many-body phenomena
in solid state physics, the Kondo effect [18–21], has been
observed [22–25].

In the gas phase, the transition metal (TM) in TMPc binds
to four isoindole ligands leaving the ion in a [TM]2+ state. The
molecule itself has a square planar D4h symmetry and hence
the TM d states transform as b2g (dxy), b1g (dx2−y2 ), a1g (dz2 ),
and eg (dxz, dyz ). Depending on their symmetry and energetic
position, these orbitals hybridize to a different degree with
p orbitals of the C and N atoms. In the gas phase CuPc has
a total spin S = 1/2 due to one unpaired electron in the b1g

state. The highest occupied and lowest unoccupied molecular
orbital (HOMO and LUMO) are delocalized a1u and 2eg π

orbitals with marginal contributions from the TM d states
and therefore mainly located at the Pc. If the molecule is
adsorbed on Ag(100) [22], the surface charge transfer from
the metal surface to the 2eg states generates another unpaired
spin S = 1/2 at the Pc. Therefore, in the adsorbed molecule
one finds two weakly interacting spins, one localized on the
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Cu orbitals (b1g state) and the other induced in the Pc (2eg

states), leading to singlet (S = 0) and triplet (S = 1) states of
the molecule. Such a charge transfer between the surface and
the 2eg states does not occur in CuPc on Au(111) [17], where
the molecule remains in the doublet (S = 1/2) state.

Photoelectron spectroscopy (PES) measurements [13,17]
for CuPc on Au(111) and Ag(111) show a sharp structure at
the Fermi energy for CuPc on Ag(111) but not for CuPc on
Au(111). A generalized Kondo scenario in the 2eg states is
suggested to be the possible origin. Mugarza et al. [14,22]
measured the differential conductance of CuPc on Ag(100) at
different tip positions of the scanning tunneling microscope
(STM) and found a Kondo resonance in the 2eg orbitals and
estimated the Kondo temperature to TK = 27 ± 2 K. Korytár
et al. [23] performed density functional theory (DFT) calcu-
lations for CuPc on Ag(100) using localized Wannier func-
tions and employing the noncrossing approximation (NCA) to
solve the multiorbital Anderson impurity model (AIM) [27]
describing the 2eg states plus exchange interaction with the
single occupied b1g state. Korytár et al. [23] were not able
to estimate the Kondo temperature from their ab initio cal-
culations and state that the underlying reason for this is the
DFT level misalignment due to the lack of Coulomb repulsion.
Here, we will present evidence that the hybridization strength
is a much more important reason for the discrepancy of the
Kondo temperature found in experiment and theory. It is well
known that the Kondo temperature depends sensitively (expo-
nentially) on the hybridization strength with the environment.
Since the latter depends on the adsorption geometry of the
molecule on the respective metal surface, reliable estimates
for the Kondo temperature can only be found if the correct
geometry for the underlying DFT calculation is used.
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FIG. 1. An isolated CuPc molecule (a) and the position of the
CuPc molecule on the Au(111) surface (b). The pictures are drawn
with XCrySDen [26]. Color code: C atoms, yellow; H atoms, cyan;
N atoms, gray; Cu atom, red; Au atoms, gold.

In this paper we calculate the transport properties of CuPc
on Au(111) and Ag(111) from first principles to determine a
simplified model, sufficient for the description of the system.
This is important in order to predict situations where the
Kondo effect can be observed as well as its properties: Kondo
temperature, symmetry, involved orbitals. Especially possibil-
ities for the experimental observation of the Kondo cloud are
a longstanding question [28–31] where ab initio calculations
can help gaining deeper understanding. Contrary to Korytár
et al. [23], for our calculations we use the optimized adsorp-
tion geometry obtained by Huang et al. [17] and check that
our (many-body) spectral functions are consistent with the
density of states (DOS) obtained by Heyd-Scuseria-Ernzerhof
(HSE) DFT calculations and by ultraviolet photoemission
spectroscopy (UPS) experiments performed in Ref. [17].
This allows us to estimate the Kondo temperature from first
principles and to calculate the qualitative behavior of the
differential conductance in the STM measurements [14,22].
For the inclusion of many-body effects, we apply the method
suggested by Droghetti et al. [32] to construct an effective
Anderson impurity model (AIM). For CuPc on Au(111) this
yields a single orbital AIM for the copper b1g orbital. In the
case of CuPc on Ag(111), we obtain a three orbital AIM for
the copper b1g and the two nearly degenerate 2eg orbitals
mainly located at the Pc. Due to the negligible hybridiza-
tion of the b1g orbital with the remaining orbitals it can be
treated in the atomic limit. The resulting exchange coupling
to the 2eg orbitals can then be accounted for in mean-field
approximation. Eventually, this leads to an effective spin-
dependent energy shift for the electrons in the 2eg states. For
the many-body treatment of the physics in the degenerate 2eg

orbitals we use the recently developed fork tensor product
state (FTPS) solver [33–35]. Our calculations yield a reliable
ab initio estimate of the Kondo temperature and reproduce the
qualitative behavior of the differential conductance found in
the STM measurements in Refs. [14,22]. For the computation
of the coherent contributions to the equilibrium transmission,
we treat the leads in the wide-band limit, to suppress lead-
induced effects.

This paper is structured as follows. Section II introduces
the methods employed, i.e., the DFT calculation, the mapping
onto and solution of the AIM, as well as transport calculations.

FIG. 2. Two-dimensional cut through the central region for the
simulation of the CuPc molecule sandwiched between an Au(111)
substrate and the STM tip. The picture is drawn with XCrySDen [26].

In Sec. III we apply this approach to CuPc on Au(111) and
Ag(111) and discuss the results.

II. METHOD AND COMPUTATIONAL DETAILS

We perform DFT calculations for CuPc on Au(111) and
Ag(111), respectively, to obtain the one-particle Hamiltonian
of these systems. Technical details of the DFT calculations are
presented in Sec. II A. For a reliable description of the system
it is essential to include correlation effects of the molecule. To
this end we construct an appropriate AIM based on the DFT
orbitals, see Sec. II B. We calculate the self-energy of this
AIM employing the FTPS solver, which is briefly discussed in
Sec. II C. Finally, in Sec. II D we discuss how to combine the
one particle with the many-body part in transport calculations.

A. Density functional calculations

To determine the one-particle part of the Hamiltonian, we
perform DFT calculations for CuPc on Au(111) and Ag(111),
respectively, in STM configuration. In such an STM config-
uration the CuPc molecule is sandwiched between the (111)
surface of the Au/Ag substrate and an STM tip, see Fig. 2. The
molecule lies in the xy plane, which is defined by the surface
of the substrate. The z axis, perpendicular to the surface,
defines the transport direction. To model the tip, we use
a tetrahedron attached to a three-dimensional semi-infinite
system, both of the same material.

For the transport calculations, the system is split into a
central region and two leads. The central region, displayed
in Fig. 2, consists of the CuPc molecule, the actual tip, and
eight layers of the substrate material on each side. On both
sides, this central region is attached to the residual parts of
the semi-infinite systems, which we will denote as leads (not
shown in Fig. 2).

