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Abstract

A first-principles approach based on density functional theory and non-equilibrium Green’s functions
is used to study the molecular transport system consisting of benzenedithiolate connected with
monoatomic gold and platinum electrodes. Using symmetry arguments we explain why the
conductance mechanism is different for gold and platinum electrodes. We present the charge stability
diagram for the benzenedithiolate connected with monoatomic platinum electrodes including many-
body effects in terms of an extended Hubbard Hamiltonian and discuss how the electrodes and the
many-body effects influence the transport properties of the system.

1. Introduction

First-principles calculations in the field of molecular electronics represent a major challenge in computational
physics. In order to build electronic devices based on organic molecules it is crucial to understand the underlying
charge transport phenomena in detail to be able to simulate the actual behaviour [1, 2]. However, itisa
challenging task to predict quantitatively the experimental characteristics of molecular junctions. First of all, in
many cases the charge transport properties of a system depend on the detailed contact geometry [3—5], which is
experimentally difficult to identify. But even if all atomic positions were known, non-equilibrium calculations
are always based on approximations which affect the results. Different theoretical methods exist for different
transport regimes. In the coherent regime electrons proceed elastically, without exchanging energy. This is the
case if there is a strong coupling between the leads and the molecule, i.e. if

F > AE) U) kBT) (1)

where, I is the coupling between the leads and the molecule, AE the level spacing, U the Hubbard interaction
parameter and k5T the temperature. In the coherent regime, the energy levels of the electrodes and the molecule
are hybridized and charge quantization is suppressed and the Landauer formalism becomes exact. The
combination of density functional theory and non-equilibrium Green’s functions (DFT+NEGF) has become a
standard tool for coherent ab-initio transport calculations but there are also other approaches like the
Lippmann—Schwinger method [6] or the wave-function matching technique [7]. In the incoherent regime the
time that an electron spends on the system is sufficiently long for it to interact with other particles (electrons,
phonons, etc). In the case of electron—electron interaction we have

I < AE, U (2)

for the incoherent regime. If the leads are weakly coupled to the system then there is charge quantization and the
electrons propagate by sequential tunnelling. This incoherent regime can be modelled by a Hubbard—
Hamiltonian for describing the molecule and non-interacting tight-binding (TB) leads. Non-equilibrium cluster
perturbation theory (n-CPT) [8, 9] or the variational cluster approach [9, 10] are techniques for solving this
model accurately in the coherent limit. In the case of weak coupling between the molecule and the leads master
equation (ME) [11] approaches became useful. The auxiliary master equation approach [12—14] is in principle
exact, also for strong coupling between the molecule and the leads, but is limited to systems with only a view
interacting sites in the central region. In order to calculate transport properties from first principles one can
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Figure 1. Molecular system consisting of a left and a right lead (L; and Ly), transition layers (T} and Tg) and the central region (C). The
picture is drawn with XCrySDen [36].

combine these techniques with DFT and carry out a charge self-consistency procedure in non-equilibrium,
which is often neglected for simplicity. In our work we apply DFT+NEGF and an extended version of DFT
+NEGF, which we denote by DFT+CPT, for calculations including electron—electron interactions. The
approximation in DFT+CPT is to approximate the self-energy of the system by the self-energy of the isolated
central region. The method allows treating larger molecules in the central region and is accurate in the coherent
limit. A more sophisticated but numerically challenging technique for calculating transport properties is the
combination of DFT with GW [15-17]. DFT can also be used in combination with the dynamical mean field
theory[18], with ME [19] if the system is in the weak coupling regime or even with ME+CPT [20].

Although the 1, 4-benzenedithiolate (BDT) molecule is usually considered in the field of molecular
electronics there are still severe discrepancies between experimental [21-26] and theoretical results [6, 19,
27-30]. The calculated conductances tend to be much higher than the measured ones. Proposed reasons are the
sensitivity of the conductance to the detailed geometry of the junction [6, 29], hydration of the BDT molecule to
benzenedithiol [16, 31] and correlation effects [3, 32].

The purpose of this work is to to study the transport properties of the BDT molecule connected to
monoatomic metal chains as leads. This system allows to study the impact of the junction geometry on the
conductance and how transport is affected by low dimensional leads. Many publications [27, 28, 30] explain the
transport through the gold-BDT-gold system with a single-level model where the conductance is carried by a
single transport channel corresponding to the HOMO orbital of the BDT molecule. Ryndyk et al[19] performed
DFT+ME calculations including strong electron correlations and got a multi-scale Coulomb blockade. We will
also address the impact of strong correlations. Our results obtained for the single level model for the BDT
molecule will be compared with the results for the model studied by Ryndyk et al [ 19].

