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Abstract
Wepresent a general scheme to address correlated nonequilibriumquantum impurity problems
based on amapping onto an auxiliary open quantum systemof small size. The infinite fermionic
reservoirs of the original system are thereby replaced by a small numberNB of noninteracting auxiliary
bath sites whose dynamics are described by a Lindblad equation, which can then be exactly solved by
numericalmethods such as Lanczos ormatrix-product states. Themapping becomes exponentially
exact with increasingNB, and is already quite accurate for smallNB. Due to the presence of the
intermediate bath sites, the overall dynamics acting on the impurity site is non-Markovian.While in
previousworkwe put the focus on themanybody solution of the associated Lindblad problem, here
we discuss themapping scheme itself, which is an essential part of the overall approach. On the one
hand, we provide technical details together with an in-depth discussion of the employed algorithms,
and on the other hand, we present a detailed convergence study. The latter clearly demonstrates the
above-mentioned exponential convergence of the procedurewith increasingNB. Furthermore, the
influence of temperature and an external bias voltage on the reservoirs is investigated. The knowledge
of the particular convergence behavior is of great value to assess the applicability of the scheme to
certain physical situations.Moreover, we study different geometries for the auxiliary system.On the
one hand, this is of importance for advancedmanybody solution techniques such asmatrix product
states whichworkwell for short-ranged couplings, and on the other hand, it allows us to gainmore
insights into the underlyingmechanismswhenmapping non-Markovian reservoirs onto Lindblad-
type impurity problems. Finally, we present results for the spectral function of theAnderson impurity
model in and out of equilibrium and discuss the accuracy obtainedwith the different geometries of the
auxiliary system. In particular, we show that allowing for complex Lindblad couplings produces a
drastic improvement in the description of the Kondo resonance.

1. Introduction

Strongly correlated systemsout of equilibriumhave recently attracted considerable interest due to progress in
several experimentalfields, such as ultrafast pump-probe spectroscopy [1–5], ultracoldquantumgases [6–10], and
solid-state nanotechnology [11–13]. These advances have also prompted interest in related theoretical questions
concerning thermalization [14–16], dissipation anddecoherence [17], andnonequilibriumquantumphase
transitions [18–20]. An interesting aspect is the interplay between correlation anddissipation in systemswhere the
latter is not included phenomenologically but is part of themicroscopicmodel. The challenge lies in the fact that
one has to treat inhomogenous correlated systemsof truly infinite size since anyfinite systemwould not feature
dissipation.When considering purely fermionic correlated systems, dissipation is usuallymodeled by infinite
reservoirs of noninteracting fermions. These reservoirs are in contactwith a correlated central regionof interest. A
paradigmatic example of such a system is the single-siteKondoorAnderson impuritymodel [21–25]. If there is
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just one reservoirwith a single chemical potentialμ and temperatureT, then thewhole system (typically) reaches
thermodynamic equilibrium, a problemwhich is nowadayswell understood [25–32]. Alternatively, one can
consider a nonequilibrium situation [33–55] inwhich several reservoirswith differentμ andT are in contactwith
the central region. Since the reservoirs are infinite, they act as dissipators and the system inmost cases reaches a
nonequilibrium steady state inwhich a particle and/orheat currentflows across the central region2.

There are several approaches to treat such systems numerically [35–51]. Some of them start out from the
situation inwhich the central region and the reservoirs are decoupled, which allows the individual systems to be
treated exactly [56–61]. There are different schemes to include themissing coupling between the reservoirs and
the central region. First of all, one could carry out a perturbative expansion in terms of the reservoir–central
region coupling [56–59]. Low-energy properties are better addressedwithin a renormalization-group treatment
of the perturbation (see, e.g. [62]). Alternatively, one can try and compute the self-energy (most nonequilibrium
quantities of interest follow fromDyson’s equation) for the correlated sites based onfinite clusters consisting of
the central region plus a small numberNr of reservoir sites. This is done in nonequilibrium cluster perturbation
theory [56, 61], whose accuracy increases with increasingNr. A generalization of this idea is the nonequilibrium
variational cluster approach, [57–60], where single-particle parameters of themodel are optimized self-
consistently, which allows for the adjustment of the self-energy to the nonequilibrium situation.

1.1.Markovian approximations andbeyond
In a different class of approaches, one tries to ‘eliminate’ the degrees of freedomof the reservoir and take into
account its effects on the dynamics of the interacting central region [63–67]. Oneway to do this is by treating the
coupling to the reservoir within a Lindblad equation [63–65]. In this way, the effect of the reservoir is to
introduce nonunitary dynamics in the time dependence of the reduced density operator rf of the central region
leading to the Lindblad equation, which is a linear, time-local equation for rf preserving its hermiticity, trace,
and positivity. One important precondition for the validity of thismapping, however, is theMarkovian
assumption that the decay of correlations in the reservoir ismuch faster than typical time scales of the central
region. As pointed out, e.g. in [63, 66], the approximations leading to theMarkovian Lindbladmaster equation
are justified provided the typical energy scaleΩ of the reservoir ismuch larger than the reservoir–central region
coupling.However, for a fermionic system,Ω can be estimated as m e-( (∣ ∣ ))W Tmin , max , , whereW is the
reservoir’s bandwidth, and e is a typical single-particle energy of the central region. Therefore, even in thewide-
band limit  ¥W , the validity of theMarkov approximation is limited either to high temperatures or to
chemical potentials far away from the characteristic energies of the central region. As amatter of fact, the effect of
a noninteracting reservoir with m  ¥∣ ∣W , (or  ¥T withfinite m T ) can be exactly written in terms of a
Lindblad equation. This can be easily deduced from the ‘singular coupling’ derivation of the Lindblad equation
[63]. This is valid independently of the strength of the coupling between central region and reservoir. A
nontrivial situation is obtained by introducing different reservoirs with different particle densities. The pleasant
aspect of this limit is that the Lindblad parameters depend on the properties of the reservoir and of its coupling
with the central region only, but not on the ones of the central region.

This is in contrast to themore standardweak-coupling Born–Markov version inwhich the Lindblad
couplings (see, e.g. [63–65])depend on the central region’s properties. To illustrate this, consider a central
region consisting of a single site with energy ef , i.e. withHamiltonian

e= ( )†H f f 1f f

(omitting spin) and reduced densitymatrix rf . The part of the Lindblad operator b describing the coupling to a
noninteracting reservoir is given by

 r r r r r= G - + G -( { }) ( { }) ( )† † † †f f f f f f ff2 , 2 , 2b f f f f f1 2

with

e eG = G - G = G( ( )) ( ) ( )f f1 . 3f f1 F 2 F

Here,Γ is proportional to the reservoir’s density of states at the energy ef , and fF is the Fermi functionwhich
obviously contains the information on the chemical potential and temperature of the reservoir but also on the
onsite energy ef in the central region. This could be unsatisfactory since onewould like to describe the effect of
the reservoir in a formwhich is independent of the properties of the central region, especially when the latter
consists ofmany coupled sites.

One possible way to eliminate the dependence of the Lindblad couplings on the parameters of the central
region is to use an intermediate auxiliary buffer zone (mesoreservoir) between the Lindblad couplings and the

2
Anotable exception is when a bound state is present, i.e. a state with energy outside of the continuumof the reservoir. In this case, there is

no unique steady state.
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central region (see, e.g. [68–71]). The buffer zone consists of isolated discrete sites (levels), each one coupled to a
Markovian environment described by Lindblad operators with the sameT andμ as given in equations (2) and
(3). If the buffer zone is sufficiently large, i.e. if its levels are dense enough, then one can show that the buffer zone
including Lindblad operators yields an accurate representation of the reservoir, which becomes exact in the limit
of an infinite number of levels. Importantly, the parameters of this buffer zone do not depend on the central
region’s properties. The disadvantage of this approach is, however, that one needs a quite large number of buffer
levels, especially at low temperatures where the Fermi function is sharp. Consequently, themany-bodyHilbert
space becomes very large, resulting in a challenging problem for the treatment of the correlated situation.

A very effective technique to solve low-dimensional correlated systems arematrix product states (MPS), and
great progress has beenmade in recent years to applyMPS techniques to interacting Lindblad equations [72–85].
With this, rather large systems are within reach even though the numerical effort forHubbard-type problems is
rather high due to an extensive entanglement growthwith system size [77, 85].

1.2. This work
In this paper, rather than focusing on solution techniques for the interacting Lindblad equation,we investigate
different strategies for themappingof a general physical (‘ph’) reservoir onto an auxiliary (‘aux’)one, consistingof a
small numberNB of noninteracting fermionic sites (auxiliary levels) and arbitrary Lindblad terms.This is important
since the accuracyof the buffer-zone idea discussed above canbe significantly improvedby allowing formore general
Lindblad couplings,which are determined throughanoptimizationprocedure. In thisway, the associated interacting
impurity solver becomes exponentially accuratewith increasingNB.Moreover, if the appropriate geometry is chosen
(figure 1), already amodest value ofNBproduces an accurate representationof thephysical reservoir. An interesting
aspect is that, as in the buffer-zone approach, the combinationof intermediate bath levels and couplings to
Markovian environments via Lindblad terms allowsone todescribe anon-Markovianbath seenon the impurity site.

