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Abstract
Afirst-principles approach based ondensity functional theory and non-equilibriumGreen’s functions
is used to study themolecular transport system consisting of benzenedithiolate connectedwith
monoatomic gold and platinum electrodes. Using symmetry arguments we explainwhy the
conductancemechanism is different for gold and platinumelectrodes.We present the charge stability
diagram for the benzenedithiolate connectedwithmonoatomic platinum electrodes includingmany-
body effects in terms of an extendedHubbardHamiltonian and discuss how the electrodes and the
many-body effects influence the transport properties of the system.

1. Introduction

First-principles calculations in the field ofmolecular electronics represent amajor challenge in computational
physics. In order to build electronic devices based on organicmolecules it is crucial to understand the underlying
charge transport phenomena in detail to be able to simulate the actual behaviour [1, 2]. However, it is a
challenging task to predict quantitatively the experimental characteristics ofmolecular junctions. First of all, in
many cases the charge transport properties of a systemdepend on the detailed contact geometry [3–5], which is
experimentally difficult to identify. But even if all atomic positions were known, non-equilibrium calculations
are always based on approximations which affect the results. Different theoreticalmethods exist for different
transport regimes. In the coherent regime electrons proceed elastically, without exchanging energy. This is the
case if there is a strong coupling between the leads and themolecule, i.e. if

G D ( )E U k T, , , 1B

where,Γ is the coupling between the leads and themolecule,DE the level spacing,U theHubbard interaction
parameter and kBT the temperature. In the coherent regime, the energy levels of the electrodes and themolecule
are hybridized and charge quantization is suppressed and the Landauer formalismbecomes exact. The
combination of density functional theory and non-equilibriumGreen’s functions (DFT+NEGF) has become a
standard tool for coherent ab-initio transport calculations but there are also other approaches like the
Lippmann–Schwingermethod [6] or thewave-functionmatching technique [7]. In the incoherent regime the
time that an electron spends on the system is sufficiently long for it to interact with other particles (electrons,
phonons, etc). In the case of electron–electron interactionwe have

G < D ( )E U, 2

for the incoherent regime. If the leads are weakly coupled to the system then there is charge quantization and the
electrons propagate by sequential tunnelling. This incoherent regime can bemodelled by aHubbard–
Hamiltonian for describing themolecule and non-interacting tight-binding (TB) leads. Non-equilibrium cluster
perturbation theory (n-CPT) [8, 9] or the variational cluster approach [9, 10] are techniques for solving this
model accurately in the coherent limit. In the case of weak coupling between themolecule and the leadsmaster
equation (ME) [11] approaches became useful. The auxiliarymaster equation approach [12–14] is in principle
exact, also for strong coupling between themolecule and the leads, but is limited to systemswith only a view
interacting sites in the central region. In order to calculate transport properties fromfirst principles one can
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combine these techniques withDFT and carry out a charge self-consistency procedure in non-equilibrium,
which is often neglected for simplicity. In ourworkwe applyDFT+NEGF and an extended version ofDFT
+NEGF, whichwe denote byDFT+CPT, for calculations including electron–electron interactions. The
approximation inDFT+CPT is to approximate the self-energy of the systemby the self-energy of the isolated
central region. Themethod allows treating largermolecules in the central region and is accurate in the coherent
limit. Amore sophisticated but numerically challenging technique for calculating transport properties is the
combination ofDFTwithGW [15–17]. DFT can also be used in combinationwith the dynamicalmeanfield
theory [18], withME [19] if the system is in theweak coupling regime or evenwithME+CPT [20].

Although the 1, 4-benzenedithiolate (BDT)molecule is usually considered in the field ofmolecular
electronics there are still severe discrepancies between experimental [21–26] and theoretical results [6, 19,
27–30]. The calculated conductances tend to bemuch higher than themeasured ones. Proposed reasons are the
sensitivity of the conductance to the detailed geometry of the junction [6, 29], hydration of the BDTmolecule to
benzenedithiol [16, 31] and correlation effects [3, 32].

The purpose of this work is to to study the transport properties of the BDTmolecule connected to
monoatomicmetal chains as leads. This system allows to study the impact of the junction geometry on the
conductance and how transport is affected by lowdimensional leads.Many publications [27, 28, 30] explain the
transport through the gold-BDT-gold systemwith a single-levelmodel where the conductance is carried by a
single transport channel corresponding to theHOMOorbital of the BDTmolecule. Ryndyk et al [19] performed
DFT+MEcalculations including strong electron correlations and got amulti-scale Coulomb blockade.Wewill
also address the impact of strong correlations. Our results obtained for the single levelmodel for the BDT
molecule will be comparedwith the results for themodel studied by Ryndyk et al [19].

