Generalized Reactivity(1) Synthesis without a
Monolithic Strategy™

Matthias Schlaipfer, Georg Hofferek, and Roderick Bloem

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria.

Abstract. We present a new approach to synthesizing systems from
Generalized Reactivity(1) specifications. Our method does not require a
monolithic strategy, which can be prohibitively large. Instead, our ap-
proach constructs a circuit directly from the iterates of the fixpoint com-
putation that computes the winning region. We build the overall system
by combining these circuit parts. Our approach has generally lower mem-
ory requirements than previous GR(1) synthesis approaches, and is also
faster. In addition to that, the circuits we build are eager, in the sense
that they typically fulfill system guarantees faster than the circuits ob-
tained with previous approaches, as experiments show.

1 Introduction

Formal methods have recently seen increased attention focused on synthesis tech-
niques in which programs are created automatically from specifications. Such
techniques may create full systems from a specification given, for instance, in
temporal logic [7,17,16,10,11,4,19,15,8,18], or they may synthesize pieces of
a program that are difficult to implement or were previously implemented in-
correctly [20,22,14,23,12]. Synthesis promises to remove an important burden
from the programmer, who only has to think about the specification and not
about implementation details. The main drawback currently is the lack of ca-
pacity of synthesis tools — they are only applicable to small examples. Time
and especially memory use of current tools are often prohibitive, keeping many
realistic examples outside of the realm of synthesis.

In this paper we consider an alternative method to generate systems in GR(1)
synthesis [16]. Our synthesis method is implemented in RATSY [4], a tool for
synthesis of GR(1) properties. GR(1) properties can be viewed as an implication
of deterministic Biichi automata. Let A; through A, be the assumptions on
the environment and let G; through G,, be the guarantees that the system has
to fulfill. If Ay,..., A, and Gy,...,G,, are expressed as deterministic Biichi

automata, then the formula
(J

* This work was supported in part by the European Commission through project
DIAMOND (FP7-2009-1ST-4-248613).

is a GR(1) specification. Previous work [5,6] has shown that GR(1) is expres-
sive, easy to use, and that it allows for a relatively efficient implementation of
synthesis.

The time and memory use of RATSY is high. Moreover, it has the draw-
back of producing systems that are not very eager. The general strategy used
by RATSY is to satisfy the guarantees one at a time in a round-robin fashion.
Each of the guarantees is fulfilled using an attractor strategy in which the ap-
proach to the guarantee is enforced whenever all of the assumptions have been
fulfilled. This formulation of the strategy is very general and allows significant
freedom to choose a small implementation. However, since the attractor strategy
only requires some progress to be made, this formulation allows for very lazy
implementations that may take a long time to fulfill a goal.

In this paper we present an alternative to the round-robin strategy, which is
eager: each goal is achieved as soon as possible. This gives us more desirable,
responsive systems, which achieve some robustness against failure by the envi-
ronment to achieve its liveness goals, at a fraction of the cost of other methods
[2,3]. At the same time, our experimental results show that our new approach
reduces time and memory use significantly at the expense of generating larger
circuits.

The rest of the paper is organized as follows. In Section 2, we revisit some
preliminaries necessary for our method and establish notation. In Section 3, we
present our synthesis approach. Section 4 presents specific aspects of our imple-
mentation. In Section 5, we summarize our experimental results, and Section 6
concludes the paper.

2 Preliminaries

2.1 Generalized Reactivity

Generalized Reactivity(1) [16], GR(1) for short, is a syntactic restriction of Linear
Temporal Logic (LTL). Let Z and O be sets of (propositional) variables. A GR(1)
specification ¢ is required to be of the form ¢ = ¢ — ¢® where ¢ and ¢° can
be written as a conjunction of the following three parts [16]:

— A Boolean formula ¢f (pf, respectively) over Z and O, characterizing the
initial states.

— An LTL formula ¢f (pf, respectively), characterizing the transitions of the
environment (system, respectively). ¢f is of the form A, G(B;), where each
B; is a Boolean combination of variables from Z and O, and expressions of
the form X(v), where v is a variable from Z for ¢§ and from Z U O for ¢;.

— An LTL formula ¢ (gp;-, respectively), characterizing the fairness states for
the environment (system, respectively). ¢ and ¢} are both of the form
/\; GF B; for a Boolean formulae B; over ZU O.