We have used these ideas in previousworks [85–88] to address nonequilibrium impurity physics in the
Kondo regime, withmanybody solution techniques based on exact diagonalization (ED) andMPS. Especially in
the latter case, we achieved very accurate results for the splitting of theKondo peakwith applied bias.
Furthermore, in the equilibrium limit, we found a close agreementwith numerical renormalization group
(NRG) temperatures well belowTK. The sizes of the auxiliary systemswere rather small,NB= 16 forMPS and
NB= 6 for EDonly,3 which demonstrates the significant improvement provided by using a Lindblad coupling in
the appropriate geometry.

Figure 1. Sketch of thefive geometries (setups) for the auxiliary system equation (15). An explicit formof the correspondingmatrices
forNB=4 is given in appendix B. The impurity is represented by a red circle while the bath sites are filled green ones. The hoppings
described by thematrix E are represented by thick black lines. The couplings to theMarkovian environments given by G( )1 2 are
expressed by gray lines connected to empty (G( )1 ) or full (G( )2 ) reservoirs. On-site terms in the G( )1 2 matrices are illustrated as a
double gray line. The setup ‘full’ represents themost general casewith dense G( )1 and G( )2 matrices, which couple each bath site with
every other one via the G( )

i j,
1 2 . For simplicity, we don’t depict all terms for this ‘full’ case. For the other (sparse) cases all couplings are

drawn, and n.n. denotes nearest neighbor terms in G( )1 2 .

3
Consider that within themany-body Lindblad equation, we have to deal with the space of densitymatrices not of state vectors, so that the

Hilbert space size is that of an +( )N2 1B sitesHubbardHamiltonian.
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Here, wewant to elaborate inmuchmore detail the advantages of considering long-ranged Lindblad
couplings in combinationwith the optimization strategy. In particular, we investigate five different geometries
for the auxiliary Lindblad system, see figure 1.These setups, described in detail in section 2.6, feature different
connections between theMarkovian bath and the auxiliary levels. The important point is that the accuracy of
our approach forfixedNB crucially depends on the choice of the appropriate geometry. A systematic analysis of
the performance of these geometries is, therefore, themain content of this paper. Besides determining the
scaling of the accuracy as a function of the number of bath sitesNB, we discuss the importance of the different
couplings and relate our results to the commonly used buffer-zone idea.With the applicability ofmanybody
solution techniques inmind, we consider also the case of sparse geometries which arewell-suited forMPS. Even
with this limitationwefind drastic differences between the different geometries. This highlights the huge
potential for improvement and furthermore yields important insights into the underlyingmechanisms. For ED
approaches, any of the discussed geometries can be applied and one is generally interested infinding the best
possiblemapping for afixed and low value ofNB. In this case the geometrywith long-ranged and complex
Lindblad terms outperforms the other choices, as shown below.

Finally, we also discuss results for the interacting spectral function of the Anderson impuritymodel in and
out of equilibrium, obtainedwith the different geometries. In particular, we showhere for thefirst time to our
knowledge that allowing for complex Lindblad couplings produces a drastic improvement in the description of
theKondo resonance.

This paper is organized as follows: in section 2.1, we introduce themodels under study and define the basic
notation. In section 2.2, we illustrate themost important aspect of this work, namely themapping of the physical
Hamiltonian problemonto an auxiliary open quantum systemdescribed by a Lindblad equation. In section 2.3,
we present the expressions for the non-interactingGreen’s function of the auxiliary system, and in section 2.4we
illustrate thefit procedure. In section 2.5, we briefly discuss the relationwith the interacting case. In section 3, we
present in detail the convergence of the fit as a function ofNB for the different geometries presented in
section 2.6 and for different temperatures, as well as a discussion on the advantages and disadvantages of these
setups. As an example, we present results for the spectral function of theAnderson impuritymodel. Finally, in
section 4we summarize our results and discuss possible improvements and open issues. In three appendices we
present technical details of theminimization procedure (appendix A), show the explicit formof thematrices for
the different geometries (appendix B), and discuss certain redundancies of the auxiliary system (appendix C).

2.Model andmethod

2.1.Model
Webeginwith a general discussion, whichwe eventually apply to the single-site Anderson impuritymodel. In
the general case the central regionmay represent a small cluster ormolecule. TheHamiltonian of the physical
system at study is written as

å= + +
a

a a( ) ( )H H H H 4f f

where Hf is theHamiltonian of the central region describing a small cluster of interacting fermions,Hα is the
Hamiltonian of the reservoir a describing an infinite lattice of noninteracting particles, and aH f is the coupling
between central region and reservoirs.

= + ( )H H H 5f f U0

consists of a noninteracting part

å= ( )†H h f f 6f
ij

ij i j0

and an interaction termHU. The fermions in the reservoirs can be described by

åe=a a a a
¢

¢ ¢ ( )†H d d 7
p p

p p p p
,

,

in usual notation. For simplicity, spin indices are not explicitlymentioned here. Quite generally, a suitable single
particle basis can be chosen such that e d~a ¢ ¢p p p p, , . In the context of impurity problems, such a basis is often
referred to as ‘star representation’, see alsofigure 1. aH f is taken to be quadratic in the fermion operators:

å= +a a a ( )†H v d f h c. ., 8f
p i

pi p i
,

and di ( fi) are the fermionic destruction operators on the reservoir’s (central region’s) sites i.

4
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Weare interested in a steady-state situation, although the present approach can be easily extended to include
time dependence, especially if this comes froma change of the central region’s parameters only. In the steady
state, theGreen’s functions depend only on the time difference andwe can Fourier transform so that theGreen’s
functions depend on a real frequencyω only, which here is kept implicit.We assume that initially the
hybridization aH f is zero and the reservoirs are separately in equilibriumwith chemical potentials ma and
temperatures aT . Then the aH f are switched on and after a certain time a steady state is reached.We use the non-
equilibrium (Keldysh) formalism [89–94]whereby theGreen’s function can be represented as a 2×2 block
matrix

=
⎛
⎝⎜

⎞
⎠⎟ ( )G G G

G0
, 9

R K

A

where the retardedGR, advancedGA, andKeldyshGK components arematrices in the site indices (i, j) of the
central region.Wewill adopt this underline notation in order to denote this 2×2 structure.We use lowercase
g (

a
g ) to denoteGreen’s function of the decoupled central region (reservoir a), while uppercase G represent

the full noninteractingGreen’s function of the central region. For simplicity we omit the subscript 0, since in this
paperwe dealmainly with noninteractingGreen’s functions anyway.We use the subscript int for interacting
ones. G is easily obtained from theDyson equation as

= - D- -( ) ( )G g , 101 1

where

*åD =
a

a a a
¢

¢ ¢
( )v v g 11ij

p p
pi p j p p

, ,
,

is the reservoir hybridization function (commonly called bath hybridization function) in theKeldysh
representation. The retardedGreen’s functions ag R for reservoirs with non-interacting fermions in equilibrium

can be determined easily by standard tools, and theKeldysh components ag K can be obtained from the retarded
ones by exploiting the fluctuation-dissipation theorem:

w w w w= -a a a a( ) ( ( ) ( ) ) ( ) ( )†g g g s , 12K R R

which is valid since the uncoupled reservoirs are in equilibrium.Here,

w w m= -a a a( ) ( ) ( )s f T1 2 , , 13F

and w ma a( )f T, ,F is the Fermi function at chemical potential ma and temperature aT .
Fromnowon, for simplicity of presentation, we restrict to the Anderson impuritymodel (SIAM) inwhich

the central region, described by equation (5), consists of a single site, i.e. there is only one value for the index i,
whichwe drop, and

= =s s s  ( )†H Un n n f f . 14U f f f

The ideawe are going to present in section 2.2 can be immediately extended to the case of a central region
consisting ofmany sites inwhich each site is connected to separate reservoirs. In themost direct fashion, this can
be donewith exactly the same approach as formulated here for the SIAMby justmapping each reservoir
independently onto auxiliary Lindblad bath sites. An interesting application is, for example, the case of an
interacting chain coupled on both sides to reservoirs with different chemical potentials [95]. Also, the extension
to the case of arbitrary (quadratic) couplingswith the reservoirs that intermix the central region sites relevant,
e.g., for cluster dynamicalmean-field theory, is conceptually straightforward althoughmore involved.

2.2.Mapping onto an auxiliarymaster equation
A crucial point in the following considerations is the fact that, even in the interacting case, the influence of the
reservoirs upon the central region is completely determined by the bath hybridization function wD( ) only. In
otherwords, any interacting correlation function of the central region solely depends on the central region
Hamiltonian Hf and onD. This result is well known at least in equilibrium, and can be easily proven; for
example, diagrammatically (see footnote4). The argument holds independently onwhether oneworkswith
equilibriumor nonequilibriumGreen’s functions.Moreover, it crucially depends on the fact that the reservoir is
noninteracting.