The paper is organized as follows. Section 2 introduces briefly themethodology and is divided in two parts.
Thefirst part describes how the parameters in the extendedHubbardHamiltonian are obtained from first-
principles, while the second part presents a technique based onNEGF andCPT for solving thismodel. In
section 3 themethod is applied to a gold-BDT-gold and a platinum-BDT-platinum system. The conclusions are
given in section 4.

2.Methods

2.1. First-principles calculation of themodel parameters
The systemwe are considering consists of a central region (C) attached to left and right leads, see figure 1. To
determine the TBparameters of the systemwe employ the pseudopotential plane-wave codeQUANTUM

ESPRESSO [33]. The unit cell, red dashed line infigure 1, consists of the central region, left and right transition
layers (TL,TR), also called buffer regions, and the surface part of the remaining leads (LL, LR). The size of the
transition layers is chosen such that the electronic properties of the outermost atoms in the unit cell do not
change anymorewhen the unit cell is increased. This ensures that the central region has negligible impact on the
periodicity of the remaining leads [34, 35]. For all DFT calculations in this paper we have used the Perdew
Zunger exchange correlation functional within the local density approximation (LDA) and non-relativistic
ultrasoft pseudopotentials from the standard solid-state pseudopotentials library (PSlibrary 0.3.1) [37].

We have usedmaximally localizedWannier functions (MLWF) [38, 39] to get localized orbitals and to set up
the TBHamiltonian [34, 35]. AllWannier transformations are donewithWANNIER90 [40]which produces
orthogonalMLWF. Therefore the derivation of theNEGF formalism in section 2.2 is demonstrated only for
orthogonal bases. A derivation for non-orthogonal bases in the coherent regime can be found in [41]. In the
localized basis theHamilton operator of the unit cell is then given by

Figure 1.Molecular system consisting of a left and a right lead (LL and LR), transition layers (TL andTR) and the central region (C). The
picture is drawnwithXCrySDen [36].
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The outermost atoms of the unit cell are periodically continued and form the non-interacting leads (LL, LR) in
the TBmodel. In this waywe determine all single-particle parameters of theHamiltonian.

We describe the electron–electron interaction by an extendedHubbardHamiltonian in the central region,
which has the form

= +ˆ ˆ ˆ ( )H H H , 4C 0 1

where Ĥ0 is the single-particle part and Ĥ1 the interaction part of themodelHamiltonian.Weneglect correlation
effects in the leads (LL,TL, LR,TR) andwe expect correlation effects to be important only in the central region,
because on themolecule thewave functions aremore localized. The single-particle part of themodel
Hamiltonian in the central region in second quantization is given by

å=ˆ ˜ ˆ ˆ ( )†H t a a . 5
ij

N

ij i j0

The indices s= {¯ }i i , and s= ¢{ ¯ }j j , include thewave function indices ī and j̄ and the spinsσ and s¢. The
operator ˆ †ai creates an electron on orbital Y ( )ri whichwe obtain by theMLWF construction. The hopping
parameters t̃ij are

=˜ { } ( )† ¯¯t QEQ , 6ij i j

whereQ is thematrix which diagonalizes the TBHamiltonian and E are the corresponding eigenenergies. The
interaction part of themodelHamiltonian is given by

å=
¹

ˆ ˆ ˆ ( )H U n n
1

2
. 7

i j

N

ij i j1

The density–density term formof theHubbardmodel is only justified if the non-density–density term is small
which also requires that the orbitals aremaximally localized. The interaction parametersUij are calculated via

ò ò= ¢ Y Y ¢ ¢∣ ( )∣ ∣ ( )∣ ( ) ( )U r r Ur r r rd d , 8ij i j
3 3 2 2

with the screenedCoulombpotential

p h
¢ =

- ¢
( )

∣ ∣
( )U r r

r r
,

1

4
, 9

0

where η is the screening. According to [19]we set the screening to be constant. The randomphase approximation
[42]would be a possibility to determine the screening consistently.

The electron correlations already included inDFT, have to be subtracted in order to avoid double counting.
Herewe choose the aroundmean-field approximation [43], because it generally gives good results for weakly
correlated systems. That is, we have subtracted theHartree termD ¯¯t i i of the interaction part from the bare
hopping t̃ij . This approach is justified as follows. If we apply the LDA approximation to themodelHamiltonian
we end upwith the same band structure as that is obtained from the original band structure calculation. The
double counting correction leads tomodified hopping parameters t̃ tij ij

C with

d= - D˜ ( )¯¯ ¯¯ ¯¯ ¯¯t t t . 10i j
C

i j i i i j

TheHartree term is given by
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where ¯ni
0 is the equilibriumpopulation of the ith orbital obtained in theDFT calculation. Themodel

Hamiltonian for the central region hasfinally the form
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The full self-consistent non-equilibrium transport calculation could be done by feeding the non-equilibrium
potential, obtained from the non-equilibriumdensities in the transport calculation, back intoDFT and repeat
this procedure until self-consistency is reached [44–46].