For the DFT calculation, it is necessary to have a periodic
system in the xy plane, which is therefore split into appropriate
unit cells. According to [17] we use a lattice constant of
4.18 Å for Au and 4.15 Å for Ag and p(6 × 5) Au(111) and
Ag(111) surfaces. We chose the tip material to be the same
as the surface, i.e., an Ag tip for the Ag(111) surface and
an Au tip for the Au(111) surface. We want to emphasize
though that one could also use any other tip material. To
reduce the influence of the tip onto the molecule, we choose
the molecule-tip distance to be large (5.57 Å in the Au and
5.89 Å in the Ag setup) compared to the distance between
molecule and surface.

The relaxation of molecules on surfaces is generally a
highly nontrivial task and, moreover, the molecular position
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FIG. 3. The schematic representation of the transport region
consisting of left (L) and right (R) lead and the extended molecule
(EM), or rather the central region, with its subsystems: the extended
region (ER), the interacting region (IR), and the Anderson impurity
(AI).

strongly influences electrical, magnetic, and transport proper-
ties. Therefore, we use the optimized adsorption geometries
from Huang et al. [17]. The resulting positions of the CuPc
molecule on the Au(111) and Ag(111) surfaces are shown
in Figs. 1(b) and 7, respectively. Importantly, the distance
between the molecule and the relaxed surface layer of the
Ag(111) surface is 2.84 Å, which is larger than the distance
obtained in Refs. [23,36]. In Sec. III B we discuss the in-
fluence of this discrepancy on the estimation of the Kondo
temperature.

The DFT calculations are performed with SIESTA [37]
and TranSIESTA [38] using the Perdew-Burke-Ernzerhof
(PBE) [39] functional. We exclusively perform spin-
unpolarized DFT calculations, since we want to describe the
magnetic properties using an additional strongly correlated
many-body Hamiltonian. Calculation details are given in
Appendix 1.

B. Projection onto the AIM

In this section we present the formalism to construct an
AIM in orthogonal orbitals starting from the DFT results. The
AIM then allows us to study correlation effects on the quan-
tum transport in addition to those covered already by the DFT.
We will give a concise introduction to the approach proposed
by Droghetti et al. [32], along with some modifications.

In a first step, the system is separated into a noninteracting
(coherent) part and a strongly correlated part described by the
AIM. Therefore, Droghetti et al. [32] divide the system into
several regions (see Fig. 3). The left lead (L) couples to the
so-called extended molecule (EM), which in turn is coupled
to the right lead (R). The extended molecule is often also
referred to as the central region. The leads are chosen such
that there is no single particle overlap between them. In our
case, we choose the left lead being on the metal surface side
and the right lead on the tip side of the system. The EM is
further subdivided into: extended region (ER), interacting re-
gion (IR), and the Anderson impurity (AI), with EM ⊇ ER ⊇
IR ⊇ AI. The IR includes all orbitals that may contribute to
the AI. From the IR, we determine the AI by diagonalizing
HIR and selecting the correlated orbitals depending on their
localization and filling. Hence, the AI describes the strongly
correlated orbitals for which a Hubbard interaction is taken

into account. In addition to the CuPc molecule we include
orbitals from the actual tip, as well as the first surface layer
of the substrate as IR. This allows for the possibility that
the orthogonal correlated orbitals extend into the tip or the
surface. In the following we have to construct an AI with basis
functions orthonormal to the rest of the system. Therefore, we
define the ER as consisting of all orbitals with finite overlap
with the IR, including the IR itself. The set of remaining
orbitals (which we denote as EM \ ER) are split into two parts
that couple to the left (α) or the right (β) lead, respectively.

Since SIESTA uses atomic orbitals, we have to take their
nonorthogonality into account. Green’s function theory for
nonorthogonal basis functions is for example discussed in
Ref. [40]. The overlap matrix S and the single particle
Hamiltonian H of the EM have the structure

X =
⎛
⎝ Xαα XαER Xαβ

X †
αER XER X †

βER

X †
αβ XβER Xββ

⎞
⎠, (1)

with X denoting either S or H . X †
i j is the conjugate transpose of

the block matrix Xi j . To project onto an AI that is orthogonal
to all remaining orbitals, we have to find a transformation W
that divides the ER into a noninteracting (NI) and an AI part
such that:

S̄ = W †SW =

⎛
⎜⎜⎝

1NAI 0 0 0
0 Sαα S̄αNI Sαβ

0 S̄†
αNI S̄NI S̄†

βNI

0 S†
αβ S̄βNI Sββ

⎞
⎟⎟⎠ (2)

and

H̄ = W †HW =

⎛
⎜⎜⎝

εAI,D 0 H̄AI,NI 0
0 Hαα H̄αNI Hαβ

H̄†
AI,NI H̄†

αNI H̄NI H̄†
βNI

0 H†
αβ H̄βNI Hββ

⎞
⎟⎟⎠. (3)

The block in the upper left corner describes the AI in basis
functions orthogonal to each other and to the noninteract-
ing (NI) orbitals describing the rest of the ER. Note that
Hamiltonian and overlap matrix of EM \ ER are unaffected
by the transformation W , hence X̄i j = Xi j for i, j ∈ {α, β}.

W is neither unitary nor uniquely defined. One possibility
to obtain it is the following procedure using three consecutive
transformations W1, W2, and W3 with W = W1W2W3:

W =
⎛
⎝ 0 1Nα

0 0
WAI 0 WNI 0

0 0 0 1Nβ

⎞
⎠. (4)

In the first step, the AI is projected out using:

W1 =
⎛
⎝ 0 1Nα

0 0
UER 0 UNI 0

0 0 0 1Nβ

⎞
⎠, (5)

where UER consists of the contributions of the orbitals in
IR to the impurity orbitals. UNI is the identity matrix with
removed columns at the indices of the impurity orbitals. The
second step orthogonalizes the AI to all other orbitals in ER
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by changing the orbitals in NI.

W2 =

⎛
⎜⎝

1NAI 0 −WSB 0
0 1Nα

0 0
0 0 1NNI 0
0 0 0 1Nβ

⎞
⎟⎠ (6)

with WSB = S̃−1
AI S̃AI,NI, S̃AI = U †

ERSERUER, and S̃AI,NI =
U †

ERSERUNI. To be precise, X̃ = {S̃, H̃} are the matrices after
the first transformation step, i.e., X̃ = W †

1 XW1, and S̃AI, S̃AI,NI,
and H̃AI are block matrices of S̃ and H̃ , respectively. The
third step diagonalizes S̃AI and H̃AI. The AI basis functions
are orthogonalized via a Löwdin transformation and H̃AI is
diagonalized by solving the eigenvalue problem

S̃−1/2
AI H̃AIS̃

−1/2
AI UAI,ψ = UAI,ψεAI,D. (7)

This results in the transformation

W3 =

⎛
⎜⎝

W3,AI 0 0 0
0 1Nα

0 0
0 0 1NI 0
0 0 0 1Nβ

⎞
⎟⎠ (8)

with W3,AI = S̃−1/2
AI UAI,ψ .