4
Since there are no interactions in the reservoir, external indices of any bare interaction vertex belong to the central region only.Moreover,

an interacting correlation function of the central region consists, by definition, of diagramswhose external lines belong to the central region.
Consequently, all diagrams consist only of vertices (determined byHU) and of propagator lines whose endpoints belong to the central region
only, i.e. they correspond to noninteractingGreenʼs functions G of the central region equation (10). Therefore, all relevant diagrams only
depend onHU and the noninteracting = - D- -( )G g 1 1.

5
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This can be exploited to choose different representations for the reservoir. A convenient discretization in
equilibrium is to represent the reservoir by a finite number of bath sites, as commonly used in the context ofNRG
[25, 27] or exact-diagonalization-based dynamical-mean-field theory (ED-DMFT) [96–98]. Here, the desired
physical hybridization functionDph is approximated by an auxiliary oneDaux,

5 corresponding to a bathwith a
finite number of sites. In ED-DMFT, the parameters of theseNB bath sites are obtained through fitting the
hybridization function inMatsubara space. As can be readily shown, only N2 B bath parameters are of relevance
per spin degree of freedom, and it is common to choose a ‘star’ or ‘chain’ representation.

Clearly, the samefit strategy is inconvenient out of equilibrium for several reasons. First of all, the auxiliary
system cannot dissipate since it isfinite, and a steady state cannot be reached. In [86, 99]wehave suggested an
auxiliarymaster equation approach (AMEA), which adopts an auxiliary reservoir consisting of a certain number
NB of bath sites which are additionally coupled toMarkovian environments described by a Lindblad equation

  r r r= = +( ) ( )
t

d

d
. 15H D

Here, theHamiltonian for the auxiliary system is given by (we reintroduce spin)

å= +
s

s s   ( )†H E c c Un n , 16
ij

ij i j f faux

and enters the unitary part of the Lindblad operator

 r r= - [ ] ( )i H , . 17H aux

The dissipator D describes the coupling of the auxiliary sites to theMarkovian environment and is given by

 å år r r r r= G - + G -
s

s s s s
s

s s s s⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠{ } { } ( )( ) † † ( ) † †c c c c c c c c2

1

2
, 2

1

2
, . 18D

ij
ij j i i j

ij
ij i j j i

1 2

in terms ofmatrices G( )1 2 withmatrix elements G( )
ij
1 2 to be determined by an optimization procedure, as

discussed below. The indices i j, in equations (17) and (18) run over the impurity i=f (we identify =s sc ff ) and
over theNB bath sites

6. Similar to the case of the ED-DMFT impurity solver previouslymentioned, the idea is to
optimize the parameters of the auxiliary reservoir in order to achieve a bestfit to the physical bath hybridization
function equation (11), i.e., for a givenNB, wD ( )aux should be as close as possible to wD ( )ph :

w wD » D( ) ( ) ( ). 19aux ph

As for the ED-DMFT case, one can choose a single-particle basis for the auxiliary bath such that thematrix E is
sparse,7, i.e. it has a ‘star’ or a ‘chain’ form and is real valued.However, there is no reasonwhy thematrices G( )1

and G( )2 should be sparse and real in the same basis as well, and, in fact, as discussed below, for an ED treatment
of the Lindblad problem it is convenient to allow for a general form in order to optimize the fit. This larger
number of parameters allows one to fulfill equation (19) to a very good approximation. The introduction of
dissipators equation (18) additionally allows us to carry out thefit directly for realω (see section 2.4) since

wD ( )aux is a continuous function. Thismakes this approach competitive with ED-DMFT for the equilibrium
case aswell.

Notice that equation (18) is not themost general formof the dissipator, and one could think of including
Lindblad terms that contain four ormore fermionic operators or also anomalous and spin-flip terms. This
would increase the number of parameters available for the fit. However, the latter would violate conserved
quantities and the formerwould describe an interacting bath, so that the argument of section 2.2 (see footnote 3)
does not apply. As amatter of fact, the exact equivalence to a noninteracting bath (see footnote 6) only holds for a
quadratic formof the Lindblad operator as in equation (18).

Once the optimal values of thematrices E , G( )1 and G( )2 for a given physicalmodel are determined for the
non-interacting system, one could solve for the dynamics of the correlated auxiliary systemdefined by
equation (15), which amounts to a linear equation for the reducedmany-body densitymatrix. If the number of
sites of this system is small, one can solve exactly for the steady state and the dynamics of this interacting system
bymethods such as Lanczos exact diagonalization ormatrix product states (MPS) [81–83, 85].

5
We shall use suffixes ph and aux to distinguish between the physical bath hybridization function equation (11) and the ones produced by the

auxiliary reservoir .Whenever necessary to avoid ambiguities, these suffixes will be used also for other quantities.
6
It can be easily shown that the dissipative form (equation (18)) exactly corresponds to the coupling of the auxiliary baths to a small number

of noninteracting reservoirs with constant density of states and infinite chemical potentials and/or temperatures. This can be easily deduced
from the ‘singular coupling’ derivation of the Lindblad equation [63], see also [115].
7
Weuse boldface to denotematrices in the indices i j, of the auxiliary system. This should not be confusedwith ... , which denotesmatrices

inKeldysh space.
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2.3. Computation of the auxiliary bath hybridization function
In order to carry out thefit equation (19), we need to compute the auxiliary reservoir hybridization function

wD ( )aux formany values of the bath and Lindblad parameters. This can be done in an efficientmanner since only
noninteractingGreen’s functions are needed, see also equation (10) and the preceding discussion. Computing
the single-particle Green’s functionmatrix Z, obtained from the steady-state solution of equation (15), amounts
to solving a noninteracting fermion problem,which scales polynomially with respect to the single-particle
Hilbert space . Amethod to deal with quadratic fermionswith linear dissipation based on a so-called ‘third
quantization’has been introduced in [100].We adopt the approach of [69] inwhich the authors recast an open
quantumproblem like equation (15) into a standard operator problem in an augmented fermion Fock space
with twice asmany sites andwith a non-HermitianHamiltonian [69, 101, 102]. This so-called super-fermionic
representation is convenient for our purposes, not only to solve for the noninteractingGreen’s functions but
also to treat themany-body problem in an analogous framework toHermitian problems. An analytic expression
for the noninteracting steady-state retarded andKeldysh auxiliary Green’s functionswas derived in [86]. An
alternative derivation, which does not rely on super-fermions, is given in [71]. For the retarded component, we
get (see footnote 7)

w w G G= - + + -( ) ( ( )) ( )( ) ( )E iZ , 20R 2 1 1

and theKeldysh component of the inverse Green’s function reads

G G= - --( ) ( ) ( )( ) ( )iZ 2 , 211 K 2 1

yielding theKeldyshGreen’s function

G G
=-

= -

-( )
( ) ( )( ) ( )i

Z Z Z Z

Z Z2 . 22

K R 1 K A

R 2 1 A

The ff component of Z is the auxiliary impurity Green’s function

= ( ) ( )G Z . 23ffaux

From this, one can determine the retarded component of wD ( )aux

wD = -( ) ( )g G1 1 . 24aux
R R

aux
R

For theKeldysh component, one has to carry out two inversions of Keldyshmatrices (see, e.g. [92]), yielding

wD = - =-( ) ( ) ∣ ∣ ( )G G G1 , 25aux
K

aux
1 K

aux
R 2

aux
K

where the contribution from gK is infinitesimal.

2.4. Fit procedure
From the preceding equations, we can efficiently compute wD ( )aux for a given set of parameters of the auxiliary
reservoir. The numerical effort for a single evaluation is low and scales only atmost as( )NB

3 .We introduce a
vector of parameters x which yields a unique set ofmatrices E , G( )1 and G( )2 within a chosen subset (see, e.g.
figure 1 and appendix B) and quantify the deviation from equation (19) through a cost function
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2 ph aux

ph aux
R,K

ph aux
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c

c

andminimize c ( )x with respect to x. The normalization c0 is hereby chosen such that c =( )x 1when
wD º( ) 0aux . It is important to note that both the retarded and theKeldysh componentmust befitted. Due to

Kramers–Kronig relations, the real part of wD ( )ph
R is fully determined by its imaginary part, provided the

asymptotic behavior isfixed. Therefore, we can restrict tofit its imaginary part, while wD ( )ph
K is purely

imaginary. Furthermore, in equation (26)we introduced a cut-off frequency wc and aweighting function w( )W .
In this work, we take w =( )W 1and w = D1.5c , withD the half-bandwidth of wD ( )ph . Different forms of

w( )W can be used, for instance in order to increase the accuracy of thefit near the chemical potentials. In
general, other definitions for equation (26) are possible such as a piecewise definitionwith varying interval
lengths. By this, onemay combine the present approachwithNRG ideas such as the logarithmic discretization,
andwork along these lines is in progress (see also [71]). On thewhole, theminimization of equation (26)
constitutes amulti-dimensional optimization problem and appropriate numericalmethods for it are discussed
in appendix A.