2.2. Non-equilibriumGreen’s functions
Wehave used theKeldysh formalism [47] to compute the current through the central region. In steady-state the
two-timeGreen’s function depends only on the time difference and can be treated efficiently in frequency space.
The steady-state current from the left transition layer to the central region can be calculated by integrating over
the real part of the KeldyshGreen’s function

ò åw w=
-¥

¥

Î
Î

( ( )) ( )RI
e

h
Vd . 13

i T
j C

ij ij
k

L

Here, i and j denote the orbitals within the clustersTL andC, see figure 1, for calculating the current between the
left transition layer and the central region. In this paperwe employ non-equilibrium cluster perturbation theory
(n-CPT) [9, 48] to compute theKeldyshGreen’s function  of the interacting non-equilibrium system required
in (13).Within n-CPT, (13) reduces to thewell-knownLandauer–Büttiker formula [49].

ò w w w w= -
-¥

¥
( ( ) ( )) ( ) ( )I

e

h
f f Td 14R L

w( )T denotes the transmission function

 w G G=( ) ( ) ( )T Tr , 15L CC
r

R CC
a

where Gn with n Î { }L R, is the anti-hermitian part of the hybridization function

D G= -n n n ( )i
R

2
. 16r

Wedenotematrices with bold faced letters and for simplicity of the notation, we have omitted theω arguments.
To this end, the entire system is decomposed into the device (C), e.g. the BDTmolecule, and the two leads, which
are further decomposed into LL plusTL on the left side and LR plusTR on the right.We calculate the full Green’s
function for indices of the central regionCC within theCPT approximation, i.e. we use the followingDyson
equation
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InCPT theGreen’s function g
CC
r a, of the isolated central cluster is required. From theDyson equation

S= -- -( ) ( ) ( )g g 18
CC
r a

CC
r a r a, 1
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, 1 ,

it is clear that in the interacting case, the CPT approximation is equivalent to approximating the self-energy by
that of the isolated cluster. Therefore it is important to cut the system in away that the coupling between the
transition layers and the central region is weak compared to the hopping parameters within the central region.
TheGreen’s function of the isolated central cluster can be calculated using the Lehmann representation

w

w
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If the system is not too far away from the equilibrium situation, it will still be a good approximation to consider
only excitations from the ground state to higher states and hence the corresponding self-energy.

TheGreen’s function of the isolated left leadwith indices restricted to the transition region GT TL L
is needed in

(17).Wewill also need GT TR R
. To calculate n nGT T for n Î { }L R, we oncemore introduce a cluster decomposition

of the leads into part nL and nT , introduced before. The exactDyson equation for this decomposition yields

= -- -
n n n n n n n n n n( ) ( ) ( )G g V g V . 20T T T T T L L L L T

1 1

where gT TL L
stands for theGreen’s function of the isolated transition region, which can be computed easily, as the

matrix dimension is small.
n n

gL L on the other hand represents theGreen’s function of the isolated semi-infinite
part nL of lead ν that is composed of identical unit cells. The hopping elements n nVT L, couple only to the unit cell
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near to the transition region in each lead and therefore only the surface part of
n n

gL L is required, which can be
determined iteratively by using themethod of Sancho et al [50]. An alternative technique for calculating the
hybridization function is to use complex absorbing potentials [51].

A bias voltageVb drives the systemout of equilibrium and enters the calculation as a shift of the on-site
energies and the chemical potential by-V 2b for the left lead and by+V 2b for the right lead. In the Landauer–
Büttiker formulaVb enters also in the Fermi functions. A gate voltageVg can be applied by shifting the on-site
energies of ˜¯¯t i j .

The spectral density and the conductivity are important quantities for our analyses and they are defined as

w
p

w= -nn nn( ) ( ( )) ( )IA g
1

Tr , 21r

= ( )G
I

V

d

d
. 22

b

3. Applications

3.1. TheAu-BDT-Au system
In afirst stepwe have applied theDFT+NEGF formalism to a system consisting of a BDTmolecule sandwiched
between two gold chains, schematically drawn infigure 1. As shown below in the case ofmonoatomic gold
chains it is possible to include all lead atoms in theWannier transformation in a controlledway. Inmechanically
controllable break junctions orwith an scanning tunnellingmicroscope the formation ofmonoatomic gold
chains was demonstrated under elongation of the junction by several authors [44, 52–55]. In afirst stepwe have
performedDFT calculations3 for the periodic chain ofmonoatomic gold atoms. All the parameters are
convergedwith respect to the total energywithin 5 meV. In order tofind the equilibrium geometry, we have
calculated the total energy of the chain for different distances dAu between the gold atoms.Wefind an optimal
distance of =d 2.515Au Åwhich is close to the LDA result 2.51 Åin [56].