At this point, we obtained a description of the EM with
a strongly correlated AI only coupled to a subset of all
orbitals. The only missing ingredient for transport calculations
is the treatment of the leads L and R. As these leads are
assumed to be noninteracting, they can be accounted for
using hybridization functions (also called contact or tunneling
self-energy). Given the lead Hamiltonian Hi with i ∈ {L, R}
and its coupling to the EM, VEM,i(z) = (HEM,i − zSEM,i ), the
hybridization function is defined by

�i(z) = VEM,i(z)
1

zSi − Hi
Vi,EM(z). (9)

The retarded �r,i(ω) and advanced �a,i(ω) hybridizations are
obtained by replacing z → ω ± i0+ in Eq. (9). With this, the
(noninteracting) retarded Green’s function projected in the
EM subspace is given by

Gr,0(ω) = 1

(ω + i0+)S − H − �r,L(ω) − �r,R(ω)
. (10)

Note that the advanced Green’s function can be obtained by
Ga,0(ω) = (Gr,0)†(ω). We refer to Ref. [41] for an introduc-
tion into Green’s function techniques. In the following, we
only discuss retarded quantities and, therefore, we neglect the
superscripts for retarded and advanced and reintroduce them
when required. As the Green’s functions are the inverse of
the noninteracting Hamiltonian H in a single particle basis,
they have the same block-matrix structure, given by either
Eq. (1) in the original space or Eq. (3) in the transformed
space. Under transformations W of the Hamiltonian, Green’s
functions transform with the inverse of W and therefore
Ḡ(ω) = W −1G(ω)W −1†. Hybridizations on the other hand
transform like H , i.e., according to �̄ = W †�W . Especially,
the Green’s function of the extended region (ER) transforms
like

GER = (W †
AI,W †

NI)ḠER

(
WAI

WNI

)
. (11)

For our analysis, we need the DOS projected on orbital ν

of the nonorthonormal atomic basis of the ER obtained from
SIESTA.

AER,ν (ω) = − 1

π
�(GER(ω)SER)νν (12)

The atomic-element resolved DOS is obtained by summation
over all basis functions belonging to the corresponding atom.
Similarly, the total DOS is the sum over all projections,
AER(ω) = ∑

ν AER,ν (ω).
Next, let us look at the strongly correlated part, i.e., the

AIM in more detail. The Hamiltonian of the isolated impurity
is

ĤAI =
∑

iσ

(
εAI,D,iσ − Hdc

iσ

)
n̂iσ + Ĥ int, (13)

where

Ĥ int = 1

2

∑
i jσ

Ui j n̂iσ n̂ jσ̄ + 1

2

∑
i �= j,σ

Vi j n̂iσ n̂ jσ . (14)

Above, n̂iσ = â†
iσ âiσ is the particle number operator of orbital

i and spin σ in second quantization with creation (annihila-
tion) operators â†

iσ (âiσ ). We also assumed that non-density-
density-terms are negligible. In the AIM, the impurity is
coupled to a bath of noninteracting fermions:

ĤAIM = ĤAI +
∑
ikσ

Ṽik (â†
iσ ĉikσ + H.c.) +

∑
ikσ

εik n̂ikσ . (15)

ĉ†
ikσ

(ĉikσ ) are the creation (annihilation) operators of the kth
bath state of orbital i with spin σ . We have already determined
the on-site energies via the transformation scheme Eqs. (3)
and (4). For the double counting, we used the around mean-
field (AMF) double counting [42],

Hdc
iσ = xi

∑
j

Ui jn
0
j + xi

∑
j �=i

Vi jn
0
j , (16)

where we introduced an orbital dependent factor xi according
to Ref. [43]. n0

j is the occupation of orbital j obtained from
DFT. As the bath of free fermions is supposed to describe
the NI, its hybridization function �̄AI(ω) defines the bath
parameters εik and Ṽik via

{�̄AI(ω)}ii = {
H̄AI,NIḠ

0
NI(ω)H̄NI,AI

}
ii

!=
∑

k

Ṽ 2
ik

ω + i0+ − εik
, (17)

i.e., we neglect off-diagonal hybridizations {�̄AI(ω)}i j for i �=
j. To clarify, for any given hybridization function �̄AI(ω) we
have to find bath parameters such that Eq. (17) is satisfied.1

Above, Ḡ0
NI(ω) is the NI part of the Green’s function defined

in Eq. (10) but already in the transformed space.

1We obtain the actual values of εik and Ṽik by the following
procedure. Starting from the hybridization {�̄AI(ω)}ii, we define
equally spaced energy intervals Ik and represent each interval using a
single bath site. εik is then given by the center of this interval, while
Ṽ 2

ik is the area of {�̄AI(ω)}ii in the given interval.
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C. Impurity solver

To obtain the self-energy of the AIM described above, we
solve the impurity model using the recently developed fork
tensor product state (FTPS) solver [33–35]. An FTPS is a
tensor network based on matrix product states (MPS) [44],
especially suited for impurity models. As FTPS is a Hamil-
tonian based method, it can only employ a finite but large
number of bath states and hence Eq. (17) can only be satisfied
approximately.

To solve an AIM with FTPS, we first calculate the ground
state |ψ0〉 using the density matrix renormalization group
(DMRG) [45]. Then by real-time evolution we obtain the
retarded Green’s function as

GFTPS
i j (t ) = −i�(t ) 〈ψ0| {âi(t ), â†

j (0)}|ψ0〉. (18)

Note that this implies that FTPS is a zero-temperature method.
A subsequent Fourier transform to energy space ω gives
access to the impurity spectral function

AFTPS
i (ω) = − 1

π
�GFTPS

ii (ω) (19)

with

GFTPS
i j (ω) =

∫
eiωt−ηt GFTPS

i j (t )dt . (20)

The artificial broadening η > 0 is necessary, to avoid finite
size effects. In ω space such a broadening corresponds to a
convolution with a Lorentzian of width η. Although this can
have similar effects as a finite temperature, we emphasise that
FTPS is a zero temperature method to calculate the T = 0
spectrum with broadened peaks.