As asymptotic limit, we require here wD ( ) 0aux for w  ¥, which is obtainedwhen setting
G =( ) 0ff

1 2 . Semipositivity further requires G = G =( ) ( ) 0if fi
1 2 1 2 . For simplicity, we restrict here to the particle-

hole symmetric case. This reduces the number of free parameters in E , G( )1 and G( )2 . For the case inwhich the
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impurity site f is located in the center and that one has an even number of bath sitesNB, particle-hole symmetry
in the auxiliary system is obtainedwhen

= -

G = - G

+ +
+ - + -

+
+ - + -

( )
( ) ( )( ) ( )

E E1 ,

1 , 27

ij
i j

N j N i

ij
i j

N j N i

1
2 , 2

1
2 , 2

2

B B

B B

for Î ¼ +{ }i j N, 1, , 1B .More details for the particular formof E , G( )1 , and G( )2 are given in appendix B.

2.5. Interacting case
Wenowbriefly discuss here some relevant issues in connectionwith the evaluation of particular observables of
the physical system from results of the auxiliary system.More details can be found in [85, 86].

As already discussed, bymapping onto an auxiliary interacting open quantum systemof finite size described
by the Lindblad equation (equation (15)), we obtain amanybody problemwhich can be solved exactly or at least
with high numerical precision, providedNB is not too large. In [86], we presented a solution strategy based on
exact diagonalization (ED)withKrylov spacemethods, and in [85] one based onMPS. In the end, both
techniques allow us to determine the interacting impurity Green’s function w( )Gaux,int of the auxiliary system.
As discussed previously, in the limit w wD  D( ) ( )aux ph (i.e. for largeNB) this becomes equivalent to the
physical one w( )Gph,int . However, this equivalence only holds for impurity correlation functions, and, for
example, it does not apply for the currentflowing froma left (a = l) to a right (a = r) reservoir across the
impurity. Therefore, the current evaluatedwithin the auxiliary Lindblad systemdoes not necessarily correspond
to the physical current even for large NB,

8 unless one fits the bath hybridization functions wD a ( )ph, for the left
and right reservoirs separately. Such a separate fit, however, is not necessary andwould simplyworsen the overall
accuracy for a givenNB.Once the approximate w w»( ) ( )G Gph,int aux,int is known, the current of the physical
system can be evaluated bymeans of thewell-knownMeir–Wingreen expression [92, 103, 104], albeit by using
the Fermi functions and density of states (hybridization functions) of the two physical reservoirs separately.
Therefore, the knowledge of w( )Gaux,int enables one to computemost quantities of interest.

An additional step consists in extracting just the self-energy from the solution of the auxiliary impurity
system

w w wS = -- -( ) ( ) ( )G G .aux aux
1

aux,int
1

and inserting it into theDyson equation for the physical systemwith the exact physical noninteractingGreen’s
function

w w w» - S- -( ) ( ( ) ( )) ( )G G . 28ph,int ph
1

aux
1

Clearly, this step is only useful when the relation equation (19) is approximate, since for w wD  D( ) ( )aux ph

also the noninteractingGreen’s functions w( )Gph and w( )Gaux would coincide, i.e. in the hypothetical
 ¥NB case, and one could just set w w( ) ( )G Gph,int aux,int . ForfiniteNB, this substitution has the advantage

that in equation (28) the noninteracting part w( )Gph is exact, and the approximation equation (19) only affects
the self energy.

2.6.Different geometries for the auxiliary system
With the goal inmind of providing the best approximation to the full interacting impurity problemdescribed by
theHamiltonian equation (4), wewould like to approximate wD ( )ph by wD ( )aux as accurately as possible for a
given number of bath sitesNB. In principle, one has the freedom to choose different geometries for the auxiliary
system, and a generic set offive different setups is depicted infigure 1. (An explicit formof the corresponding
matrices forNB= 4 is given in appendix B.) For largeNB all geometries converge to the exact solution

w wD  D( ) ( )aux ph , and the question is how fast. In section 3, wewant to elaborate on this point in detail and
present results obtainedwith those geometries, whichwe briefly discuss andmotivate here.

In all cases one can restrict the geometries to a sparse (e.g. tridiagonal) and real-valuedmatrix E . As is
commonly true for impurity problems, the physics on the impurity site is invariant under unitary
transformations among bath sites only. For an arbitrary unitary transformationU with d= =U Uif fi if to new

fermionic operators, one obtains an analogous auxiliary systemwithmodified bath parameters ¢ = †E U EU ,

G G=
¢( ) † ( )U U1 1 and G G=

¢( ) † ( )U U2 2 . It is easy to check that the ff-component of theGreen’s functions
equations (20) and (22) is not affected by this transformation. Therefore, we choosewithout loss of generality E
to be sparse as well as real, and for G( )1 2 in themost general case densematrices with( )NB

2 parameters. The

8
This situation is particularly interesting in equilibrium:with large enoughNB and an appropriate choice of the parameters of the

nonequilibriumLindblad system, one can still produce an auxiliary wD ( )aux so that the fluctuation dissipation theorem equation (12) is
fulfilled to high precision at the impurity, representing an equilibriumphysical wD ( )ph .While afinite currentmay flow in the auxiliary
system, the equilibriumproperties at the impurity are correctly reproduced.

8
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particular formof E is irrelevant, i.e. whether it is diagonal for bath sites (star) or tridiagonal (chain), as long as
the G( )1 2 matrices are transformed accordingly.

Such a general geometry with sparse E and dense G( )1 2 is referred to as ‘full’ setup in the following.Here, we
will further distinguish between the case inwhich the G( )1 2 are real or they have complex elements (‘full
complex’). In addition, we consider the four sparse cases ‘2 chains n.n.’, ‘2 chains onsite’, ‘star’, and ‘1 chain n.
n.’, inwhich also the G( )1 2 are sparse. Themeaning of these abbreviations is given infigure 1, see also
appendix B. These sparse geometries are, however, not linked to each other by unitary transformations and
represent nonequivalent subsets of the ‘full’ setup.Which one of these is advantageous in practice is not obvious
a priori, and is discussed in the next section9.

The ‘full’ geometry comprises all other ones and thus, obviously, gives the best possiblefit for a givenNB. In
addition, one can allow for the off-diagonalmatrix elements of the G( )1 2 to be complex, thus extending the set
offit parameters. Nevertheless, the sparse setupsmay be of great value for sophisticatedmanybody solution
strategies for the interacting Lindblad equation, such asMPS.Wemade use of the ‘full’ setup (with real
parameters) in the ED treatment [86], which is applicable to dense G( )1 and G( )2 matrices and could consider up
toNB= 6. Larger systems are prohibitive due to the exponentially increasingHilbert space (see footnote [2]). On
the other hand, withinMPS, we can currently consider up toNB= 20 bath sites. However, in favor of the
applicability ofMPSmethods, one should avoid long-ranged hoppings andwe thus employed the ‘2 chains n.n.’
geometry. As becomes evident also from the results below, the gain inNB hereby outweighs the restriction of the
fit setup, so that theMPS approach is clearlymore accurate. Also, the other sparse setups investigated below are
possible candidates forMPS, see also [105]. Besides this, approaches such as the previouslymentioned buffer
zone scheme and variations of it [68–70], which are often applied concepts in Lindblad-type representation of
noninteracting environments, are related to the ‘star’ geometry; see also our later discussion.

3. Results

As just discussed, while the ‘full’ geometry is themost efficient one, for the purpose of employing efficient
manybody eigenvalue solvers such asMPS, it is of great relevance to consider setupswhich feature only sparse E ,
G( )1 , and G( )2 matrices. Furthermore, it is also of general interest to investigate the importance of long-range
terms in the G( )1 2 matrices andwhy they are crucial to improving the fit. These are the questions that are
addressed in this section.Moreover, wewill analyze the rate of convergence as a function ofNB for the different
setups shown infigure 1, and for different temperatures of the physical system. The detailed knowledge of the
convergence properties is important in order to be able to estimatewhether or not certain systems can be
accurately treated.

We consider a ‘physical’ SIAMconsisting of an impurity site coupled to two reservoirs (leads) at different
chemical potentials, corresponding to a bias voltagef across the impurity, andwith aflat density of states as
plotted infigures (2–4). Typical results for a givenf and temperatureT are shown infigures (2–4). For the
different setups, the quality of the fit ismeasured by theminimumof the cost function equation (26). As
discussed previously, the ‘full’ setups give the best results. Already for a rather small number of bath sites

N 4B , a good agreement betweenDaux andDph is achieved, and the convergence is exponential as a function
ofNB. Allowing for complexmatrix elements produces a drastic improvement. The accuracy obtainedwith
NB= 8 for the real case is essentially achieved alreadywithNB= 6 in the complex case (see alsofigure 5). In
particular,figure 8 shows that this improvement produces amuch better description of theKondo resonance.
This is crucial, sinceNB= 6 is themaximum size that we can currently address byKrylov-spacemethods. Here,
an excellent agreement is evident withminor differences in theKeldysh component. In the retarded component,
the largest differences occur at the positions of the jumps in theKeldysh component, i.e. at the chemical
potentials. This is a consequence of the simultaneous fit of the retarded andKeldysh components in
equation (26), which produces oscillations in the retarded one. These oscillations are strongly reduced in the
complex case. By increasing the number of bath sites, the amplitude and the extension of these oscillations in the
retarded component decay rapidly.