The paper is organized as follows. Section 2 introduces briefly the methodology and is divided in two parts.
The first part describes how the parameters in the extended Hubbard Hamiltonian are obtained from first-
principles, while the second part presents a technique based on NEGF and CPT for solving this model. In
section 3 the method is applied to a gold-BDT-gold and a platinum-BDT-platinum system. The conclusions are
given in section 4.

2. Methods

2.1. First-principles calculation of the model parameters

The system we are considering consists of a central region (C) attached to left and right leads, see figure 1. To
determine the TB parameters of the system we employ the pseudopotential plane-wave code QUANTUM
ESPRESSO [33]. The unit cell, red dashed line in figure 1, consists of the central region, left and right transition
layers (T1, Tg), also called buffer regions, and the surface part of the remaining leads (Ly, Lg). The size of the
transition layers is chosen such that the electronic properties of the outermost atoms in the unit cell do not
change anymore when the unit cell is increased. This ensures that the central region has negligible impact on the
periodicity of the remaining leads [34, 35]. For all DFT calculations in this paper we have used the Perdew
Zunger exchange correlation functional within the local density approximation (LDA) and non-relativistic
ultrasoft pseudopotentials from the standard solid-state pseudopotentials library (PSlibrary 0.3.1) [37].

We have used maximally localized Wannier functions (MLWF) [38, 39] to get localized orbitals and to set up
the TB Hamiltonian [34, 35]. All Wannier transformations are done with WANNIER90 [40] which produces
orthogonal MLWFE. Therefore the derivation of the NEGF formalism in section 2.2 is demonstrated only for
orthogonal bases. A derivation for non-orthogonal bases in the coherent regime can be found in [41]. In the
localized basis the Hamilton operator of the unit cell is then given by
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The outermost atoms of the unit cell are periodically continued and form the non-interacting leads (L;, Lg) in
the TB model. In this way we determine all single-particle parameters of the Hamiltonian.

We describe the electron—electron interaction by an extended Hubbard Hamiltonian in the central region,
which has the form

I:IC = I:IO + I:Il) (4)

where Hj is the single-particle part and H; the interaction part of the model Hamiltonian. We neglect correlation
effectsin theleads (L, T, Lg, Tr) and we expect correlation effects to be important only in the central region,
because on the molecule the wave functions are more localized. The single-particle part of the model
Hamiltonian in the central region in second quantization is given by

N
o= S 54/ 4, ®)
ij

Theindicesi = {i, o}and j = {j, o’} include the wave function indices 7 and j and the spins o and ¢”. The
operator 4, creates an electron on orbital Wi(r) which we obtain by the MLWF construction. The hopping
parameters f;; are

t; = {QEQ'}5, (6)

where Q is the matrix which diagonalizes the TB Hamiltonian and E are the corresponding eigenenergies. The
interaction part of the model Hamiltonian is given by

> Ughidiy. (7)

The density—density term form of the Hubbard model is only justified if the non-density—density term is small
which also requires that the orbitals are maximally localized. The interaction parameters Uj; are calculated via

Uy = [@r [@rumPue)PUe, ¢) ®)

with the screened Coulomb potential

1

u,r)= ————,
dregn|r — ']

©)
where 71s the screening. According to [19] we set the screening to be constant. The random phase approximation
[42] would be a possibility to determine the screening consistently.

The electron correlations already included in DFT, have to be subtracted in order to avoid double counting.
Here we choose the around mean-field approximation [43], because it generally gives good results for weakly
correlated systems. That is, we have subtracted the Hartree term At;; of the interaction part from the bare
hopping #;;. This approach is justified as follows. If we apply the LDA approximation to the model Hamiltonian

we end up with the same band structure as that is obtained from the original band structure calculation. The
double counting correction leads to modified hopping parameters #; — t,-]C with

t;? =155 — At565. (10)
The Hartree term is given by
At~ Usinf + Y 2Uiany),
m=i

NOCC
= > > HQY &l (Usi 67 + 2Uin(1 — 8im)), (11)
k

m

where 1 is the equilibrium population of the ith orbital obtained in the DFT calculation. The model
Hamiltonian for the central region has finally the form
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Hc—Zt,]”a]—l— 2Z:U,]n fij. (12)
ij i=]
The full self-consistent non-equilibrium transport calculation could be done by feeding the non-equilibrium
potential, obtained from the non-equilibrium densities in the transport calculation, back into DFT and repeat
this procedure until self-consistency is reached [44—46].