We perform the calculation using the following parameters.
Our FTPS tensor network consists of 309 bath sites for
each orbital. Note that we perform the calculations using the
Hamiltonian of the AIM in the form given by Eq. (15), i.e., we
do not transform onto a nearest neighbor tight binding Wilson
chain [46,47]. The truncation at each singular value decompo-
sition (SVD) was 10−11 during DMRG and 5 × 10−9 during
time evolution, where we additionally restrict the maximal
tensor index dimensions to 1500. We choose a Suzuki-Trotter
time step �t = 0.5 eV to be able to resolve the low-energy
part of the spectrum better. This might seem very large,
but remember that the energy scales of the Hamiltonian in
general are very small (U = 0.5 eV see below), allowing for
a larger time step. Additionally we checked that the result is
converged in �t . We performed the time evolution up to times
t = 800 eV−1 and used a broadening of η = 0.005 eV during
Fourier transform [see Eq. (20)]. Furthermore, we made sure
that the spectral function of the FTPS solver is consistent with
the CTQMC [48,49] result. We refrain from using CTQMC to
solve the impurity model, because it was difficult to reliably
discern the splitting of the Kondo resonance from artifacts of
the analytic continuation done using the maximum entropy
method [50] with an alternative evidence approximation [51]
and the preblur formalism [52]. Solving the AIM by the FTPS
solver leads to the corresponding Green’s function GFTPS

AI (ω)
of the AIM with approximated bath. Since the number of bath
states is large (309 for each orbital, see above), the Green’s
function with a finite number of bath sites is a very good
approximation to the true Green’s function of the AIM with

the hybridization �̄AI(ω). Therefore, we can use the Dyson
equation to obtain the self energy of the true AIM:

(
GFTPS

AI

)−1
(ω) = (

Ḡ0
AI

)−1
(ω) − 
̄AI(ω), (21)

with

Ḡ0
AI(ω) = 1

ω + i0+ − εAI,D − �̄AI(ω)
. (22)

D. Transmission and differential conductance

In this section we discuss how to calculate the coherent and
an incoherent part of the equilibrium transmission. Coherent
transport is well described by the Fisher-Lee formula,

Icoh = 2e

h

∫
dω( fL(ω) − fR(ω))

× Tr[�L(ω)G(ω)�R(ω)G†(ω)]︸ ︷︷ ︸
Tcoh(ω)

. (23)

The factor of 2 accounts for spin and � denotes the antihermi-
tian part of the corresponding hybridization function

�i(ω) = Ri(ω) − i

2
�i(ω) (24)

with i ∈ {L, R}. First, let us discuss the separation of the
coherent transmission Tcoh into three parts: (1) the transmis-
sion TNI of the NI region, (2) the coherent transmission TAI

of the AI, and (3) an interference term TI between these
two. Obviously, the transmission formula also holds in the
transformed space obtained by the transformation matrix W
[see Eq. (4)] and Tcoh simplifies to:

Tcoh(ω) = Tr[�̄L(ω)Ḡ(ω)�̄R(ω)Ḡ†(ω)]

= Tr
[
�̄L

ER(ω)ḠER(ω)�̄R
ER(ω)Ḡ†

ER(ω)
]

= Tr
[
�̄L

NI(ω)ḠNI(ω)�̄R
NI(ω)Ḡ†

NI(ω)
]
. (25)

The second line holds, since the block matrices Hαβ and Sαβ

are negligible, as α and β are spatially separated, because the
ER includes tip, molecule, and surface of the STM configura-
tion. We can obtain the third line, because the block matrices
H̄x,AI and S̄x,AI with x ∈ {α, β} in Eqs. (2) and (3) are zero
by construction, see W2 in Eq. (6). �̄x

NI with x ∈ {L, R} are
obtained from their respective hybridization functions given
by

�̄L
NI(ω) = ((ω + i0+)S̄NI,α − H̄NI,α )

(
(ω + i0+)S̄αα − H̄αα

− �̄L
αα (ω)

)−1
((ω + i0+)S̄α,NI − H̄α,NI)

�̄R
NI(ω) = ((ω + i0+)S̄NI,β − H̄NI,β )

(
(ω + i0+)S̄ββ − H̄ββ

− �̄R
ββ (ω)

)−1
((ω + i0+)S̄β,NI − H̄β,NI). (26)

The Green’s function

ḠNI(ω) = ḡNI(ω) + ḡNI(ω)H̄NI,AIḠAI(ω)H̄AI,NIḡNI(ω)︸ ︷︷ ︸
�ḠNI

(27)

consists of two parts, the noninteracting Green’s function
gNI(ω) and hybridization with the interacting Green’s function
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ḠAI(ω). Inserting ḠNI(ω) into Eq. (25) gives

Tcoh(ω) = Tr
[
�̄L

NI(ω)ḡNI(ω)�̄R
NI(ω)ḡ†

NI(ω)
]

︸ ︷︷ ︸
TNI

+ Tr
[
�̄L

NI(ω)�ḠNI(ω)�̄L
NI(ω)(�ḠNI)

†(ω)
]

︸ ︷︷ ︸
TAI

+ Tr
[
�̄L

NI(ω)(�ḠNI)
†(ω)�̄R

NI(ω)ḡNI(ω)
]

+ Tr
[
�̄L

NI(ω)ḡ†
NI(ω)�̄R

NI(ω)�ḠNI(ω)
]

= TNI(ω) + TAI(ω) + TI(ω). (28)

As claimed above, Eq. (28) separates the coherent transmis-
sion into the three parts TNI(ω), TAI(ω), and TI(ω). Addition-
ally, we can rewrite the coherent transmission over the AI as

TAI(ω) = Tr
[
�̄L

AI(ω)ḠAI(ω)�̄R
AI(ω)Ḡ†

AI(ω)
]

(29)

with

�̄L
AI(ω) = H̄AI,NIḡNI(ω)�̄L

NI(ω)ḡ†
NI(ω)H̄NI,AI

�̄R
AI(ω) = H̄AI,NIḡ

†
NI(ω)�̄R

NI(ω)ḡNI(ω)H̄NI,AI. (30)

The similarity to the Fisher-Lee formula Eq. (23) indicates
that although TAI(ω) includes some of the many-body effects,
it still treats the many-body system as a noninteracting model
with modified (i.e., interacting) Green’s function ḠAI(ω). The
full many-body character of the AIM also gives an incoherent
contribution to the current. For the sake of readability, we
omit bars and the index AI in the following expressions but
reintroduce them in the final result. Ness et al. [53] discuss the
applicability of the Fisher-Lee formula for a nonequilibrium
current in the presence of interactions and suggest approxi-
mating the current flowing from the left lead into the system
as

IL = 2e

h

∫
dω( fL(ω) − fR(ω))

× Tr[�L(ω)G(ω)ϒR(ω)G†(ω)] (31)

with ϒR(ω) = �R(ω)�(ω) and

�(ω) = 1 + �R(ω)−1 fL(ω) − F (ω)

fL(ω) − fR(ω)
�ee(ω). (32)

F (ω) is the nonequilibrium occupation matrix and �ee(ω)
the antihermitian part of the electron self-energy 
(ω). The

formula shows that interactions not only affect the Green’s
functions but also renormalize the coupling to the contact
through ϒR(ω). So far, we only dealt with retarded (r) quan-
tities. For the following derivation we also need the advanced
(a) and introduce lesser (<) and greater (>) quantities [41].
Ferretti et al. [54,55], Ng et al. [56], and Sergueev et al. [57]
propose approximating � using the ansatz


>
� (ω) = �>(ω)�(ω)


<
� (ω) = �<(ω)�(ω). (33)