It is easiest to think about ¢° and ¢® as encoding the symbolic representation of
the product of several Biichi automata. (Extra variables for encoding automata

states can be modeled as extra state variables.) The goal of synthesis is to gener-
ate a Mealy machine that satisfies the GR(1) specification. The Mealy machine
has inputs Z, state variables ZUQ, and the outputs coincide with (the next state
values of) the state variables [16]. A Mealy machine satisfies a GR(1) specifica-
tion if (1) ¢ and ¢f are satisfied initially, (2) as long as the environment fulfills
¢y, the system fulfills ¢7, and (3) if the environment fulfills %, the system fulfills

S

5.
! Synthesizing a correct system from its specification corresponds to finding
a strategy in a game between the system (protagonist) and the environment
(antagonist). Following [16], we define a game structure (Z,0, O, pe, ps,). Here,
T is a set of (Boolean) input variables, which are under the environment’s control.
Similarly, O is a set of output variables, under the system’s control. We define
a state to be an interpretation of ZU O, assigning to each variable either true or
false. We will denote the set of all states with). Furthermore, © is the initial
condition; in our case © = ¢ A ¢f. The transition relation of the environment
is denoted by p.(Z,0,T'), relating a present state ¢ € Q to possible values for
next inputs I’ € 7/, where Z’ contains primed copies of the elements in Z. In
our case, p. = ¢§, where we replace each occurrence of Xv with v’, representing
the “next state” of v. Similarly, ps(Z,0,Z’,O’) is the transition relation of the
system, relating a present state ¢ € @ and a next input I’ to possible values for
next outputs O’ € 0. We set p; = ¢f, again replacing all occurrences of Xv
with v’. Finally, ¢ is the winning condition of the game. We use ¢ = ¢© — ¢°.
Furthermore, let J& (for j € {1,...,n}) and J# (for i € {1,...,m}) be the sets
of fair states of the system and the environment, characterized by the conjuncts
B; in ¢} and ¢, respectively. We will also refer to them as “guarantee states”
and “assumption states” respectively.

One step of the game consists of the environment choosing values for the
next inputs I’, after which the system must choose values for the next outputs
O'. The game is won by the system iff the resulting sequence of states in the
game graph satisfies the winning condition . Informally speaking (and slightly
simplified), the system wins the game if it is either able to ensure infinitely many
visits to all sets of guarantee states, or if it can prevent the environment from
visiting at least one of the sets of assumption states infinitely often.

A strategy is a (partial) function that maps the present state and next inputs
to next outputs. It is called a winning strategy if every play that adheres to it
is won by the system. A winning strategy can easily be turned into a correct
implementation for the system [16, 6].

2.2 p-Calculus

For solving games, we use the propositional p-calculus [13]. Formulae of the y-
calculus are defined recursively. Let @ be the set of all states of a game structure.
Furthermore, let V be a set of variables. Every subset S C @) and every variable
V €V is a p-calculus formula. Let A, B be p-calculus formulae. Then also — A4,
AUB, and AN B are p-calculus formulae, with the obvious semantics. Moreover,
the p-calculus comprises least and greatest fixpoint formulae, defined as follows.

For a p-calculus formula P with a free variable V' € V the following are p-calculus
formulae:

pV . P(V)=|JV;:, whereVy=0and Viyy = P(V;) and (1)

vV .P(V)=(\Vi, where V) =Q and Vi1 = P(V). (2)

We extend the classical p-calculus with a mixed-preimage operator MX, de-
fined as follows:

MX(V) = {(i,0) € Q | Vi’ . 30" .((3,0,i") E pe — (i,0,7,0") = ps) A (i',0") € V}.

Semantically, MX(V') denotes the set of all states from which the system can force
the play into a state in V, irrespective of the input i’ chosen by the environment.

2.3 Computing the Winning Region of GR(1) Games

Piterman et al. [16] presented a u-calculus formula for computing the winning
region of a GR(1) game, i.e., the set of states from which the system can win
the game by adhering to a winning strategy. The winning region of such a spec-
ification is given by the following triply-nested fixpoint formula [16]:

Win = vZ. /n\ pyY . \7 vX .(J§ AMX(Z)) vV MX(Y) V (=4 AMX(X)). (3)

j=1 i=1

Piterman et al. [16] also show how to use the intermediate values of the
fixpoint computations in Equation 3 to construct a strategy, consisting of the
disjunction of three sub-strategies. These three sub-strategies correspond to the
three disjuncts in Equation 3. Sub-strategy p; is applied when the game has
reached a guarantee state in JjG . In this case, a counter jx that stores which
guarantee should be fulfilled next is incremented (modulo n, the number of
guarantees). Sub-strategy ps takes the play at least one step closer to a state in
J jG . Sub-strategy ps ensures that the play stays in a region in which at least one
of the sets of assumption states J/ is not visited.

Although systems that adhere to these sub-strategies are correct, they are
not necessarily eager. The strategies only ensure that each step takes the play
at least one step closer to a guarantee state, or even stay where they are as
long as an assumption state is not reached. However, in many situations the
system might have a choice of getting not only one, but several steps closer to a
guarantee state. An eager system would always make the choice that takes it as
close to the guarantee states as possible. It might even fulfil multiple guarantees
at once.

2.4 Relation Determinization

The strategies computed according to [16] are relations, mapping a tuple (4, 0,4")
of present state inputs 7, present state outputs o, and next state inputs i’ to pos-
sible next state outputs o’. These relations can be represented by a characteristic
function, usually in form of a Binary Decision Diagram (BDD). In order to build
circuits, we need to extract completely specified functions for each of the Boolean
output signals 0; € O from this relation.