2.2.Non-equilibrium Green’s functions

We have used the Keldysh formalism [47] to compute the current through the central region. In steady-state the
two-time Green’s function depends only on the time difference and can be treated efficiently in frequency space.
The steady-state current from the left transition layer to the central region can be calculated by integrating over
the real part of the Keldysh Green’s function

e & k
S T @) (13)
hd-w i3

jec
Here, iand j denote the orbitals within the clusters T; and C, see figure 1, for calculating the current between the
left transition layer and the central region. In this paper we employ non-equilibrium cluster perturbation theory
(n-CPT) [9, 48] to compute the Keldysh Green’s function G of the interacting non-equilibrium system required
in (13). Within n-CPT, (13) reduces to the well-known Landauer—Biittiker formula [49].

=2 [ ) - @) T (14
T (w) denotes the transmission function
T'(w) = Tr(LGecIRGE0)s 15)
where I, with v € {L, R}is the anti-hermitian part of the hybridization function
A, =R, — él",,. (16)

We denote matrices with bold faced letters and for simplicity of the notation, we have omitted the w arguments.
To this end, the entire system is decomposed into the device (C), e.g. the BDT molecule, and the two leads, which
are further decomposed into L; plus Ty on the left side and Lg plus Ty on the right. We calculate the full Green’s
function for indices of the central region G¢¢ within the CPT approximation, i.e. we use the following Dyson
equation

GO =@ )™ — > VerGhy Vi
ue{LR}T
=(ggty) ' — B0 — > A (17)
ve{L,R}

In CPT the Green’s function g/ of the isolated central cluster is required. From the Dyson equation
(oo ' = (gt ' — X (18)

itis clear that in the interacting case, the CPT approximation is equivalent to approximating the self-energy by
that of the isolated cluster. Therefore it is important to cut the system in a way that the coupling between the
transition layers and the central region is weak compared to the hopping parameters within the central region.
The Green’s function of the isolated central cluster can be calculated using the Lehmann representation

1 o

1 Q al =~ a: Q
(8cchi = (€ w40t — A + E 1)
+ (0] af ! a0, (19)

w+10++HC—E()

If the system is not too far away from the equilibrium situation, it will still be a good approximation to consider
only excitations from the ground state to higher states and hence the corresponding self-energy.

The Green’s function of the isolated left lead with indices restricted to the transition region Gr, 7, is needed in
(17). Wewill also need Gy, 7,.. To calculate G, 1, for v € {L, R} we once more introduce a cluster decomposition
of theleads into part L, and T,, introduced before. The exact Dyson equation for this decomposition yields

Gr1) ' =(rr) ' — Vi, 8. Vi1 (20)

where g;. ;. stands for the Green’s function of the isolated transition region, which can be computed easily, as the
matrix dimension is small. g;, 1, onthe other hand represents the Green’s function of the isolated semi-infinite
part L, oflead v thatis composed ofidentical unit cells. The hopping elements V;, ; couple only to the unit cell
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near to the transition region in each lead and therefore only the surface partof g, | isrequired, which canbe
determined iteratively by using the method of Sancho et al [50]. An alternative tec”h'ﬁique for calculating the
hybridization function is to use complex absorbing potentials [51].

A bias voltage V}, drives the system out of equilibrium and enters the calculation as a shift of the on-site
energies and the chemical potential by — V;, /2 for the leftlead and by 4V, /2 for the right lead. In the Landauer—
Biittiker formula V;, enters also in the Fermi functions. A gate voltage V, can be applied by shifting the on-site
energies of 77;.

The spectral density and the conductivity are important quantities for our analyses and they are defined as

Au@) = =23 Tr (g, @), @1)
dI

= 22

W 22)

3. Applications

3.1. The Au-BDT-Au system

In a first step we have applied the DFT+NEGF formalism to a system consisting of a BDT molecule sandwiched
between two gold chains, schematically drawn in figure 1. As shown below in the case of monoatomic gold
chains it is possible to include all lead atoms in the Wannier transformation in a controlled way. In mechanically
controllable break junctions or with an scanning tunnelling microscope the formation of monoatomic gold
chains was demonstrated under elongation of the junction by several authors [44, 52-55]. In a first step we have
performed DFT calculations’ for the periodic chain of monoatomic gold atoms. All the parameters are
converged with respect to the total energy within 5 meV. In order to find the equilibrium geometry, we have
calculated the total energy of the chain for different distances d,,, between the gold atoms. We find an optimal
distance of dy, = 2.515 A which is close to the LDA result 2.51 A in [56].