� is the total hybridization, therefore the tunneling self-
energy of the left and the right lead, and 
�(ω) denotes the
self-energy including tunneling and interaction,

�i(ω) = �i,L(ω) + �i,R(ω)


i
�(ω) = �i,L(ω) + �i,R(ω) + 
i(ω), (34)

with i ∈ {r, a,<,>}. Analogous to [55] we define the retarded
and advanced self-energies and hybridizations, X ∈ {
,�},
as

X r (ω) := R(ω) − i

2
�(ω) − iδ+

X a(ω) := R(ω) + i

2
�(ω) + iδ+, (35)

consisting of a hermitian and an antihermitian part, R and
i�, respectively. We added the iδ+ term to regularize the
inverse of the hybridization when �(ω) vanishes. For the
various self-energies and hybridizations defined so far, the
relation X >(ω) − X <(ω) = X r (ω) − X a(ω) always holds and
by subtracting the two lines in Eq. (34), we can write

�(ω) = (�r (ω) − �a(ω))−1
(

r

�(ω) − 
a
�(ω)

)
= (�R(ω) + �L(ω) + 2δ+)−1

× (�R(ω) + �L(ω) + �ee(ω) + 2δ+)

= 1 + (�R(ω) + �L(ω) + 2δ+)−1�ee(ω). (36)

We see that � differs from one only for weak coupling to the
leads (|�L(ω) + �R(ω)| � |�ee(ω)|). As shown in Ref. [55],
�(ω) obtained from this ansatz is exact for nonequilibrium
mean-field theory and for the equilibrium many-body case.

Thus, we can finally write the incoherent part of the
transmission

IL,inc = 2e

h

∫
dω( fL(ω) − fR(ω)) Tr

[
�̄L

AI(ω)ḠAI(ω)�̄R
AI(ω)

(
�̄L

AI(ω) + �̄R
AI(ω) + 2δ+)−1

�̄ee
AI(ω)Ḡ†

AI(ω)
]

︸ ︷︷ ︸
TL,inc

. (37)

The total current I = Icoh + IL,inc and therefore, the total trans-
mission is given by T (ω) = Tcoh(ω) + TL,inc(ω).

For our purposes, the only remaining task is to relate
the transmission T (ω) to the differential conductance, mea-
sured by the STM. As the STM tip usually couples weakly
to the molecule, it is reasonable that the voltage u only
affects the Fermi function of the right lead describing the
STM tip, via a shift of the energy axis. At small temper-
atures and close to equilibrium [T (ω) is independent of u]

we find:

d

du
I (u) ≈ d

du

2e

h

∫ ∞

−∞
dω ( fL(ω) − fR(ω − u)) T (ω)

≈ d

du

2e

h

∫ u

0
dω T (ω) ∝ T (u), (38)

i.e., for small temperatures and voltages, the differential con-
ductance is proportional to the transmission itself.
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FIG. 4. Atom resolved DOS of CuPc on Au(111), (a) and (c), and Ag(111), (b) and (d), surface. (a) and (b) are the ones obtained in
DFT-PBE and (c) and (d) include the interaction term in the CPT approximation. We used a 0+ of 0.04 for calculating the DOS and an
additional convolution with a Gaussian to obtain a total broadening σ of 0.2/

√
2. The vertical lines indicate the HOMO (solid line), the

position of the 2eg orbitals (dashed lines), and b1g orbitals (dotted lines).

III. RESULTS FOR CUPC ON AU(111) AND AG(111)

In this section, we use the scheme described above to
perform an ab initio calculation for the electronic transport
properties of CuPc on Au(111) and Ag(111), respectively. In
Sec. III A we present the DFT results and combine them with
experimental evidence and other theoretical studies to obtain
the interaction parameters used for the AIM. After that, in
Sec. III B, we present the solution of the AIM and estimate
the Kondo temperatures of these systems. The different con-
tributions to the transmission are then calculated in Sec. III C.

A. Density of states and interaction parameters

In this section we estimate the interaction parameters, us-
ing a simplified many-body approach (compared to the exact
approach outlined in Sec. II C), namely cluster perturbation
theory (CPT). CPT becomes exact for vanishing interaction

strength. It is reliable enough for a rough estimation, but it
will not be able to describe the Kondo physics appropriately.

First, we investigate CuPc on Au(111). In Fig. 4(a) we
depict the atomic-element resolved DOS obtained from the
spin-unpolarized DFT-PBE calculation. The orbital directly
located at the Fermi energy (partially filled) turns out to
have approximately 50% copper and 50% nitrogen character.
The contributions from the carbons and the metal surface
are negligible. Therefore, we identify this orbital as the b1g

orbital localized in the Cu ion reported in literature, e.g.,
Ref. [14]. Localization and partial filling (S = 1/2 for pristine
CuPc [58]) suggest that correlation effects are important for
the b1g orbital. We will model these correlations by adding
a Hubbard-type interaction with strength Ub1g . To determine
its magnitude, we use ultraviolet PES (UPS) spectra obtained
in Ref. [17]. They report the HOMO peak at −0.81 eV also
seen in our DFT-PBE calculations but at slightly lower energy.
Importantly, the UPS spectra show no additional peak down to
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−1.6 eV, which implies for a Hubbard model at half filling an
on-site interaction of Ub1g > 3.2 eV. Additionally, DFT calcu-
lations using the Heyd-Scuseria-Ernzerhof (HSE) exchange-
correlation functional (DFT-HSE) performed in Ref. [17]
suggest Ub1g = 4.0 eV, which we use in the following. We use
the AMF double counting according to Eq. (16). As suggested
by DFT-HSE calculations the Hubbard satellites are almost
symmetric around the Fermi level, which we can achieve
using x = 0.85. Note that this choice of x does not affect the
filling of n = 1 as suggested by S = 1/2 of the pristine CuPc.
Since �̄b1g 
 Ub1g , namely �̄b1g = O(meV), using CPT to
solve the many-body problem is justified. The atomic-element
resolved DOS thus obtained is shown in Fig. 4(c). The HOMO
peak at around −0.9 eV, the spectral weight below −1.6 eV,
and the absence of the b1g peak at the Fermi level are in good
agreement to the DFT-HSE calculations and the UPS spectra
of Ref. [17].

In contrast, for CuPc on Ag(111) photoemission spec-
troscopy [13] and for CuPc on Ag(100) scanning tunneling
microscopy [22] show a Kondo resonance directly at the
Fermi level. Besides the HOMO peak at −1.23 eV, peaks at
−1.74 eV and −2.16 eV and spectral weight below −2.6 eV
appear in the UPS spectra obtained in Ref. [17]. While our
DFT-PBE calculation [Fig. 4(b)] shows the HOMO peak
at approximately the correct position, other spectral weight
can be found already below −2.0 eV. Huang et al. [17]
demonstrated that this is an artifact of the PBE exchange
correlation functional. As can be seen in Fig. 6(b) of Ref. [17],
the DFT spectral weight below −2 eV is shifted down to
approximately −2.6 eV using HSE instead of PBE. The au-
thors of Ref. [17] suggest that the remaining two peaks at
−1.74 eV and −2.16 eV are closely related to the strong
interaction between CuPc and Ag(111), especially the feature
at −1.74 eV.