The band structure of theAu chain in an interval around EF is shown in the left panel offigure 2. TheΓ–X
axis is always the axis along the gold chain in reciprocal space. The 6p bands are at higher energies. The 6s and 5d
bands coincide exactly with theWannier bands, which demonstrates the properness of theWannier
transformation. The dotted lines represent the inner and the outer energywindowneeded to disentangle the 6s
and 5d bands from the 6p band in theWannier transformation. Infigure 2 tight binding (TB1)means that only
hopping processes to nearest neighbour gold atoms are taken into account. The 6s band and the 5d bands
separate into the two bands corresponding to the dxz and the dyz orbital (Channel 1) and four bands
corresponding to orbitals with inversion symmetrywith respect to the xy-plane (Channel 2). The definition of
the coordinate system is according tofigure 5. Each symmetry channel will only couple to orbitals of the same
symmetry and therefore transport takes place in two separated channels. The TB1 approximation turns out to be
a good approximation for the channel 1 bands, which aremainly interesting for transport. The right panel of
figure 2 is the calculated equilibrium (Vb= 0) transmission function for TB1 and is similar to the results
obtained in [56]. In the coherent regime the transmission function is proportional to the number of bands at a
certain energy.

After having calculated theHamiltonian of themonoatomic Au chain, we considered the full system,
including BDT4. The BDTmolecule can assume different geometry configurations between the two semi-
infinite gold chains. In the line configuration the BDTmolecule is forced to be on the gold chain axis. In the atop
configuration the BDTmolecule slightly hops out of the gold chain axis, while it twists out of the axis in the
twisted configuration as shown infigure 1. There are alsomixed configurations between atop and twisted, called
atop-twisted and twisted-twisted. In order to determine the energetically favourable configuration, we compute
the total energy as function of the distance between the gold atoms near to the BDTmolecule –dAu Au, namely the
gap between the two (left and right) semi-infinite gold chains, for different configurations, see figures 1 and 3.
The distance between the gold atomswas fixed dAu during the geometry optimizations. At »–d 8.1Au Au the BDT
molecule rearranges into thienothiophene. It occurs that the twisted configuration of the BDT atom is
energeticallymost favoured and, consequently, we have chosen this configuration for the ensuing transport
calculations. The optimized distance is =–d 9.16Au Au Å.We have chosen six gold atoms per unit cell, which
ensures that the eigenvalues of the atoms at the outer edges of the unit cell (see figure 1) are converged.We have
chosen the size such that the changes in eigenenergies are less than 0.05 eV. The left panel infigure 4 depicts a

3
Weused a cut-off energy for thewavefunction of =E 64cowf Ry and the charge density of =E 512con Ry, theMethfessel–Paxton smearing

techniquewith the smearing parameter =E 0.01tsm Ry, the vacuumdistance =d 12vac Åand 32 k-points.
4
Weused a cut-off energy for thewavefunction of =E 100cowf Ry and the charge density of =E 400con Ry, theMethfessel–Paxton

smearing techniquewith the smearing parameter =E 0.001sm Ry, the vacuumdistance =d 18vac Åand 1 k-point.
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comparison of the band structure obtainedwith the full planewave basis andwith theWannier basis. The
Wannier transformation is performed only at theΓ-point. In theWannier transformationwe picked out 47
bands, 35 corresponding to the six gold atoms and there are 12 BDTbandswithin this energy range. At theΓ-
point the PWSCFbands coincide exactly with theWannier levels, which demonstrates again the properness of
theWannier transformation. The obtainedWannier basis functions of the gold atoms coincide with the
Wannier basis functions of the pure gold chain, which shows that the disentanglement procedure of the 6s and
5d bands from the 6p bands is done correct. Projections of thewavefunctions onto orthogonalized atomic
wavefunctions showwhether theWannier levels belong to the gold leads and the transition layers or to the BDT
molecule. The right panel presents the eigenlevels of the decoupled BDTmolecule, the eigenenergies of ĤC. As
mentioned above and outlined in [6, 29] transport takes place in separated channels. Channel 1 (blue dashed)
consists of pz-like BDTorbitals and channel 2 (cyan) of pxy-like BDTorbitals. Each channel couples only to the
corresponding channel in the gold leads.

Figure 2.Construction of the single-particleHamiltonian for themonoatomic gold chains. Left panel: planewave band structure
(PWSCF),Wannier bands (Wannier), nearest neighbour tight binding bands (TB1). Right panel: transmission function, calculated
fromTB1.

Figure 3.Total energy of the theAu-BDT-Au system as function of the distance between neighbouring gold atoms and for different
geometries. The total energyminimum is set to be at 0 eV.