The band structure of the Au chain in an interval around Er. is shown in the left panel of figure 2. The I'-X
axis is always the axis along the gold chain in reciprocal space. The 6p bands are at higher energies. The 6s and 5d
bands coincide exactly with the Wannier bands, which demonstrates the properness of the Wannier
transformation. The dotted lines represent the inner and the outer energy window needed to disentangle the 6s
and 5d bands from the 6p band in the Wannier transformation. In figure 2 tight binding (TB1) means that only
hopping processes to nearest neighbour gold atoms are taken into account. The 6s band and the 5d bands
separate into the two bands corresponding to the d,, and the d,, orbital (Channel 1) and four bands
corresponding to orbitals with inversion symmetry with respect to the xy-plane (Channel 2). The definition of
the coordinate system is according to figure 5. Each symmetry channel will only couple to orbitals of the same
symmetry and therefore transport takes place in two separated channels. The TB1 approximation turns out to be
a good approximation for the channel 1 bands, which are mainly interesting for transport. The right panel of
figure 2 is the calculated equilibrium (V}, = 0) transmission function for TB1 and is similar to the results
obtained in [56]. In the coherent regime the transmission function is proportional to the number of bands ata
certain energy.

After having calculated the Hamiltonian of the monoatomic Au chain, we considered the full system,
including BDT". The BDT molecule can assume different geometry configurations between the two semi-
infinite gold chains. In the line configuration the BDT molecule is forced to be on the gold chain axis. In the atop
configuration the BDT molecule slightly hops out of the gold chain axis, while it twists out of the axis in the
twisted configuration as shown in figure 1. There are also mixed configurations between atop and twisted, called
atop-twisted and twisted-twisted. In order to determine the energetically favourable configuration, we compute
the total energy as function of the distance between the gold atoms near to the BDT molecule dy,,_,, namely the
gap between the two (left and right) semi-infinite gold chains, for different configurations, see figures 1 and 3.
The distance between the gold atoms was fixed d,,, during the geometry optimizations. At ds,_a, =~ 8.1the BDT
molecule rearranges into thienothiophene. It occurs that the twisted configuration of the BDT atom is
energetically most favoured and, consequently, we have chosen this configuration for the ensuing transport
calculations. The optimized distance is dy,_p, = 9.16 A. We have chosen six gold atoms per unit cell, which
ensures that the eigenvalues of the atoms at the outer edges of the unit cell (see figure 1) are converged. We have
chosen the size such that the changes in eigenenergies are less than 0.05 eV. The left panel in figure 4 depicts a

3 We used a cut-off energy for the wavefunction of Ec,,¢ = 64 Ry and the charge density of E.,, = 512 Ry, the Methfessel-Paxton smearing
technique with the smearing parameter Ey,, = 0.01 Ry, the vacuum distance dy,. = 12 A and 32 k-points.

* We used a cut-off energy for the wavefunction of E,s = 100 Ryand the charge density of E.,, = 400 Ry, the Methfessel-Paxton
smearing technique with the smearing parameter E;,, = 0.001 Ry, the vacuum distance d\,c = 18 A and 1 k-point.
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Figure 2. Construction of the single-particle Hamiltonian for the monoatomic gold chains. Left panel: plane wave band structure
(PWSCF), Wannier bands (Wannier), nearest neighbour tight binding bands (TB1). Right panel: transmission function, calculated
from TB1.
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Figure 3. Total energy of the the Au-BDT-Au system as function of the distance between neighbouring gold atoms and for different
geometries. The total energy minimum is set to beat 0 eV.

comparison of the band structure obtained with the full plane wave basis and with the Wannier basis. The
Wannier transformation is performed only at the I"-point. In the Wannier transformation we picked out 47
bands, 35 corresponding to the six gold atoms and there are 12 BDT bands within this energy range. At the I'-
point the PWSCF bands coincide exactly with the Wannier levels, which demonstrates again the properness of
the Wannier transformation. The obtained Wannier basis functions of the gold atoms coincide with the
Wannier basis functions of the pure gold chain, which shows that the disentanglement procedure of the 6s and
5d bands from the 6p bands is done correct. Projections of the wavefunctions onto orthogonalized atomic
wavefunctions show whether the Wannier levels belong to the gold leads and the transition layers or to the BDT
molecule. The right panel presents the eigenlevels of the decoupled BDT molecule, the eigenenergies of He. As
mentioned above and outlined in [6, 29] transport takes place in separated channels. Channel 1 (blue dashed)
consists of p,-like BDT orbitals and channel 2 (cyan) of p,, -like BDT orbitals. Each channel couples only to the
corresponding channel in the gold leads.
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Figure 4. The plane wave band structure (PWSCF) and the corresponding Wannier transformation (Wannier) (left panel). The
Wannier bands are projected onto onto orthogonalized atomic wavefunctions to show whether they correspond to the gold atoms
(Au) or the BDT molecule (BDT). The levels of the decoupled BDT molecule split into channel 1 and channel 2 (right panel).