In our DFT-PBE calculation for CuPc on Ag(111) three or-
bitals are located at the Fermi energy and, therefore, partially
filled. As in the case of CuPc on Au(111) we can identify one
of them with the b1g orbital. The remaining two orbitals are
nearly degenerated and turn out to consist approximately of
50% carbon and 30% nitrogen character. Remaining contri-
butions are from the copper ion and the metal surface. We
identify them with the 2eg levels, spatially located mainly at
the Pc. To model these three correlated orbitals, we choose the
AIM Hamiltonian given by Eq. (13) with parameters

U =
⎛
⎝Ub1g Ux Ux

Ux U2eg U2eg

Ux U2eg U2eg

⎞
⎠ (39)

and

V =
⎛
⎝ 0 Ux − J Ux − J

Ux − J 0 U2eg

Ux − J U2eg 0

⎞
⎠. (40)

In analogy to CuPc on Au(111), we take Ub1g = 4.0 eV as the
on-site interaction parameter for the b1g orbital. According to
Refs. [23,59] the screened interaction U for the 2eg orbitals
is between 0.5 eV and 1.0 eV on Ag surfaces. We choose
U2eg = 0.5 eV, which is also in agreement with the results
of DFT-HSE calculations performed in Ref. [17]. In analogy
to CuPc on Au(111) we use a factor of x = 0.85 for the

double counting [Eq. (16)] in the b1g orbital and x = 1 for the
2eg system. In a first very crude approximation, we neglect
correlations between the b1g and the 2eg orbitals, therefore
Ux = J = 0, and solve two independent many-body problems,
one for the b1g orbital and the other describing the 2eg orbitals.
In analogy to CuPc on Au(111), we used CPT for the many-
body problem of the b1g orbital. To obtain a first guess for
the atomic-element resolved DOS, depicted in Fig. 4(d), we
also use the CPT approximation for the many-body problem
of the 2eg orbitals. Note that this approximation is not fully
justified. Doing so, the DOS including the interaction is
qualitatively comparable to the DFT calculations, based on
the HSE functional, obtained in Ref. [17].

B. Kondo temperature and AIM

Now that all parameters are fixed, we will study the Kondo
features and solve the many-body problem accurately by the
FTPS solver introduced in Sec. II C. First, let us consider
a possible Kondo effect in the b1g orbitals of CuPc on
Au(111) and Ag(111). For the one-band case in the wide-band
limit [19,60], the Kondo temperature is

kBTK,SU(2) =
√

�U

2
exp

(
πε0(ε0 + U )

�U

)
. (41)

We already determined the parameters Ub1g = 4 eV and εb1g =
−2.29 eV. In analogy to (35) the antihermitian part of the
hybridization relevant for the Kondo effect is given by

�̄(ω) = −2�{�̄AI(ω)}. (42)

Since � in Eq. (41) is in the wide-band limit, and there-
fore independent of ω, we average �̄(ω)2 in the interval
ω ∈ [−1, 1],

� := 1

2

∫ 1

−1
�̄(ω)dω. (43)

For CuPc on Au(111) TK,SU(2) � 10−100 with �b1g = 4.7 meV
and, therefore, Kondo features cannot be observed experimen-
tally. The same is true for CuPc on Ag(111) (�b1g = 9.4 meV,
Ub1g = 4 eV, and εb1g = −2.85 eV). Hence, we do not expect
to be able to observe Kondo resonances of the b1g orbital in
any of the two systems. Nevertheless, we will show below
that the Kondo temperature for the 2eg orbitals in CuPc on
Ag(111) is high enough to be visible in experiments.

Therefore, let us discuss the many-body problem for CuPc
on Ag(111) in more depth. First, we have to determine
the missing parameters J and Ux introduced in Sec. III A
[Eq. (13)]. These parameters account for the exchange cou-
pling between the b1g and the 2eg electrons and reproduce
the Kondo side peaks obtained in Ref. [22]. According to the
energy distance between side peaks and Kondo peak of about
21 meV we take J = 25 meV and Ux = J . The DFT-PBE
calculation leads to slightly different on-site energies (�ε =
41 meV) and hybridization functions for the 2eg orbitals, see

2This procedure seems crude, but consider that due to the uncer-
tainty in the DFT part and interaction parameters, we are providing
only a rough estimate of TK.
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FIG. 5. Matrix elements of the imaginary part of the hybridiza-
tion �̄AI for CuPc on Ag(111).

Fig. 5. This difference in the on-site energies �ε causes
a similar effect as the exchange coupling J , see Eq. (44)
below. Therefore, from our ab initio calculations we cannot
conclude whether the Kondo side peaks obtained in Ref. [22]
stem from �ε or J . Hence, we consider only the exchange
coupling J and symmetrize the 2eg orbitals (�ε = 0) and
use the same hybridization function. We also neglect the
off-diagonal contributions in the hybridization function since
they are smaller by a factor of 5 (see Fig. 5) than the diagonal
contributions. Furthermore, because of the strong localisation
of the b1g orbital, we treat the correlations with the 2eg orbitals
in mean field and solve the AIM only in the 2eg subspace using
FTPS:

Ĥ int,b1g-eg = Jn̂b1g,↑n̂eg,↓ + Jn̂b1g,↓n̂eg,↑

≈ J
〈
n̂b1g,↑

〉
︸ ︷︷ ︸

≈0

n̂eg,↓ + J
〈
n̂b1g,↓

〉
︸ ︷︷ ︸

≈1

n̂eg,↑ ≈ Jn̂eg,↑, (44)

where we set 〈n̂b1g,↑〉 = 0 and 〈n̂b1g,↓〉 = 1. For the bath hy-
bridization, we choose an energy window [−1, 1], see Fig. 5,
and represent this energy range using 309 bath sites for each
orbital and spin. Such a large bath is necessary to be able to
resolve the fine details of the splitting of the Kondo resonance.
The spectral function for the AI orbitals, obtained by FTPS, is
shown in Fig. 6. The spectral function for J = 0 (gray line)
shows the familiar scenario consisting of two Hubbard satel-
lites and the Kondo resonance at 0 eV. An exchange coupling
of J = 25 meV breaks the spin degeneracy by increasing the
on-site energy for spin-up electrons according to Eq. (44) but
not the orbital degeneracy. Hence, AAI↓(ω) (blue line) differs
from AAI↑(ω) (red line). Since mainly AAI↓(ω) is occupied, the
degeneracy of the 2eg orbitals causes an orbital Kondo effect
in the spin-down electrons producing the Kondo resonance at
0 eV. The spin Kondo effect leads to the Kondo satellite peaks
at ω ≈ ±25 meV in the total spectral function (black line).