6
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The eigenorbitals of channel 1 are shown infigure 5. The shape of the orbitals can be explained by the
symmetry of the benzenemolecule, which has the point groupD6h. LUMO+2 is theB2g-orbital, LUMO+1 and
LUMOare theE2u-orbitals, HOMO-4 is theA2u-orbital and the others are amixture of the benzene E1g- and the
sulphur pz-orbitals. Due to the fact that only theHOMO level is close to the Fermi energy it is the levelmainly
contributing to transport which is in general the case in systemswith thiol-anchoring groups [58]. TheHOMO
orbital is an unsaturated sulphur p-orbital and can also be compared to [31, 59]. Passivating the unsaturated
sulphur p-orbitals would shift theHOMO level away from the Fermi energy and produce lower conductances
[16]. Charge transport through channel 1 is blocked due to the fact that there are no empty states with pz-like
symmetry in themonoatomic gold chain (only a sd-hybridized orbital belonging to channel 2 is above the Fermi
level infigure 2). The levels corresponding to channel 2 aremore than 2 eVbelow the Fermi energy. Therefore,
transport in this channel is due to the broadening of the leads and the current–voltage characteristic nearly
linear. The conductivity for the BDTmolecule connectedwithmonoatomic Au chains is almost constant and in
the order of G0.01 0 for biasvoltages bellow 4 V which is in the order of the experimental values of G0.01 0

[23–26]. But using gold tips or bulk-like gold as leads [6, 29] produces empty states with pz-like symmetry and
activates channel 1which raises the conductance. Therefore the theoretical LDA result for the Au-BDT-Au
systemwith bulk-like leads is G0.28 0 [16].

Since channel 1 contains theHOMO-orbital and the typical benzene pz orbitals it would be themost
important channel if supported by the leads. The coupling between leads and the channels depends on the
geometry of the junction and therefore asmentioned above gold tips or bulk-like gold as leads [6, 29] activate
channel 1. Also the use of platinum instead of gold opens channel 1 because platinumhas one electron less than
gold and therefore also orbitals with pz-like symmetry contribute to transport.

Figure 4.The planewave band structure (PWSCF) and the correspondingWannier transformation (Wannier) (left panel). The
Wannier bands are projected onto onto orthogonalized atomicwavefunctions to showwhether they correspond to the gold atoms
(Au) or the BDTmolecule (BDT). The levels of the decoupled BDTmolecule split into channel 1 and channel 2 (right panel).
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3.2. The Pt-BDT-Pt system
In order to activate channel 1we have replaced the gold atoms by platinumones in our calculations5. The
optimized distance between the platinum atoms =d 2.328Pt Åis comparable to the value of 2.34 Åin [60].
The plane-wave pseudopotential band structure,Wannier bands andTB1 bands alongwith the transmission
function are shown infigure 6. In the Pt chain not just channel 2 but also channel 1 bands contribute to the
equilibrium transmission at the Fermi energy.

We now consider the Pt-BDT-Pt system6. The optimized distance between the Pt atoms near to the BDT
molecule is =–d 8.58Pt Pt Å. It is necessary to take at least 8 platinum atoms per unit cell to ensure that the
influence of the BDTmolecule on the lead platinum atoms is negligible. The comparison of the PWband
structure with theWannier bands is given in the left panel offigure 7. In theWannier transformationwe retained
62 bands, 47 corresponding to the 8 platinum atoms and there are 15 BDTbandswithin this energy range. The
right panel presents the decoupled levels of the BDTmolecule and is comparable tofigure 4 disregarding 3more
levels in channel 2 needed to get all the platinum levels in the calculation. In the followingwewill only discuss
channel 1 because due to the level alignment the current in channel 2 is an order ofmagnitude smaller. The
orbitals of channel 1 look similar to the ones in the Au-BDT-Au calculation infigure 5. The orbitals infigure 8
are the localizedWannier orbitals of the BDTmolecule in the Pt-BDT-Pt calculation. These are the 8 orbitals
entering the TBmodel for the central region. They all have pz symmetry. Thematrix formof the TBHamiltonian
of the central region, in the basis of the localized orbitals infigure 8, and the couplingmatrices to the leads that
have been used in the calculations are given in section appendix. The Fermi energy in the transportHamiltonian

Figure 5.Eigenorbitals of channel 1 in the central region of theAu-BDT-Au transport system representedwithVESTA [57].

5
Weused a cut-off energy for thewavefunction of =E 60cowf Ry and the charge density of =E 200con Ry, theMethfessel–Paxton

smearing techniquewith the smearing parameter =E 0.005sm Ry, the vacuumdistance =d 12vac Åand 60 k-points.
6
Weused a cut-off energy for thewavefunction of =E 80cowf Ry and the charge density of =E 320con Ry, theMethfessel–Paxton

smearing techniquewith the smearing parameter =E 0.005sm Ry, the vacuumdistance =d 15vac Åand 1 k-point.
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is adjusted such that the local DOSof channel 1 of the atom further away from the BDTmolecule has the same
filling as in the pure atom chain.