We now consider the sparse geometries. In contrast to the ‘full’ setups, no improvement is obtained by
allowing thematrix elements to be complex in this case. Among the sparse geometries, the oneswith two chains
are themost accurate. Both setups performquite well. Again, a good agreement for smallNB is obtained and a
quick improvement shows upwith increasingNB. ‘2 chains n.n.’has off-diagonal G( )1 2 terms in contrast to ‘2
chains onsite’, which leads to a faster convergence as seen, e.g., forNB= 12. The ‘star’ andmost notably the ‘1
chain n.n.’ geometry are clearly worse. Both exhibit a rather poor convergence as a function ofNB. For the ‘star’
setup, this is due to the fact that the fitted auxiliary hybridization function consists of a sumof Lorentzian peaks.

9
The number ( )C NB of fit parameters for each geometry for the particle-hole symmetric case, whichwe consider here, is presented in

appendix B.
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These enter in theKeldysh component with either positive or negative weights and can thus cancel each other.
However, the rather broad Lorentzians with long w1 2 tailsmake it apparently difficult to resolve the Fermi
edges properly. The problemwith slow convergence ismost severe for the ‘1 chain n.n.’ geometry. Here, the
single chain is clearly inadequate to represent at the same time the desired density of states and the sudden
changes in the occupation number, see also the subsequent discussion.While theKeldysh component is roughly
reproduced, this comes at the price of large oscillations in the retarded component. In addition, the
improvements with increasingNB areminor and the results forNB= 4 andNB= 12 are very close to each other.

The behavior just discussed is evenmore visible in the convergence study presented infigures 5 and 6. In
figure 5, theminimal values of the cost functionχ, equation (26), for various values ofNB and the different
setups are shown. Four different temperatures, each of themwith f = 0 and f = G3 , are considered. As
expected, the ‘full complex’ setup gives the lowest values ofχ in all cases, and,moreover, the fastest rate of
convergence as a function ofNB. The ‘full’ setupwithout complex terms also performs quite well. The sparse
geometries ‘2 chains n.n.’ and ‘2 chains onsite’ performnot aswell, although still achieving a rather high rate of

Figure 2. Fit to the bath hybridization functions for the ‘full’ setups (real and complex) (seefigure 1). The physical wD ( )ph (black
lines) describes a reservoir with aflat density of states with hybridization strengthΓ and a half bandwidth of = GD 10 which is
smeared at the edges. An applied bias voltage f = G3 shifts the chemical potentials of the two reservoirs (leads) anti-symmetrically
and a temperature of = GT 0.1 is considered here.

Figure 3. Same asfigure 2 for the ‘two-chains n.n.’ and ‘two-chains onsite’ setups.
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convergence. Inmost cases studied here, the off-diagonal G( )1 2 terms in ‘2 chains n.n.’ result in a significant
improvement compared to ‘2 chains onsite’, which is the reasonwhywe favored the former in ourMPS
manybody calculations performed in [85]. In thatwork, we found that an accuracy of at least c » -10 2 was
necessary in order to properly account for Kondo physics. This could be reached already for »N 12B .

We nowdiscuss the ‘star’ setup.One should note that in standard buffer zone approaches [68–70], an
equidistant energy spacing D » D N2i B with equal onsite G( )1 2 terms is often assumed for the bath sites.
Clearly, such a discretization approach cannot converge exponentially and it is only first-order accurate in the
spacing D i. On the other hand, in our scheme, we optimize all parameters within afitting procedure, so the
value of the cost function presented here for the ‘star’ setup can be seen as a lower bound for an improved buffer
zone approach. Despite the exponential convergence of the ‘star’ geometry, it becomes apparent fromfigure 5
that a very slow rate of convergence is achieved. To reach an accuracy c » -10 2 for the case = GT 0.05 and

Figure 4. Same asfigure 2 for the ‘star’ and ‘1-chain n.n.’ setups.

Figure 5.Minimal values of the cost functionχ, equation (26), as a function of the numberNB of bath sites for the setups sketched in
figure 1 (including ‘full complex’) for four temperatures = G G G G{ }T 0.05 , 0.1 , 0.2 , 0.4 and two bias voltages f = 0 and
f = G3 .Markers represent the raw data and dotted lines are obtained from thefits offigure 6.
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f = 0 for instance,much larger auxiliary systemswith »N 40B would be needed. For theMPS-solver used in
[85], such large auxiliary systems are out of reach.

Let us now turn to the results for the ‘1 chain n.n.’ setup infigure 5.Despite the poor performance and the
strongly limited practical use, the observed behavior is interesting from a fundamental point of view. As becomes
evident from the results, a single chainwith local dissipators is a particularly bad choice to represent a partially
filled bath. The convergence is very slow and an extremely long chainwould be needed in order to achieve results
comparable to the other geometries. As just shown, a drastic improvement is obtainedwhen using two chains
instead. This would bemore or less intuitive for the nonequilibrium case inwhich the physical system also
consists of two baths. However, the advantage of the ‘2 chains’ geometry over the ‘1 chain’ case is evenmore
pronounced in the equilibrium case (see F = 0). Another important observation to better understand this is the
following: in [85], we found nearly identical accuracies when considering the ‘2 chains’ geometry as used here, or
afilled/empty restriction of it. In the latter case, one chain has the purpose of representing thefilled spectrum
and the other chain the empty spectrumof the physical hybridization function10, and not necessarily the two
physical reservoirs. This shows that a single chain of small size is verywell suited to reproduce a certain density of
states but not simultaneously a Fermi edge or other sharp changes in the occupation number. Furthermore, a ‘2
chains’filled/empty setup seems to be a rather natural representationwhere the resolution of sharp features in

wD ( )ph , which either correspond to band edges or sudden occupation changes at the Fermi edges, are resolved

by appropriateHermitian couplings E and corresponding broadenings/couplings stemming from G( )1 2 . In
this way, the filled and empty chain together canwell reproduce sharp features in wD ( )R

ph and wD ( )K
ph

11.
Additionally to the convergence as a function ofNB, we depict infigure 6 the cost function versus the number

of availablefit parameters ( )C NB . As can be seen, the trends in the semi-logarithmic plot are well described by
straight lines in all cases, which clearly shows the achieved exponential convergence with respect to ( )C NB . For
the sparse setups thismeans that c µ -[ ( )]Nexp B whereas, for the ‘full’ setups, even c µ -[ ( )]Nexp B

2 .
Due to this, the ‘full’ geometries convergemuch quicker, as observed in the results just given.With respect to the
number offit parameters, however, the ‘2 chains’ setups performbest. This justmeans that these setups contain
themost relevant subset of all possiblefit parameters.

Another important aspect is the dependence of the convergence rate r(T) on temperature. The estimated
rates r(T) for each setup are depicted infigure 7.Of course, the superior scaling of the ‘full’ and the ‘2 chains’
setups is also apparent in themagnitude of r(T). Furthermore, in all cases, one observes the trend that the higher

Figure 6. Same asfigure 5 but plotted versus the number of fit parameters ( )C NB . In order to resolve the scalingwith temperature
more reliably, we exclude the two data points with the smallestNB from each of the linearfits, which have not enough structures to
resolve low-energy scales. Dotted lines represent results of linearfits in these semi-logarithmic plots. The temperature dependence of
the convergence rates (as a function ofNB) obtained in this way are illustrated infigure 7.

10
The filled (empty) spectrum corresponds to the lesser (greater) hybridization functionD, and furthermore: D = D D { }Ii m2K R .

11
From this point of view, the additional improvement in the ‘full’ setups can be interpreted in such away that one achieves an optimal

linear combination offilled/empty states with the long-ranged couplings in G( )1 2 .
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the temperature the faster the convergence. This can be understood from the fact that, at highT, theKeldysh
component wD ( )ph

K is weaklyω-dependent so that less bath sites are necessary for a reliable fit. Eventually, in the
 ¥T andwide-band limit, theMarkov approximation even becomes exact. In the other extreme T 0

limit, discontinuous functions are present in wD ( )ph
K , produced by the abrupt Fermi edges. However, each of the

frequency-dependent functions in the effective set given by equations (20)–(25) is continuous. Therefore,
T 0 can only be reproduced in the limit  ¥NB . This explains the observed trend that, for a givenNB, the

high-temperature regime is generally better represented than the low-temperature one. Furthermore, a nonzero
f tends to result in larger values for the cost function, see alsofigure 5 12.

In conclusion, the present analysis clearly demonstrates the huge advantage of optimizing the bath
parameters of the auxiliary system, and furthermore, of choosing an appropriate geometrywhen considering
only a restricted subset of the ‘full’ setup.