The eigenorbitals of channel 1 are shown in figure 5. The shape of the orbitals can be explained by the
symmetry of the benzene molecule, which has the point group Dgj,. LUMO+-2 is the B, -orbital, LUMO+-1 and
LUMO are the E,,-orbitals, HOMO-4 is the A,,-orbital and the others are a mixture of the benzene E; ;- and the
sulphur p,-orbitals. Due to the fact that only the HOMO level is close to the Fermi energy it is the level mainly
contributing to transport which is in general the case in systems with thiol-anchoring groups [58]. The HOMO
orbital is an unsaturated sulphur p-orbital and can also be compared to [31, 59]. Passivating the unsaturated
sulphur p-orbitals would shift the HOMO level away from the Fermi energy and produce lower conductances
[16]. Charge transport through channel 1 is blocked due to the fact that there are no empty states with p,-like
symmetry in the monoatomic gold chain (only a sd-hybridized orbital belonging to channel 2 is above the Fermi
level in figure 2). The levels corresponding to channel 2 are more than 2 eV below the Fermi energy. Therefore,
transport in this channel is due to the broadening of the leads and the current—voltage characteristic nearly
linear. The conductivity for the BDT molecule connected with monoatomic Au chains is almost constant and in
the order of 0.01 G, for biasvoltages bellow 4 V which is in the order of the experimental values of 0.01 G,
[23-26]. But using gold tips or bulk-like gold as leads [6, 29] produces empty states with p,-like symmetry and
activates channel 1 which raises the conductance. Therefore the theoretical LDA result for the Au-BDT-Au
system with bulk-like leads is 0.28 Gy [16].

Since channel 1 contains the HOMO-orbital and the typical benzene p, orbitals it would be the most
important channel if supported by the leads. The coupling between leads and the channels depends on the
geometry of the junction and therefore as mentioned above gold tips or bulk-like gold as leads [6, 29] activate
channel 1. Also the use of platinum instead of gold opens channel 1 because platinum has one electron less than
gold and therefore also orbitals with p,-like symmetry contribute to transport.
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Figure 5. Eigenorbitals of channel 1 in the central region of the Au-BDT-Au transport system represented with VESTA [57].

3.2.The Pt-BDT-Pt system

In order to activate channel 1 we have replaced the gold atoms by platinum ones in our calculations’. The
optimized distance between the platinum atoms dp; = 2.328 Ais comparable to the value of 2.34 A in [60].
The plane-wave pseudopotential band structure, Wannier bands and TB1 bands along with the transmission
function are shown in figure 6. In the Pt chain not just channel 2 but also channel 1 bands contribute to the
equilibrium transmission at the Fermi energy.

We now consider the Pt-BDT-Pt system’. The optimized distance between the Pt atoms near to the BDT
moleculeis dp_p; = 8.58 A.Ttis necessary to take at least 8 platinum atoms per unit cell to ensure that the
influence of the BDT molecule on the lead platinum atoms is negligible. The comparison of the PW band
structure with the Wannier bands is given in the left panel of figure 7. In the Wannier transformation we retained
62 bands, 47 corresponding to the 8 platinum atoms and there are 15 BDT bands within this energy range. The
right panel presents the decoupled levels of the BDT molecule and is comparable to figure 4 disregarding 3 more
levels in channel 2 needed to get all the platinum levels in the calculation. In the following we will only discuss
channel 1 because due to the level alignment the current in channel 2 is an order of magnitude smaller. The
orbitals of channel 1 look similar to the ones in the Au-BDT-Au calculation in figure 5. The orbitals in figure 8
are the localized Wannier orbitals of the BDT molecule in the Pt-BDT-Pt calculation. These are the 8 orbitals
entering the TB model for the central region. They all have p, symmetry. The matrix form of the TB Hamiltonian
of the central region, in the basis of the localized orbitals in figure 8, and the coupling matrices to the leads that
have been used in the calculations are given in section appendix. The Fermi energy in the transport Hamiltonian

5 We used a cut-off energy for the wavefunction of E...s = 60 Ryand the charge density of Ec,, = 200 Ry, the Methfessel-Paxton
smearing technique with the smearing parameter E;,, = 0.005 Ry, the vacuum distance dy,c = 12 A and 60 k-points.

6 We used a cut-off energy for the wavefunction of E.,s = 80 Ryand the charge density of E.,,, = 320 Ry, the Methfessel-Paxton
smearing technique with the smearing parameter Es,, = 0.005 Ry, the vacuum distance d\,c = 15 A and 1 k-point.
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Figure 6. Construction of the single-particle Hamiltonian for the monoatomic platinum chains. Left panel: plane wave band structure
(PWSCF), Wannier bands (Wannier), nearest neighbour tight binding bands (TB1). Right panel: transmission function, calculated
from TB1.

is adjusted such that the local DOS of channel 1 of the atom further away from the BDT molecule has the same
filling as in the pure atom chain.