The plot in themiddle offigure 9 shows the spectral density w( )ACC of the isolated central cluster, namely
the isolated BDTmolecule. The curves labelled byDFT+CPT represent the result for the correlated system,
whichwill be explained in section 3.4. The peaks in theDFT+NEGF result are at-0.4 ,-2.0 and-2.3 eV. As
discussed above theHOMO level closer to the Fermi level (-0.4 eV) ismainly responsible for the transport. The
spectral density at the surface atomof the left and the right lead is shown in the left and the right panel offigure 9.
The spectral density of a homogeneousmultiorbital chain is a superposition of semi-circles, see w( )ALL and

w( )ARR . Coupling the homogeneous chains to the the transition layers changes the semi-circular structure of the
spectral density. The spectral densities w( )ATLi and w( )ATRi are located i atoms away from the last point of the
transition region, i.e. points with larger i are closer to the central regions.We nicely see, how the spectral
function gradually changes from themulti-circular structure of the homogeneous chain to the structure of the
spectral densities w( )ATL3 and w( )ATR3 , which consists of peaks at−1.6 and−0.5 and a spike at about−1.3. The
grey shaded area indicates thefilling. The remarkable point is that the spectral function of the transition region,
that enters the transmission function and therefore the current, has a complex structure that will even change
when a voltage is applied. As demonstrated byCuniberti et al [4, 61] low dimensional leads can affect the
conductance due to thefinite bandwidth and the structure in theDOS. If theDOS is nearly constant one can use
thewide-band limit (WBL) approximationwhichworkswell for systemswith bulkmetal electrodes [62].
However theDOS of a one-dimensional chain has VanHove singularities near the band edge and theWBL
approximation does notwork. The keymessage therefore is that the details of the leads in such amolecular
device are of crucial importance for the transport properties. This adds to the observation that the symmetry of
themolecular orbitals and the leads can lead to selection rules as far as transport channels are concerned.

3.3. Stability diagrams of the Pt-BDT-Pt system
Nextwe present various aspects of the charge stability of the Pt-BDT-Pt system. The stability diagram computed
with theDFT+NEGF formalism is presented infigure 10.We have restricted the bias voltage to
-3 V < <V 3b V, because otherwise wewould have to include platinum p-orbitals, and likewise we have
restricted the gate voltage to the interval-2 V < <V 2g V, otherwise channel 2 becomes important. All
diagrams are calculated at an inverse lead temperature of b = 300 eV−1, which enters in the Fermi functions of
the leads. The conductance at = =V V 0b g is G0.52 0 and is considerable higher than the experimental ( G0.01 0

Figure 6.Construction of the single-particleHamiltonian for themonoatomic platinumchains. Left panel: planewave band structure
(PWSCF),Wannier bands (Wannier), nearest neighbour tight binding bands (TB1). Right panel: transmission function, calculated
fromTB1.
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[23–26]) and theoretical LDA ( G0.28 0 [16]) values of Au-BDT-Au systems. Beside the influence of the different
contactmaterial the formation ofmonoatomic chains results in large increases in the conductance [31, 52, 63].
The distance –dPt Pt is also small compared to experimental values, where themonoatomic chains arise under
applying stress to the leads. This results in a higher coupling strength between the leads and the central region.

Most strikingly, the stability diagram infigure 10 does not show the usual structure of crossing straight lines,
resulting in rhombic patterns. The only such structure is the pair of straight lines starting at the left edge of the
diagramwith =V 0.8g and =V 1.3g , respectively. They correspond to the level at-2.3 eV. At =V 3b the
Fermi energy of the right leads is shifted to m = -1.5. Above the Fermi level the remainingDOS of unoccupied
states has awidth ofD =E 0.5 eVempty , see figure 9.Hence, the transport window of the right lead is
- -( )1.5, 1.0 eV.With =V 0.8g the level, whichwas originally at−2.3eV is shifted to the lower edge of the
transport window andwith =V 1.3g it is shifted to the upper edge. This constant distance between the lines is an
effect of the band edge according towhich a positive conductance is always followed by a negative one. In our
case the distance between the lines along theVb-axis isD = D =V E2 1b empty eV. The factor two results from
the fact that half of the bias voltage is applied to each lead. The slope of the lines is constant and equal to1 2. If
the leads are shiftedwithV 2b , one needs V2 b to compensate a shift inVg. As a consequence of weak coupling
of this level to the leads the effects can be seen so clearly.

The levels at-2.0 and−0.4 eVproduce a similar structure but at different energies. The structure can be
explained by a ‘band edge effect’ and a ‘supporting effect’. To explain the ‘supporting effect’wehave projected
out the level at−0.4 eV. The resulting charge stability diagram is depicted infigure 11. Comparison to the full
calculation illustrates that in a broad range ofVg it is enough to use a single-levelmodel for describing the
transport through the BDTmolecule and suggests approaches based on a single-levelmodel [64]. The structure
in the stability diagram is a consequence of the strong coupling to the leads. In the present case the leadswithin
channel 1 consist again of two nearly decoupled channels, the ‘supporting channel’ and the ‘conducting
channel’. The real (imaginary) partRL (GL) of the retarded left lead hybridization functionDL r, for these two