3.1. Spectral function of the interacting SIAM
Wenowpresent and discuss results for the interacting spectral function of the SIAM,

w
p

w= -( ) ( ) ( )IA m G
1

29R
ph,int

(see equation (28)) in and out of equilibrium and in particular investigate the accuracy obtained by each of the
geometries offigure 1 for afixedNB.We also discuss the relationwith thefidelity in reproducing the physical
hybridization function, i.e. the fit just discussed. Infigures 8 and 9, we confront the results of the fit on the left
with the interacting spectral function on the right. Results forNB= 6 are presented for two values of the bias
voltage, f = 0 (equilibrium case) and f = G3 . In particular, we focus on the region around theKondo peak,
which gets split atfinitef, since this is themore sensitive to approximations.

Starting with the equilibrium case, we see that all but the twoworse geometries are able to resolve the
Hubbard side bands. Further improvements of thefit show that, the better an auxiliary system reproduces the
Fermi jump in theKeldysh and the plateau in the retarded hybridization function, the sharper is the
correspondingKondo resonance. Only the ‘2 chains n.n.’ setup seems to break this trend as, for f = 0, its peak
is clearly sharper than for the ‘full’ geometry although thefit is less accurate.However, this peculiarity can be
readily explained by looking at the corresponding fit and in particular at the oscillations in the retarded
component at low energies. Here, the ‘full’ geometry shows a substantial dipwhich in turn leads to a suppression

Figure 7.Estimated convergence rates obtained from the data in figure 5 plotted as a function of temperature. The rates for the sparse
setups are obtained by assuming c µ -[ ( ) ]r T Nexp B . For the ‘full’ setups, the exponent is quadratic inNB, and thereforewe plotted

the differential rate, defined as- c
N

d log

d B
evaluated atNB= 6.

12
Note that the difficulty of thefit, i.e. themagnitude ofχ, is determined by the degree of variations inDph and the length scale of these

variationswrt the half bandwidthD. The coupling strengthΓ of the leads enters only trivially. Therefore, f D andT/D determineχ.
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of theKondo peak. Away to improve this is to introduce aweight w( )W (cf equation (26)) to thefit that
emphasizes regions around the chemical potentials. One can also notice the drastic improvement in the
description of theKondo resonance obtained by allowing for complex values of the parameters G( )

ij
1 2 . The same

accuracy is expected to be obtained for the real ‘full’ case forNB= 8, but this is currently beyond the reach of a
Krylov-space solutionmethod.

Turning to the nonequilibrium case, wefirst note that the ‘star’ and ‘1 chain’ setup are not able to follow the
double Fermi step in theKeldysh hybridization function but rather produce a single jump at an elevated

Figure 8. Fits (left) and spectral function (right) in the equilibrium case (f = G0 ) for the lowest considered temperature = GT 0.05
andwithNB= 6. The value of theHubbard interaction is = GU 6 and, as a reference solution (black curve), we take results for
NB= 16 in the ‘2-chains n.n.’ geometry which deviate by atmost 1% (at the tip w = 0) from the numerically exactNRG85.
Geometries in the key are sorted fromworst (top) to bestfit (bottom).

Figure 9. Same asfigure 8 out of equilibrium (f = G3 ).
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temperature. Thus, assuming for themoment a flat retarded component, onewould expect only a single
temperature-broadened Kondo resonance. The fact that the spectral function instead shows a two-peak
structure is not a genuine effect but rather is connected to corresponding oscillations in the retarded component
of the hybridization function.Notice that the two-peak structures occur here at thewrong frequency. In fact, all
but the ‘full complex’ and ‘full’ setups fail to correctly reproduce the positions of the peaks, despite resolving the
double Fermi step, as oscillations in the retarded component interfere with the physical effect. In general, this
example shows that one has to be careful with interpretations of structures in the interacting spectral function
when thefit does not resolve important features and/or displays unphysical oscillations. On the other hand, if
deviations from the physical hybridization function are small, one can be confident that the results are correct.
Results suggest this to be the case alreadywith 6 bath sites for the ‘full’ setups and about 12 bath sites for the ‘2
chains’ geometries.

4. Summary and conclusions

In this work, we presented and developed a general scheme formapping nonequilibrium correlated quantum
impurity problemswith infinite non-Markovian fermionic reservoirs onto auxiliary finite open quantum
systems. The approach as outlined here can be used to study transport through interacting impurities, Hubbard
chains, or small clusters andmolecules. For simplicity and clarity we presented results for the single impurity
Andersonmodel (SIAM). The key aspect is to replace the infinite fermionic reservoirs of the original ‘physical’
problemby an ‘auxiliary’ one consisting of a combination of a small numberNB of bath levels plusMarkovian
terms. The auxiliary problem is described by an open quantum systemwhose dynamics are controlled by a
Lindblad equation. Being finite, itsmanybody problem can be solvedwith high accuracy by numerical
techniques. Despite the fact that the bath levels are directly coupled to aMarkovian environment, the dynamics
at the impurity site in the auxiliary system correctly describe the non-Markovian properties of the physical
reservoir.

It is important to note that the overall accuracy can be evaluated by the difference between the bath
hybridization functions of the physical and auxiliary system, i.e. the cost function equation (26).While this idea
is not new, the key point of ourwork is the formulation of an optimization procedure in order to determine the
parameters of the auxiliary bath levels. This allows us to achieve an exponential convergence of the accuracy of
themappingwith increasingNB. This exponential improvement is probably the reasonwhy a fewnumber of
bath sites, such that exact diagonalization can be employed, is sufficient to (at least partially) resolve the
exponentially small Kondo scale.

Themain scope of this paperwas to analyze themapping procedure itself in detail. One has a certain freedom
in the geometry of the auxiliary system.Here, we investigated an exemplary set of possible choices. Themost
general ‘full’ geometries achieve the bestmapping for a fixedNB value. In [86]we employed such a real-valued
‘full’ setupwithNB= 6 to analyze the splitting of theKondo resonance in nonequilibrium. In the present work,
we additionally investigated the performance of a complex-valued (‘full-complex’) geometry and found a drastic
improvement for the sameNB. For example, the Kondo resonance turns out to be twice as high and sharp than
for the real ‘full’ case and very close to the one obtained byNRG for G =U 6, see figure 8.

Depending on the requirements and on the algorithm applied to address themanybody problem, one could
prefer one setup or the other. For example, if one usesMPS-like approaches, a chain-like or,more generally, a
sparse setup is preferable. In this way, one can address interacting auxiliary systemswith largerNB and improve
the accuracy. If long-range hoppings are not a problem, like for Lanczos exact diagonalization, one should use
themost general ‘full complex’ geometry. Krylov-spacemethods are considerably less time-consuming than
MPS. Therefore, they could bemore convenient when applying the present AMEA approach in the context of
nonequilibriumDMFTwhere repeated solutions of the impurity problem are required for theDMFT self-
consistency. Finally, when combining the approachwithNRG, itmay be convenient to adopt ‘star-like’
geometries (see, e.g. [71]).

Concerning sparse setups, we compared the performance of the common ‘star’ geometry with a ‘1 chain’ and
two ‘2 chains’ setups. The results demonstrated clearly that the performance of these individual sparse setups
may differ by orders ofmagnitude. In particular, thewidely used ‘star’ geometry exhibits a very slow rate of
convergence with increasingNB, and a geometrywith ‘1 chain’ and local Lindblad drivings performedmuch
worse than the other cases. In contrast, setupswith ‘2 chains’ and local Lindblad drivings produced very good
results, with an accuracy orders ofmagnitude better than the other two sparse cases. Togetherwith the results
obtained in [85], we can conclude that a so-called filled/empty geometrywith ‘2 chains’ is essentially a natural
representation of a non-Markovian reservoir by auxiliary Lindblad levels. In this geometry, one chain has the
purpose of reproducing the filled spectrumof the original reservoir whereas the other chain reproduces the
empty spectrum. This is achieved in each chain separately by an optimal combination of hoppings between the
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bath levels and couplings to oneMarkovian environment, which is then either completely filled or empty. By this
separation it is possible to resolve sharp features in the original hybridization function in great detail, whichmay
correspond to sharp occupation changes at the Fermi jumps or band edges. A single chain coupled tofilled and
emptyMarkovian environments, on the contrary, cannot simultaneously represent a particular density of states
and a partiallyfilled spectrum appropriately, as is evident from the ‘1 chain’ setup.

Besides comparing different auxiliary setups, we also analyzed the general convergence properties in detail.
As justmentioned, we found an exponential convergence as a function ofNB in all cases, which can be accounted
to the optimization strategy for the bath parameters. Furthermore, we analyzed systematically the convergence
properties as a function of temperature both in equilibrium aswell as in nonequilibrium. This showed the
common trend that the high-temperature regime is better represented by the auxiliary system than the low-
temperature one, i.e. the rate of convergence of themapping increases with temperature. Therefore, to achieve a
given accuracy it ismore challenging to resolve low temperatures, which thus requires larger auxiliary systems.
The plain exponential convergence shown here yields a simple tool to extrapolate results for lowNB to higher
values, and by this to judge the feasibility of treating certain physical situations.