The plot in the middle of figure 9 shows the spectral density Acc(w) of the isolated central cluster, namely
the isolated BDT molecule. The curves labelled by DFT+CPT represent the result for the correlated system,
which will be explained in section 3.4. The peaks in the DFT+NEGF resultareat —0.4 , —2.0 and —2.3 eV.As
discussed above the HOMO level closer to the Fermilevel (—0.4 eV)is mainly responsible for the transport. The
spectral density at the surface atom of the left and the right lead is shown in the left and the right panel of figure 9.
The spectral density of ahomogeneous multiorbital chain is a superposition of semi-circles, see Ay (w) and
Agg (w). Coupling the homogeneous chains to the the transition layers changes the semi-circular structure of the
spectral density. The spectral densities Ary;(w) and Arg;(w) arelocated i atoms away from the last point of the
transition region, i.e. points with larger i are closer to the central regions. We nicely see, how the spectral
function gradually changes from the multi-circular structure of the homogeneous chain to the structure of the
spectral densities Ary3(w)and Args(w), which consists of peaks at —1.6 and —0.5 and a spike atabout —1.3. The
grey shaded area indicates the filling. The remarkable point is that the spectral function of the transition region,
that enters the transmission function and therefore the current, has a complex structure that will even change
when a voltage is applied. As demonstrated by Cuniberti et al [4, 61] low dimensional leads can affect the
conductance due to the finite band width and the structure in the DOS. If the DOS is nearly constant one can use
the wide-band limit (WBL) approximation which works well for systems with bulk metal electrodes [62].
However the DOS of a one-dimensional chain has Van Hove singularities near the band edge and the WBL
approximation does not work. The key message therefore is that the details of the leads in such a molecular
device are of crucial importance for the transport properties. This adds to the observation that the symmetry of
the molecular orbitals and the leads can lead to selection rules as far as transport channels are concerned.

3.3. Stability diagrams of the Pt-BDT-Pt system

Next we present various aspects of the charge stability of the Pt-BDT-Pt system. The stability diagram computed
with the DFT+NEGF formalism is presented in figure 10. We have restricted the bias voltage to

—3 V <V}, < 3V, because otherwise we would have to include platinum p-orbitals, and likewise we have
restricted the gate voltage to the interval —2 V < V; < 2 V, otherwise channel 2 becomes important. All
diagrams are calculated at an inverse lead temperature of 5 = 300 eV, which enters in the Fermi functions of
the leads. The conductance at V;, = V; = 01is 0.52 G, and is considerable higher than the experimental (0.01 G,
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Figure 7. The plane wave band structure (PWSCF) and the corresponding Wannier transformation (Wannier) (left panel). The
Wannier bands are projected onto onto orthogonalized atomic wavefunctions to show whether they correspond to the platinum
atoms (Pt) or the BDT molecule (BDT). The levels of the decoupled BDT molecule split into channel 1 and channel 2 (right panel).

[23-26]) and theoretical LDA (0.28 G [16]) values of Au-BDT-Au systems. Beside the influence of the different
contact material the formation of monoatomic chains results in large increases in the conductance [31, 52, 63].
The distance dp,_p, is also small compared to experimental values, where the monoatomic chains arise under
applying stress to the leads. This results in a higher coupling strength between the leads and the central region.

Most strikingly, the stability diagram in figure 10 does not show the usual structure of crossing straight lines,
resulting in rhombic patterns. The only such structure is the pair of straight lines starting at the left edge of the
diagram with V; = 0.8 and V; = 1.3, respectively. They correspond to thelevel at —2.3 eV. At V;, = 3 the
Fermi energy of the right leads is shifted to ;1 = —1.5. Above the Fermi level the remaining DOS of unoccupied
states has a width of AE¢qp, = 0.5 eV, see figure 9. Hence, the transport window of the right lead is
(= 1.5, —1.0)eV. With V, = 0.8 thelevel, which was originally at —2.3 eV is shifted to the lower edge of the
transport window and with V, = 1.3itis shifted to the upper edge. This constant distance between the lines is an
effect of the band edge according to which a positive conductance is always followed by a negative one. In our
case the distance between the lines along the Vj,-axisis AV;, = 2AEqq, = 1 eV. The factor two results from
the fact that half of the bias voltage is applied to each lead. The slope of the lines is constant and equal to +1/2. If
the leads are shifted with V4, /2, one needs 2V}, to compensate a shift in V,. As a consequence of weak coupling
of this level to the leads the effects can be seen so clearly.