Figure 7.The planewave band structure (PWSCF) and the correspondingWannier transformation (Wannier) (left panel). The
Wannier bands are projected onto onto orthogonalized atomicwavefunctions to showwhether they correspond to the platinum
atoms (Pt) or the BDTmolecule (BDT). The levels of the decoupled BDTmolecule split into channel 1 and channel 2 (right panel).
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channels are shown infigure 12. Only the ‘conducting channel’has states above the Fermi level. The real partRL

shifts the levels in the central region.RL of the ‘supporting channel’ has anti-resonances at w = -0.5 eV1 and
w = -1.6 eV2 . The spike at−1.3 eV is due to the small coupling between the channels in the leads and its
influence is negligible. The imaginary part GL broadens all the levels and hasmaxima at the anti-resonances in
RL. By the ‘supporting effect’wemean that at everyVb, where the positive branch of an antiresonance ofRLhits
the transport windowof the opposite lead, the energy level in the central regionwill be shifted up to higher
energies and therefore one needs smallerVg to compensate this and the conductivity structure in the stability
diagrambends down, see figure 11. The blue dashed lines show the case where the positive branches of the anti-
resonances ofRL hit the upper edge of the opposite lead,

w - = D + ( )V
E

V

2 2
, 231

b
empty

b

w - = D + ( )V
E

V

2 2
242

b
empty

b

and act as limit where the effect ismaximal. The same effect with opposite sign happens if a negative branch of an
antiresonance ofRL hits the transport windowof the opposite lead, there the conductivity structure in the
stability diagrambends up. The red dashed line infigure 11 shows the case where the negative branch of the anti-
resonances ofRL hits the lower edge of the transport window, the Fermi energy, of the opposite lead,

w - = + ( )V V

2 2
. 252

b b

There the structure in the stability diagram ismaximally bent up. This effect explains the appearance ofmore
than onemaximum in the current voltage characteristic even if there is only a single level in the central region.

Figure 8. Localizedmolecular orbitals of channel 1 in the central region of the Pt-BDT-Pt transport system representedwithVESTA
[57].
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Between-D < < DE V Eempty b empty is the usual structure of a stability diagram, but smeared out due to the
coupling of the leads. Disabling the supporting channel produces the stability diagram infigure 13where the
structure can be explained just by the ‘band edge effect’.

Figure 9.The coloured lines represent the spectral function at different points in the transition region (first and third panel). The
numbers in the indices stand for the distance of these points from the outermost edges of the transition region. The grey shaded area
indicates thefilling. The spectral function of the centre is drawn in themiddle panel.

Figure 10.Charge stability diagramobtained from the LDAdata.
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3.4.Many-body effects in the Pt-BDT-Pt system
After having discussed the properties of the single-particle part of theHamiltonian, we now includemany-body
effects using theDFT+CPTmethod. The interaction parametersUij entering themodelHamiltonian in (12) are
determined by numerical integration of (8) and listed in section appendix.We take a constant screening
parameter h = 1.5 as proposed by Ryndyk et al [19]. The values obtained in our calculation for the nearest
neighbour hopping between the carbon atomswithin benzene in (A.2) and the on-siteHubbard interaction in
(A.4) are comparable to those reported in [65].

In table 1 the lowestmany-body eigenenergies of the isolated central region are listed. The ground state (10g)
is in the 10-particle sector and is a singlet state. The other low-lying states in the 10-particle sector have singlet or
triplet symmetry. The lowest eigenenergies in the 9-particle sector are doublet states.

Including interaction in principle shifts levels and spectral weight away from the Fermi energy and produces
additional peaks and therefore signatures in the current–voltage characteristic at higher voltages. Therefore the
benzene band gap increases compared to the LDA calculation [66] and can cause a reduction of the current. As

Figure 11. Stability diagramof the LDA calculation corresponding to the level at-0.4 eV.

Figure 12.RealRL and imaginary part GL of the retarded left lead hybridization function DL r, .

Figure 13. Stability diagrambased on the LDAdata corresponding to the level at-0.4 eV. The supporting channel ismanually
blocked.
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suggested by [3, 32] the gap alsowidens in calculations based on the self-interaction correction inDFT. In our
transport system adding the full interaction theHOMO level is shifted down to-0.6 eV, seeDFT+CPT result in
figure 9. The peaks obtained by this calculation can be identifiedwith excitations obtained by a truemany-body
calculation for the effectiveHubbardmodel. There is a peak at-0.6 eV corresponding to the excitation from
the 10g to the 9g state. The next peak is at−2.1 eV and corresponds to the excitation from the 10g to the ¢9 state.
This excitation needsmore energy thanwe have taken into account in ourWannier basis and are therefore
negligible.