As a concrete application, we presented results for the spectral function of the interacting SIAM in and out of
equilibrium as producedwithin the different auxiliary setups, and analyzed its relation to a given fit.We found
that one has to be careful with interpretations when the fit does not resolve important features and shows sizable
oscillations. On the other hand, if deviations from the physical hybridization function are small, one can be
confident that the results are correct, which is usually the case alreadywith 6 bath sites for the ‘full’ setups and
about 12 bath sites for the ‘2 chains’ sparse geometries.We also showed that drastic improvements are obtained
by allowing for complex-valued parameters.

Besides the technical aspects, the current study contains relevant information to the general question of the
representability of non-Markovian fermionic reservoirs by open quantum systems, and in particular by
Lindblad-type equations.We expect that the insights gained in this workmay contribute also to other closely
relatedfields onMarkovian and non-Markovian quantummaster equations.
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AppendixA.Multi-dimensionalminimization

In this section, we provide detailed information for readers interested in an actual implementation.
Furthermore, a working code is available on request; to obtain it, simply contact us via e-mail.Much of the
information below is contained in standard textbooks and reviews.However, for completeness we outline here
the standard algorithm in detail and point out choices wemadewhich turned out to be convenient for the
specific problem.

As stated previously, a single evaluation of equations (20)–(25) is numerically cheap since it involves only one
matrix inversion andmatrix-vectormultiplications of size +( )N 1B . Thus, the increase in computation time
withNB is rathermoderate. However, themulti-dimensional optimization problem itself is demanding and it
strongly depends on the particular behavior of c ( )x when varying the set of parameters x. In theworst case
scenario, when c ( )x is a rough potential landscapewithmany localminima and short-scaled variations, one
could imagine that it becomes necessary to nearly explore thewhole parameter space.However, x is a
continuous vector and evenwhen assuming afixed number of discrete values for each component in x, one faces
a number of points in parameter space that grows exponentially with ( )xdim . In the other extreme, for the case
inwhich c ( )x is quadratic in x, it is well-known that a conjugate gradient scheme leads to the exactminimum
in ( )xdim iterations.What we found in practice, when performing theminimizationwithin AMEA [85, 86], is
that we have an intermediate situationwhich exhibits localminima but gradient-basedmethods still work fine,
especially for smaller values ofNB. In thefirst work on the ED-solver [86], we employed a quasi-Newton line
searchwithmany random starting points. This is particularly useful for <N 6B . However, the necessary
number of starting points increases rapidly withNB. Therefore, in the course of thework on theMPS-solver,
[85], we looked formore efficient solution strategies. In the end, we implemented a parallel tempering (PT)
approachwith feedback optimization, which is aMonte Carlo scheme that is able to overcome localminima.We
describe it inmore detail in the following section. In this way, theminimization problem for the ED-solver with
NB= 6 and for theMPS-solver with up toNB= 16 can be solved in reasonable time. This amounts tominimizing

16

New J. Phys. 19 (2017) 063005 ADorda et al



in a space of» -30 60 parameters in both geometries, depending onwhether or not one has particle-hole
symmetry.13

A.1.Markov chainMonteCarlo
The PT algorithm is outlined in detail in the following. For completeness, let us first briefly recap the basic ideas
of the underlyingMarkov chainMonte Carlo (MCMC), and of the related simulated annealing algorithm.

MCMC techniques were originally developed to evaluate thermodynamic properties of classical systems
which exhibit a very large phase spacewhere simple sampling strategies fail. For our purposes here, we are
interested inminimizing the cost function c ( )x as defined in equation (26)with respect to the parameter vector
x. For such high-dimensionalminimization problems, one can adaptMCMC schemes by viewing c ( )x as an
artificial energy and by introducing an artificial inverse temperatureβ. In the so-called simulated annealing, one
samples from the Boltzmann distribution c b= -( ) ( ( ) )x xp Z1 exp at a certainβ, and then successively cools
down the artificial temperature.Motivated by the behavior of true physical systems, one expects to end up in the
low-energy state when letting the system equilibrate andwhen cooling sufficiently slowly. Analogous to
thermodynamics, one can calculate the specific heat b c= áD ñ( )xCH

2 2 and by this locate regionswith large
changes, i.e. phase transitions, where a slow cooling is critical. However, in practice itmay be time consuming to
realize the equilibration and sufficiently slow cooling, and for tests within AMEAwe often ended up in local
minima. In order to obtain a robust algorithmwhich can also start fromprevious solutions as needed, for
instance, withinDMFT,we sought amethodwhich is able to efficiently overcome localminima and still
systematically target the low-energy states. For this, amulticanonical and PT algorithmwere tested and the latter
turned out to bemore convenient. In the following, we briefly outline the PT scheme usedwithinAMEA and
refer to [106–110] for a thorough introduction toMCMC, simulated annealing,multicanonical sampling,
and PT.

As just stated, in aMCMC scheme, one typically samples from the Boltzmann distribution
c b= -( ) ( ( ) )x xp Z1 exp at some chosen inverse temperatureβ. This is done through an iteratively created

chain of states { }xl , whereby one avoids the explicit calculation of the partition functionZ. An effective andwell-
known scheme for this is theMetropolis–Hastings algorithm [106, 107]. One starts outwith some state xl and
proposes a new configuration xk, whereby it has to be ensured that every state of the system can be reached in
order to achieve ergodicity. The proposed state xk is acceptedwith probability [106, 107]

14

= = c c b- -
⎧⎨⎩

⎫⎬⎭
( )
( )

{ } ( )( ( ) ( ))x

x
p

p

p
min 1, min 1, e . A.1x xl k k

l
pacc.
, k l

If the proposed configuration is accepted, then the next element +xl 1 in the chain is xk, otherwise xl again. From
equation (A.1) it is obvious that =p 1l k

pacc.
, when >( ) ( )x xp pk l , so that an importance of sampling towards

regionswhere ( )xp is large is achieved. One can show that the algorithm fulfills detailed balance and draws a set
of samples { }xl that follow the desired distribution ( )xp . However, stemming from the iterative construction,
correlations in the chain are present which require a careful analysis for the purpose of statistical physics
[106, 107]. For optimization problems, on the other hand, the situation ismuch simpler and one is just interested
in the element in { }xl whichminimizes c ( )x . Since a proposed stepwith c c<( ) ( )x xk l is always accepted, the
algorithm targetsminima; however, uphillmoves in configuration space are also allowedwith a probability
depending exponentially on the barrier height c c cD = -( ) ( )x xk l k l, andβ. Effectively, uphillmoves only
take placewhen c bD ( )1k l, . For small values ofβ, largemoves in configuration space with large cD k l, are
likely to be accepted, whereas for largeβ the distribution ( )xp is peaked atminima in c ( )x so that those regions
are especially sampled. For the latter case, configurations in the chain { }xl are generallymore correlated and
once a xl corresponds to a localminimum, the algorithmmay stay there for a very long time.

One has great freedom in defining a proposal distribution fromwhich the new state xk is drawn given the
current configuration xl

15. Common choices are, for instance, aGaussian or a Lorentzian distributionwith the
vector difference -x xk l as argument.We favored the former and updated each component iwith a probability
according to [106]

13
In order to perform themapping for even larger systems efficiently, itmay be of interest to combine the PT approachwith, for instance,

gradient-basedmethods.
14

In principle, one has to take the proposal probabilities qk l, and ql k, into account. However, sincewe only consider the case =q qk l l k, , here,
the terms drop out of the equations and are neglected everywhere.
15

Note that, forminimization purposes only, one has in general flexibility in designing the algorithm and the Boltzmann distribution or
detailed balance are not compulsory.
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x xk l i
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2

2 2

Hereby, a different step size si for each component is expedient since the potential landscape c ( )x around xl is
typically highly anisotropic. Ideally, one shouldmake use of the covariancematrixSl of c ( )xl and consider as
argument for theGaussian instead - S --( ) ( )x x x xk l

T
l k l

1 [106]. However, we encountered a problem in that
the estimation of the covariancematrix at run timewas strongly affected by noise and thus not feasible. The
adjustment of the step sizes si, on the contrary, can be done after a short number of updates by demanding that a
value of »p 0.5l k

pacc.
, is reached on averagewhenmodifying the component i. For this, we implemented a check

at every single proposal that increases s s 1.1i i when >p 0.6l k
pacc.

, and decreases s s 0.9i i when <p 0.4l k
pacc.

, .

Analogous to the treatment of spin systems, we define one sweep as a single update of all the components of x16.