Let us discuss the impact of the symmetry reduction on the
Kondo temperature. In the limit of J → 0, the spins of the 2eg

orbitals are degenerate, causing an SU(4) Kondo effect. For
J → ∞ on the other hand, the two spin-up orbitals are shifted
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FIG. 6. Spectral function of the Anderson impurity model of
CuPc on Ag(111) for J = 0 (gray line) and J = 25 meV (black line)
separated in spin down (blue line) and spin up (red line).

to +∞ and we expect an SU(2) (orbital) Kondo effect from
the remaining spin-down degrees of freedom see Eq. (44).
For intermediate values of J , we hence expect a situation
in between the SU(4) and the SU(2) Kondo regime [61,62].
The comparison of the relevant energy scales shows that
the exchange coupling J is larger than both Kondo temper-
atures [SU(2) and SU(4)]. This indicates that the system is
closer to the SU(2) than to the SU(4) regime and, therefore,
for the Kondo temperature of CuPc on Ag(111) TK,SU(2) is
the better approximation. The relevant parameters for es-
timating the Kondo temperature are U2eg = 0.5 eV, �2eg =
44.2 meV, which is the mean of �eg,1 and �eg,2 , and ε2eg =
−0.20 eV, being the mean of εeg,1 and εeg,2 . Equation (41)
yields TK,SU(2) = {0.02, 1.5, 39} K, where the values are the
{25, 50, 75}%-quantile. The quantiles are determined by as-
suming a Gaussian distribution for �, U , and ε0 centered at
the value obtained in the previous section and with a standard
deviation which is 50% of the modulus of that value.3 We
emphasise that the Kondo temperature depends sensitively
(exponentially) on the relevant parameters and therefore get-
ting the correct order of magnitude for TK is already a re-
markable result. A closed analytical expression for the Kondo
temperature of the SU(4) symmetrical Anderson model is
given in Appendix 2 according to Ref. [63]. Application of
this formula yields TK,SU(4) = {3, 25, 84} K. Both TK,SU(2) and
TK,SU(4) are consistent with the experimentally obtained Kondo
temperature for CuPc on Ag(100) of TK = 27 K [22].

To be able to obtain values for the Kondo temperature
comparable to experiment, Korytár et al. [23] rescaled ε

and �. The hybridization �2eg obtained in our calculation is
smaller than � obtained in Ref. [23] and therefore gives a
better estimate of the Kondo temperature. Hence, we suggest

3This magnitude of the error accounts for uncertainties due
to approximations in DFT and the estimation of the interaction
parameters.
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FIG. 7. The tip positions I (a) and II (b) of the STM tip (black
sphere) on the molecule on the Ag(111) surface. The pictures are
drawn with XCrySDen [26].

an imprecise adsorption geometry as possible origin of the
necessity of this rescaling procedure. We are using the geom-
etry configuration obtained by Huang et al. [17]. As shown
in our calculation it is possible to get at least the correct
order of magnitude for the Kondo temperature from ab initio
calculations.

C. Transport properties

As discussed in Sec. III A the 2eg orbitals contain 50%
contribution from the carbon atoms, 30% from the nitrogen
atoms, while the remaining contributions are from the copper
ion and the metal surface. Whether a Kondo feature can be
observed in the differential conductance measurements with
an STM therefore depends on the position of the tip. In
particular, if the tip is placed above the benzene rings, we
expect to observe a Kondo resonance, which should be absent
if the tip is above the Cu atom (see Fig. 7). Therefore, let us
discuss the transport properties for the two tip positions used
in the experiment performed in Refs. [14,22] (also shown in
Fig. 7).

Figures 8 and 10 show the calculated transmissions for the
two STM tip positions. In addition to the total transmission we
also show its different contributions, as derived in Sec. II D:
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FIG. 8. Transmission of CuPc on Ag(111) in tip position I. The
vertical lines mark the position of the HOMO resonance (solid line),
the Kondo resonance at 0 eV (dash-dotted line), and the positions of
the Hubbard satellites (dashed lines).

The coherent part Tcoh, consisting of TNI, TAI, and TI, as
well as the incoherent part TL,inc. A difficulty in the compar-
ison with the published experimental results in Ref. [22] is
that the authors performed a background subtraction for the
STM differential conductance measurements, as proposed in
Ref. [64]. The authors introduced the background subtraction
to obtain the transmission of the molecule only, without
effects stemming from the tip or the surface. To take the
background subtraction into account in our calculations, we
introduce a wide-band-limit (WBL) approximation. Therefore
we define the molecular region (MR ⊆ IR) consisting of all
atomic orbitals located at the CuPc molecule. Using a modi-
fied hybridization �

x,WBL
MR for x ∈ {L, R} leads to the following

transmission formula:

TWBL(ω) = Tr
[
�

L,WBL
MR GWBL

MR (ω)�R,WBL
MR GWBL

MR
†
(ω)

]
, (45)

where direct tunneling from the surface to the tip is neglected.
In the WBL approximation, we replace the imaginary parts of
the hybridization functions by the constant

�
x,WBL
MR =

∫ 1/2

−1/2
�x

MR(ω)dω. (46)

To obtain the corresponding real parts, we use the Kramers-
Kronig relations. The Green’s function,

GWBL
MR (ω) = (

ωSMR − HMR − �WBL
L,MR(ω)

−�WBL
R,MR(ω) − 
MR(ω)

)−1
, (47)

includes only the MR part of the self-energy.
Figure 8 shows the resulting transmission calculated for

tip position I, obtained from the ab initio calculation, as
well as in the WBL. First of all, we observe in the ab initio
case that the largest contribution to the coherent transmission
Tcoh (black line) is from TNI (thin black line, mostly covered
by the black line). It has only small contributions from TAI

(thin red line, covered by the red line) and TI (thin blue
line). Moreover, the coherent transmission Tcoh is dominated
by two peaks at energies 0.02 eV and 0.16 eV, respectively.
These peaks are missing in the WBL (gray line) indicating
that they cannot be attributed to the pristine molecule. To
underpin this interpretation, we present in Fig. 9 the pro-
jected DOS of the surface (dash-dotted line) and the tip
(dashed line). We observe that the projected DOS of the
surface layer and tip show peaks at 0.02 eV and 0.16 eV,
respectively, coinciding with the peaks in the coherent trans-
mission (black line). Additional six-layer slab calculations
(gray line) of the pristine Ag(111) surface with a vacuum gap
of 10 Å and an appropriate number of k points, show that
these peaks in the DOS are an artifact of the finite p(6 × 5)
surface. To avoid these artifacts, we would have to increase the
number of atoms in the super cell, which is computationally
very demanding and would most likely not provide additional
information.

In the WBL, the transmission TWBL in Fig. 8 is much
smoother and clearly shows the HOMO peak, marked by a
vertical line at about −1.5 eV, which is in agreement with
the experiment in Refs. [14,22]. The incoherent part of the
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FIG. 9. Coherent transmission of the STM configuration in tip
position I (left axis) and the DOS projected on the atomic orbitals of
the tip and the surface layer and the surface DOS of a six-layer slab
calculation (right axis).

transmission for position I of the tip is shown in Fig. 8 as a
red line (see also the inset). Apart from the two peaks induced
by the surface and the tip, we find Hubbard satellites (dashed
vertical lines) and the Kondo feature (dash-dotted vertical
line). The positions of these peaks are also in agreement with
the experiment.