The stability diagramobtained by including electron–electron correlationswithinCPTdoes not change
qualitatively for <V 0.6g eV, see figure 14. The drastic change at =V 0.6g eV is an artefact of CPT.
Equation (19) is solved once for eachVg independent of the appliedVb. At =V 0.6g eV theHOMO level gets
depleted and therefore the particle sector changes.We expect that usingmore sophisticated non-equilibrium
approaches like theME+CPT calculation [20] the drastic change at =V 0.6g eV should disappear. The
conductance at = =V V 0b g of G0.86 0 is higher than the result obtainedwith LDA even though theHOMO is
shifted down in energy and has less spectral weight. In theDFT+CPT calculation the spectral weight on the
HOMO level is lower but distributed in away that there ismoreweight in the orbitals near to the leadswhich
causes the higher conductance. Thygesen et al [16] have obtained the same trend at the BDTmolecule connected
with gold tips and studiedwith LDA andGW. In contrast to Ryndyk et al [19] the lead coupling effects overcome
the influence of strong electron correlations in our transport systembecause of stronger coupling between leads
andBDTdue to the geometry of the transport system.

4. Conclusion

Wehave performed first-principle calculations based onDFT,MLWFs,NEGF andCPT to study themolecular
system consisting of benzenedithiolate connected to semi-infinitemonoatomicmetal electrodes. DFT, within
the plane-wave pseudopotentialmethod, is used to calculate the electronic band structure of the transport
system. Transforming theKohn–Sham eigenvalues and eigenfunctions to a real-space basis ofMLWFallows to
extract a tight-bindingHamiltonian tomodel the transport system.Non-equilibriumGreen’s functions are used
in turn to calculate the charge transport through the BDTmolecule. In the case of gold electrodes theHOMO
level, which provides the dominant contribution to transport properties does not contribute to transport due to
symmetry reasons and therefore the conductance is small. Platinum electrodes, on the other hand, enable
transport via theHOMO level. Strong electron correlations are included on the BDTmolecule using an
extendedHubbardHamiltonian. Since the system is in the intermediate coupling regime the spectral properties
of the leads overcome the influence ofmany-body effects in this system.Wefind that ‘band edge effects’ and
‘supporting effects’ aremore relevant for the structure of the stability diagram in this regime.

Table 1.Many-body eigenenergies of the central region in case of Pt-BDT-Pt.

Level Energy (eV) Spin ( ) Level Energy (eV) Spin ( )

10g −203.08 0

¢10 −200.81 1 9g −202.48 1/2

10 −200.24 1 ¢9 −200.95 1/2

¢¢¢10 −200.11 0 9 −199.46 1/2

Figure 14. Stability diagrambased on theDFT+CPT calculation.
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Appendix. Parameters of themodelHamiltonian

Thematrices in (A.1)–(A.3) are the single-particle parameters of the Pt-BDT-Pt system. t̃ are the hopping
parameters of the of the central region (C) andVT CL

andVCTR
the couplingmatrices between the central region

and the transition layers. The row and column indices of t̃ correspond to the basis functions in figure 8.

= - - - -
- - -( ) ( )V 1.11 0.08 0.01 0.34 0.14 0.02 0.02 0.00

0.85 0.11 0.00 0.08 0.05 0.02 0.01 0.00
, A.1T CL

=

- - -
- - - - -

- - -
- - -

- - -
- - -

- - - - -
- - -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

˜ ( )t

1.46 2.12 0.21 0.17 0.07 0 0.05 0.03
2.12 0.29 2.58 2.54 0.01 0.27 0.23 0.05

0.21 2.58 0.16 0.01 0.08 2.77 0.02 0.07
0.17 2.54 0.01 0.53 2.77 0.24 0.27 0
0.07 0.01 0.08 2.77 0.16 0.01 2.58 0.21

0 0.27 2.77 0.24 0.01 0.52 2.54 0.18
0.05 0.23 0.02 0.27 2.58 2.54 0.29 2.12
0.03 0.05 0.07 0 0.21 0.18 2.12 1.46

, A.2

= - - -
- - -( ) ( )†V 0.00 0.02 0.14 0.03 0.01 0.34 0.08 1.11

0.00 0.01 0.05 0.02 0.00 0.08 0.11 0.85
. A.3CTR

The interaction parametersUij entering themodelHamiltonian determined by numerical integration of (8) are

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

( )U

7.72 4.86 3.24 3.25 2.27 2.21 1.96 1.49
4.86 8.52 5.06 4.97 3.34 3.23 2.85 1.96
3.24 5.06 8.67 3.32 3.00 5.04 3.34 2.27
3.25 4.97 3.32 7.93 5.03 2.86 3.23 2.22
2.27 3.34 3.00 5.03 8.67 3.32 5.06 3.24
2.21 3.23 5.04 2.86 3.32 7.94 4.97 3.26
1.96 2.85 3.34 3.23 5.06 4.97 8.52 4.86
1.49 1.96 2.27 2.22 3.24 3.26 4.86 7.72

. A.4

The relative integration error is within 5%.
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