A.2. Parallel tempering
In a PT algorithmone considers, instead of sampling at one certain temperature, a set of different temperatures
b-

m
1 and corresponding replicas xl

m, each of which is evolved through aMarkov chain. The largest bm thereby
target localminimawhereas low bm values allow for largemoves in configuration space. The key idea of the PT
approach is to let the individual replicas evolve dynamically in the set of bm. By this, one achieves a situation
whereby a replica at high bm values systematically targets localminima but can overcome potential barriers
againwhen its inverse temperature is changed to lower values. As a result, the time scales to reach an absolute
minimumare drastically reduced and an efficient sampling of the low-energy states is achieved. For the purpose
of calculating thermodynamic properties, one usually chooses aMetropolis–Hastings probability to swap two
replicas with adjacent temperatures [109, 110]

= = b b c c+
+ +

+ +
- -+

+
⎧⎨⎩

⎫⎬⎭
( ) ( )

( ) ( )
{ } ( )( )( ( ) ( ))x x

x x
p

p p

p p
min 1, min 1, e , A.3x x

l
m m

m
l
m m

l
m

m
l
m m

l
mswap,

, 1
1 1

1 1
m m l

m
l
m

1
1

with theBoltzmanndistribution for each bm givenby c b= -( ) ( ( ) )x xp Z1 expm
m m . Such swapmoves are

conveniently proposed after a certainnumber of sweeps,which satisfies the sufficient conditionof balance for
thermodynamics [110]. Inpractice,we chose 10 sweeps before swapping replicas. For the exchange to effectively take
place, theunderlying requirement is that the adjacent bm and b +m 1 values be close enough to eachother, so that the
twoenergydistributions cW[ ( )] ( )x xpm and cW +[ ( )] ( )x xpm 1 overlap,with òc d c cW = -[ ] ( ( ))x xd0 0 being
thedensity of states of the cost function.Thismeans that a replica at one temperaturemust represent a likely
configuration for theneighboring temperature [110, 111]. In order to achieve this, a crucial point in thePTalgorithm
is to adjust the distributionof the inverse temperatures properly to the considered situation.Various criteria for this
have beendevised, see e.g. [110]. A commonchoice is todemand that the swappingprobability equation (A.3)
becomeconstant as a functionof temperature [112, 113], and in [114] a feedback strategywaspresentedwhich
optimizes the round trip times of replicas.We tested the latterwithinAMEAbut favored the simpler former criterion
in the end, since it allows for a rapid feedback andquick adjustment to large changes in c ( )xl

m . In the simple situation
of a constant specificheatCHwith respect to energyχ for instance, anoptimal strategy is known since a geometric
progression b b =+ const.m m 1 of temperatures yields a constant swappingprobability [110, 111]. For interesting
cases, in practice, this is rarely fulfilled, butwithinAMEA it served as a good startingpoint. The set of inverse
temperatures is thenoptimizedby averaging +p l

m m
swap,

, 1 over a couple of swappings toobtain themeanprobability
+p̄m m

swap
, 1 and adjusting the bm thereafter. For thiswe chose afixed lowest andhighest bm value and changed the

spacings in between according to

b
b

D ¢ =
D

+( ¯ )
( )c

plog
, A.4m

m
m m
swap

, 1

with b b bD = -+m m m1 and c adjusted properly so that b b b b¢ - ¢ = -( ) ( ) ( ) ( )max min max minm m m m . In
[112, 113], it was shown that a constant swapping probability of 20%–23% seems to be optimal.We determined
the highest and lowest bm values by the changes in c ( )x wewant to resolve or allow for, and the number of
inverse temperatures bm was then set accordingly in order to roughly obtain »+p̄ 0.25m m

swap
, 1 . Fixing the smallest

and largest bm is, for our purposes, themost convenient choice among themany possibilities.
However, despite the feedback optimization of temperatures as just described, we encountered unwanted

behavior in practice, whereby the set of parallel replicas effectively decoupled into several clusters. In
suppressing this, we found it advantageous to introduce the following simplemodification to equation (A.3)17:

16
Again, different choices are possible. For instance, in cases where ( )xdim is very large, randomupdates of themost relevant components

could bemore appropriate.
17

One should note that themodification violates balance conditions and therefore the applicability in statistical physics. However, it is
perfectly valid for the purpose ofminimization problems.

18

New J. Phys. 19 (2017) 063005 ADorda et al



=+ +{ } ( )p p pmax , , A.5
l

m m
l

m m
swap,

, 1
swap,

, 1
swap
th.

with a certain threshold probability pswap
th. , e.g. =p 0.1swap

th. or 0.05. In this way, one avoids the bm shifting

unnecessarily close to each other and prevents very long time scales inwhich replicas oscillate only between two
neighboring inverse temperatures.

Appendix B.Matrix form andnumber of independent parameters for the different setups

For the sake of clarity, we present here for the different setups offigure 1 the formof the (Hermitian)matrices E
and G( )1 for the caseNB= 4 in the particle-hole symmetric case, i.e. under the constraint equation (27)which
alsofixes G( )2 . In addition, we quote the number of availablefit parameters ( )C NB for each setup. Thefit
parameters are denoted below as xi for = ( )i C N1, B , with the only constraint being that G( )i should be
semipositive definite. This, togetherwith the requirement thatDaux vanish for w  ¥, further requires
G = G = G =( ) ( ) ( ) 0ff if fi

1 2 1 2 1 2 . In thefirst four setups, the impurity is in the center (i = 3). In the ‘1 chain n.n.’, it
is on thefirst site (i = 1).

B.1. ‘Full’ geometry
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The parameters x9 to x14 can be complex. Therefore, it is straightforward to see that, for generalNB the number
of independent (real)parameters is = +( ) ( )C N N 3N

B 2 B
B for the real case and = +( ) ( )C N N N 1B B B for the

complex case.

B.3. ‘2-chain n.n.’ geometry equation (B.1)
=E Et
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so in general = -( )C N N3 2B B .

B.4. ‘2-chain onsite’ geometry equation (B.1)
=E Et
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Here, =( )C N N2B B.

B.5. ‘Star’ geometry
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Also here =( )C N N2B B.

B.6. ‘1 chain n.n.’ geometry
Remember, here the impurity is on i=1.
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In this case, = -( )C N N3 1B B .

AppendixC. Reduction of bath to a ‘star’ form

Inprinciple, one can represent anoninteractingdissipativebath consisting ofNB sites = )i N1, ... B coupled to an
impurity (i = f, we take f = 0)by specifying the single-particle parametersEij, G( )

ij
1 , and G( )

ij
2 ( =i j N, 0,... B), with

correspondingHermitian, and in the case ofG( )1 ,G( )2 , semipositive definitematrices.We showhere that, for the sake
offitting the retarded componentof a givenbath spectral functionDaux

R , these parameters are redundant.
We rewrite equation (20) in block form

w
w

= - -
- -

-⎛
⎝⎜

⎞
⎠⎟ ( )T

T F
FZ C.1R 0

1

where thefirst 1×1 block contains18 º - G +( )F E i0 00 00 , the ´N NB B complexmatrix F is given by
º - G +( )F E iij ij ij for =i j N, 1, ... B, the column vectors º - G +( )T E ii i i0 0 , º - G + ( )T E ii i i0 0 , andwe have

introduced G G Gº ( ) ( ) ( )1 2 .
We are interested in Gaux

R , which is the 00 component of ZR. By awell known result ofmatrix inversion, this is
given by

w w= - - - -( ( ) ) ( )T F TG F1 , C.2aux
R

0
1

which identifies w dD = - +-( )T F T FT
aux
R 1

0, where d eº -F F f0 0 , which, for simplicity, we set to zero. The
first term can be rewritten by introducing thematrix V which diagonalizes F,19 i.e.

=- ( )V FV F . C.31
diag

This gives

w

w

D = -
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º º

- - -

-

-





 

( )

( )

TVV F VV T

T F T

T V T T TV .

aux
R 1 1 1

diag
1

1

Wecan thus replace in equation (C.1) F with a diagonal, complexmatrix Fdiag and T (T )with T (T ), andwe get

w¢ = - ¢

¢ º

-

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

F

F
T

T F

F

Z

. C.4

R 1

0

diag

1

18
In order to bemore general, we allow for nonzero elements of the Gmatrices on the impurity site as well.

19
Note that diagonalization of F is not always guaranteed.
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Here, ¢Z R has the same 00 element as ZR from equation (C.1), i.e. the same Gaux
R andDaux

R . In this way, by the
requirement that E and G +( ) must beHermitian, we can construct new ¢ = ¢ + ¢( )†E F F 2 and
G¢ = ¢ - ¢+ ( ) ( )( ) †F F i2 , i.e. a new auxiliary systemwhich yield the sameDaux

R and have the ‘star’ geometry
(figure 1)20. Thismeans that, concerning the retarded part, one can restrict to the case of diagonal bath energies
and G +( ), i.e., as in the non-dissipative case,Daux

R is fixed by only( )NB independent bath parameters, the rest
being redundant. This is also the case when the bath hybridization function is represented by a completely
empty and a completely full chain, as discussed in section 3, since in that case one simply fits the retarded
components of the two chains separately. On the other hand, for themost generic case, G( )1 and G( )2 will not
commute and cannot be simultaneously diagonalized, so that the Keldysh component wD ( )aux

K appears to still
depend on( )NB

2 bath parameters (figure 5). Further investigations should be carried out in order to clarify
this issue.
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