Thelevelsat —2.0 and —0.4 eV produce a similar structure but at different energies. The structure can be
explained by a ‘band edge effect’ and a ‘supporting effect’. To explain the ‘supporting effect’ we have projected
out thelevel at —0.4 eV. The resulting charge stability diagram is depicted in figure 11. Comparison to the full
calculation illustrates that in a broad range of Vj it is enough to use a single-level model for describing the
transport through the BDT molecule and suggests approaches based on a single-level model [64]. The structure
in the stability diagram is a consequence of the strong coupling to the leads. In the present case the leads within
channel 1 consist again of two nearly decoupled channels, the ‘supporting channel’ and the ‘conducting
channel’. The real (imaginary) part R L (L) of the retarded left lead hybridization function Ab" for these two

10
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Figure 8. Localized molecular orbitals of channel 1 in the central region of the Pt-BDT-Pt transport system represented with VESTA
[57].

channels are shown in figure 12. Only the ‘conducting channel has states above the Fermi level. The real part R"
shifts the levels in the central region. R of the ‘supporting channel’ has anti-resonances at w; = —0.5 eV and
w, = —1.6 eV. The spike at —1.3 eV is due to the small coupling between the channels in the leads and its
influence is negligible. The imaginary part I'> broadens all the levels and has maxima at the anti-resonances in
R*. By the ‘supporting effect’ we mean that at every V;,, where the positive branch of an antiresonance of R; hits
the transport window of the opposite lead, the energy level in the central region will be shifted up to higher
energies and therefore one needs smaller V,, to compensate this and the conductivity structure in the stability
diagram bends down, see figure 11. The blue dashed lines show the case where the positive branches of the anti-
resonances of R; hit the upper edge of the opposite lead,

Vi Wi

wr — RLRES AEempty + _b) (23)
2 2
Wi Wi

wy — 7" = AEempy + 7" (24)

and act as limit where the effect is maximal. The same effect with opposite sign happens if a negative branch of an
antiresonance of R; hits the transport window of the opposite lead, there the conductivity structure in the
stability diagram bends up. The red dashed line in figure 11 shows the case where the negative branch of the anti-
resonances of R; hits the lower edge of the transport window, the Fermi energy, of the opposite lead,

Wy — = = 42, (25)

There the structure in the stability diagram is maximally bent up. This effect explains the appearance of more
than one maximum in the current voltage characteristic even if there is only a single level in the central region.
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Figure 9. The coloured lines represent the spectral function at different points in the transition region (first and third panel). The
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Figure 10. Charge stability diagram obtained from the LDA data.

Between — AEempy < Vi < AEempy is the usual structure of a stability diagram, but smeared out due to the
coupling of the leads. Disabling the supporting channel produces the stability diagram in figure 13 where the
structure can be explained just by the ‘band edge effect’.
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Figure 12. Real R" and imaginary part I' of the retarded left lead hybridization function AL,

Figure 13. Stability diagram based on the LDA data corresponding to the level at —0.4 eV. The supporting channel is manually
blocked.

3.4. Many-body effects in the Pt-BDT-Pt system

After having discussed the properties of the single-particle part of the Hamiltonian, we now include many-body
effects using the DFT-+CPT method. The interaction parameters Uj; entering the model Hamiltonian in (12) are
determined by numerical integration of (8) and listed in section appendix. We take a constant screening
parameter 77 = 1.5 as proposed by Ryndyk et al [19]. The values obtained in our calculation for the nearest
neighbour hopping between the carbon atoms within benzene in (A.2) and the on-site Hubbard interaction in
(A.4) are comparable to those reported in [65].

In table I the lowest many-body eigenenergies of the isolated central region are listed. The ground state (10,)
is in the 10-particle sector and is a singlet state. The other low-lying states in the 10-particle sector have singlet or
triplet symmetry. The lowest eigenenergies in the 9-particle sector are doublet states.

Including interaction in principle shifts levels and spectral weight away from the Fermi energy and produces
additional peaks and therefore signatures in the current—voltage characteristic at higher voltages. Therefore the
benzene band gap increases compared to the LDA calculation [66] and can cause a reduction of the current. As
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Table 1. Many-body eigenenergies of the central region in case of Pt-BDT-Pt.

Level Energy (eV) Spin (/) Level Energy (eV) Spin (%)

10, ~203.08 0
10/ —200.81 1 9% ~202.48 1/2
10" ~200.24 1 o —200.95 1/2
10” —200.11 0 9 ~199.46 1/2
2
60
40

r - |

-20

vy [V]
-
-

G [pS]

-40
-60

Figure 14. Stability diagram based on the DFT+CPT calculation.

suggested by [3, 32] the gap also widens in calculations based on the self-interaction correction in DFT. In our
transport system adding the full interaction the HOMO level is shifted down to —0.6 €V, see DFT+CPT resultin
figure 9. The peaks obtained by this calculation can be identified with excitations obtained by a true many-body
calculation for the effective Hubbard model. There isa peak at —0.6 eV corresponding to the excitation from
the 10, to the 9, state. The next peak is at —2.1 eV and corresponds to the excitation from the 104 to the 9’ state.
This excitation needs more energy than we have taken into account in our Wannier basis and are therefore
negligible.