Finally, in Fig. 10, we present the results obtained for tip
position II. We find that the overall transmission is larger
by one order of magnitude. The coherent transmission Tcoh

(black line) has contributions from TNI (thin black line, mostly
covered by the black line), from TAI (thin red line), and
the interference part TI (thin blue line). TNI consists mainly
of the surface and the tip features discussed above and TAI

of the Hubbard satellites, again marked with dashed vertical
lines. There is almost no structure in TWBL (gray line). The
incoherent transmission (red line) shows Hubbard satellites,
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FIG. 10. Transmission of CuPc on Ag(111) in tip position II. The
vertical lines mark the Kondo resonance at 0 eV (dash-dotted line)
and the positions of the Hubbard satellites (dashed lines).

marked with dashed vertical lines, and the Kondo feature,
dash-dotted vertical line. The Kondo resonance is small com-
pared to the height of the Hubbard bands.

There are two big differences between the results for tip
positions I and II. First, the HOMO peak at about −1.5 eV
appears in tip position I and not in tip position II (compare
gray lines in Figs. 8 and 10). Second, the Kondo resonance is
very pronounced in tip position I, while at tip position II the
height of the Hubbard satellites is much larger than the height
of the Kondo resonance (compare red lines in Figs. 8 and 10).
Both findings are in agreement with the experiment for CuPc
on Ag(100) in Ref. [22].

IV. CONCLUSIONS

We investigated equilibrium and transport properties of a
copper phthalocyanine (CuPc) molecule adsorbed on Au(111)
and Ag(111). Apart from the usual coherent contributions to
the transmission, several localized partially filled (strongly-
correlated) orbitals also lead to an incoherent part. As the
starting point for our ab initio calculation we used the adsorp-
tion geometry obtained by Huang et al. [17] and performed
DFT calculations that describe the coherent part of the trans-
mission reasonably well. To tackle the strongly-correlated
part, we first used the transformation scheme described by
Droghetti et al. [32] to obtain an Anderson impurity model
(AIM) based on the DFT calculations. We estimate the in-
teraction parameters from theoretical and experimental data,
Refs. [17,22]. For CuPc on Au(111) there is one unpaired spin
in the b1g orbital located at the copper ion. Whereas for CuPc
on Ag(111) there is an additional unpaired electron in two
almost degenerated 2eg orbitals. In both systems the coupling
between the b1g orbital and the remaining system is weak and,
therefore, the Kondo temperature for the b1g orbital is very
small. Hence, no Kondo resonance is found in experiments
for CuPc on Au(111).

This is different for CuPc on Ag(111), where the AIM
consists of three partly filled orbitals with two electrons, the
b1g orbital and the 2eg orbitals. While the Kondo temperature
of the b1g is still very small, the other electron in the 2eg

orbitals shows a measurable Kondo resonance. We solve the
corresponding AIM obtained by the transformation scheme
using cluster perturbation theory for the b1g subspace and the
fork tensor product state solver [33] for the 2eg subspace. To
combine the two subspaces, we treat the correlations between
the subspaces on a mean-field level. The mean-field coupling
reduces the SU(4) symmetry of the 2eg subspace into a SU(2)
symmetry of the orbital degrees of freedom. This in turn leads
to a Kondo effect with a symmetry somewhere between SU(2)
and SU(4) for CuPc on Ag(111).

Since the Kondo temperature depends sensitively on the
hybridization of the molecule with the surface, the adsorption
geometry is very important in the DFT calculation. In our
opinion this is the reason why previous ab initio studies by
Korytar et al. [23] were not able to obtain correct estimates
of the magnitude of the Kondo temperature without rescaling
parameters.

Indeed, using the relaxed geometries yields reliable ab
initio estimates of the Kondo temperature and reproduces the
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qualitative behavior of the differential conductance found in
the STM measurements of Refs. [14,22].
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APPENDIX

1. Density functional calculation details

The DFT calculations are performed with SIESTA [37]
and TranSIESTA [38]. We use the Perdew-Burke-Ernzerhof
(PBE) [39] functional, which is a generalized gradient approx-
imation (GGA) functional. To suppress periodicity effects, we
perform the calculations at the � point, except for the elec-
trode calculations, where we use 100 k points in the transport
direction, with one electrode unit cell consisting of six metal
layers. For an appropriate description of the surface, we have
to ensure that the super cell is large enough parallel to the
surface in order to justify a �-point calculation. For computa-
tional reasons we restrict ourselves to the p(6 × 5) surface and
discuss possible consequences in Sec. III C. We use 300 Ry
mesh cutoff and an electronic temperature of 5 meV. For the
H, C, N, and Cu atoms we use nonrelativistic norm-conserving
pseudopotentials [65] from the Abinit’s pseudo database4 and
for Au and Ag relativistic pseudopotentials as recommended
by Rivero et al. [66]. For the basis set we restrict ourselves
to the standard single-zeta basis plus polarization (SZP) and
double-zeta basis plus polarization (DZP) basis sets with an
energy shift of 0.01 Ry. We perform our calculations using

an SZP basis set for the bulk atoms and a DZP basis set for
the atoms in the molecule, the first two layers of the metal
surface as well as the tip. Additionally, we use an extended
cutoff radius of 7.5 Å for the first zeta basis functions of the
four atoms at the tip for calculating the transmissions. We
successfully benchmark the pseudopotentials and basis sets
calculating the bulk band structure with SIESTA and QUAN-
TUM ESPRESSO [67]. We apply TranSIESTA in equilibrium and
choose the complex contour consisting of a circular part from
−40 eV to −10kBT and a tail to infinity. The imaginary part
of the Fermi function tail when crossing the Fermi level is
chosen to be 2.5 eV and the complex contour consists of
Gauss-Legendre quadrature with 96 points is used for the
circle and a Gauss-Fermi quadrature with 16 points is used
for the tail.

2. Kondo temperature of the SU(4) symmetrical
Anderson model

For completeness we provide the analytical expression for
the Kondo temperature of the SU(4) symmetrical Anderson
model derived in [63] via a path integral approach,

kBTK,SU(4) = U f
(ε0

U

)( −2�U

πε0(ε0 + U )

) 1
4

× exp

(
πε0(ε0 + U )

2�U

)
(A1)

with

f (x) = (−x(x + 1)3)
1
4 exp (g(x)) (A2)

and

g(x) = 1

4

3x − 2

x + 2
− x2

2

(x2 + 3x + 3)

(x + 2)2
ln

(
2x + 3

x + 1

)
. (A3)

4https://departments.icmab.es/leem/siesta/Databases/
Pseudopotentials/periodictable-gga-abinit.html.
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