The stability diagram obtained by including electron—electron correlations within CPT does not change
qualitatively for V; < 0.6 eV, see figure 14. The drastic change at V; = 0.6 eV isan artefact of CPT.
Equation (19) is solved once for each Vg independent of the applied V4,. At V; = 0.6 eV the HOMO level gets
depleted and therefore the particle sector changes. We expect that using more sophisticated non-equilibrium
approaches like the ME+CPT calculation [20] the drastic change at V, = 0.6 eV should disappear. The
conductanceat V;, = V; = 00f0.86 Gy is higher than the result obtained with LDA even though the HOMO is
shifted down in energy and has less spectral weight. In the DFT+CPT calculation the spectral weight on the
HOMO level is lower but distributed in a way that there is more weight in the orbitals near to the leads which
causes the higher conductance. Thygesen et al[16] have obtained the same trend at the BDT molecule connected
with gold tips and studied with LDA and GW. In contrast to Ryndyk et al [19] the lead coupling effects overcome
the influence of strong electron correlations in our transport system because of stronger coupling between leads
and BDT due to the geometry of the transport system.

4. Conclusion

We have performed first-principle calculations based on DFT, MLWFs, NEGF and CPT to study the molecular
system consisting of benzenedithiolate connected to semi-infinite monoatomic metal electrodes. DFT, within
the plane-wave pseudopotential method, is used to calculate the electronic band structure of the transport
system. Transforming the Kohn—Sham eigenvalues and eigenfunctions to a real-space basis of MLWF allows to
extract a tight-binding Hamiltonian to model the transport system. Non-equilibrium Green’s functions are used
in turn to calculate the charge transport through the BDT molecule. In the case of gold electrodes the HOMO
level, which provides the dominant contribution to transport properties does not contribute to transport due to
symmetry reasons and therefore the conductance is small. Platinum electrodes, on the other hand, enable
transport via the HOMO level. Strong electron correlations are included on the BDT molecule using an
extended Hubbard Hamiltonian. Since the system is in the intermediate coupling regime the spectral properties
of the leads overcome the influence of many-body effects in this system. We find that ‘band edge effects’ and
‘supporting effects’ are more relevant for the structure of the stability diagram in this regime.
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Appendix. Parameters of the model Hamiltonian

The matrices in (A.1)—(A.3) are the single-particle parameters of the Pt-BDT-Pt system. f are the hopping
parameters of the of the central region (C) and Vg, ¢ and V-7, the coupling matrices between the central region
and the transition layers. The row and column indices of  correspond to the basis functions in figure 8.

VTC:(—l.ll 0.08 0.01 —0.34 0.14 —0.02 —0.02 o.oo)
L —0.85 0.11 0.00 0.08 —0.05 —0.02 0.01 0.00)
—146 —2.12 021 0.17 0.07 0 0.05 —0.03
—2.12 —0.29 —2.58 —2.54 0.01 027 —023 0.05
021 —-258 0.16 0.01 —0.08 —2.77 0.02 0.07
;_| 017 -254 001 053 -277 —0.24 027 0 (A2)
0.07 001 —0.08 —2.77 0.16 0.01 —2.58 021 | )
0 0.27 —277 —024 0.01 0.52 —2.54 0.18
0.05 —0.23 0.02 027 —258 —254 —0.29 —2.12
—0.03 0.05 0.07 0 0.21 0.18 —2.12 —1.46
v :(o.oo 0.02 —0.14 0.03 —0.01 0.34 —0.08 1.11)
CTk 0.00 —0.01 0.05 0.02 0.00 —0.08 —0.11 0.85)

The interaction parameters Uj; entering the model Hamiltonian determined by numerical integration of (8) are

7.72 4.86 3.24 3.25 2.27 2.21 1.96 1.49
4.86 8.52 5.06 4.97 3.34 3.23 2.85 1.96
3.24 5.06 8.67 3.32 3.00 5.04 3.34 2.27
3.25 4.97 332 7.93 5.03 2.86 3.23 2.22
2.27 3.34 3.00 5.03 8.67 3.32 5.06 3.24 |
2.21 3.23 5.04 2.86 3.32 7.94 4.97 3.26
1.96 2.85 3.34 3.23 5.06 4.97 8.52 4.86
1.49 1.96 227 222 3.24 3.26 4.86 7.72

The relative integration error is within 5%.
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