There are several ways to find functions compatible with a given relation
[24,1,9,6,5]. We will use the approach presented in [6, 5], as it integrates seam-
lessly with the symbolic algorithms we use. When given a BDD b(Z, 0,7, 0')
we will write FN(b) to denote a circuit with inputs Z, O, Z’ and outputs @', such
that FN(b)(i,0,i") = o only if b(i,0,i,0") = true or =30’ .b(4, 0,4, 0"). To em-
phasize that FN(b) is a (completely specified) function, we will sometimes write
FN(b)(Z,0,7" — O).

3 Onion Rings Approach

Previous work [6, 5] shows that tools implementing GR(1) synthesis spend a lot
of time computing the strategy relation. While computing the winning region is
comparatively fast, combining the intermediate results of the fixpoint computa-
tion to form a monolithic strategy requires a lot of CPU time and memory. We
will demonstrate how to build a correct-by-construction circuit directly from the
intermediate results of the winning region computation, without having to build
a monolithic strategy relation first.

Our new synthesis approach is based on the intermediate results of fixpoint
computations, which we call onion rings. The name stems from the form of the
intermediate results of an attractor computation. Like in an onion, each iteration
of the computation adds a layer of states “around” the previous results. We will
show how to build two kinds of circuits. The first are enable circuits which
detect whether we can reach a particular onion ring. The second are circuits
that provide correct outputs for the case that we move to the particular enabled
onion ring. Before that, however, we will introduce some simple auxiliary circuits
that we will need to combine the other parts. In the following, we will denote
circuits and combinational gates by upper-case sans-serif letters (e.g., circuit
A, B, C, ..., gates AND, XOR). For “standard gates” such as AND and XOR, we
will use infix notation (e.g. A AND B). BDDs will be denoted by lowercase letters
(e.g. a,b,c,...). Operations on BDDs will be denoted using the common logic
operators such as A and 3. Furthermore, we will write C(b) to denote a circuit
equivalent to b. That is, a circuit having the variables of b as its inputs, and one
output that is true if and only if the inputs are in the on-set of b.!

! Note that it is trivial to construct such a circuit by using one multiplexer for each
BDD node.

3.1 Auxiliary Circuits

The first auxiliary circuit we need is called SELECT. It has n one-bit selector
inputs Si1,...,S,, and n data inputs Fq,...,F,, each m bits wide. Furthermore,
SELECT((S1,---,Sn), (F1,...,F,)) has an m bits wide data output, which is
equal to Fy if S; is true, equal to F, if S; is false and S, is true, equal to Fj if
S; and S, are false and Ss is true, etc. Le., the output equals the input with
the lowest index for which the corresponding selector bit is true. If all selector
signals Sy, ...,S, are false, the output of the SELECT circuit is arbitrary.

The second auxiliary circuit is a comparator. COMP(A, B) outputs true if and
only if A and B are (bitwise) equal.

3.2 Enable Circuits for Onion Rings

From the computation of the winning region of a GR(1) game, we get a set of
BDDs z[j,r,i], each referring to variables in Z U O [16]. The indices 7 and j
range over all the sets of assumption and guarantee states of the specification,
respectively. The index r denotes iterations in the computation of the least fix-
point over Y in Equation 3. Each of these BDDs symbolically represents a set
of states in the GR(1) game. The set represented by x[j,r,4] denotes the set of
states from which the system can either (1) enforce moving one step closer to
one of the states in the j-th guarantee set (i.e., a state in z[j,r’, '] for v’ < r and
arbitrary '), or (2) stay in that part of z[f, r, 4], which does not share any states
with the i-th set of assumption states. We will use primes to denote BDDs that
represent sets of “next states” (i.e., referring to variables in 7' U O’). For each
BDD z'[j,r, 4], we build an enable circuit that detects whether a state described
by '[j,r, 4] is reachable by obeying the system transition relation p, for some
next state output O’:

EN[j,r,i](1,0,1') = (30" . py A [,) (4)

A circuit EN[j,r,i] outputs true if and only if the tuple (1,0,1') at its input sat-
isfies the system transition relation and gets the system into the set of states
represented by z’[4, 7, i] under some output 0.

3.3 Function Circuits for Onion Rings

For each onion ring, as described in the previous section, we build a correspond-
ing function circuit FN(I, 0,1’ — O’) that computes the system’s outputs for this
particular case:

FN[,r,i](1,0,1" = O") = FN(ps A 2'[j, 7, 1]) (5)

The enable and function circuits are combined in a way to make maximum
progress when approaching a guarantee state J.]G . That means we want to choose
the function corresponding to the minimal (r,7) whose enable circuit outputs

JX SEL

C(30" : ps Na'[k, 1,1])

| | |
| | | !
| | | !
1 . | 1 !
| ' | | !
o |C(3()’:p,/\w’[km‘mw,m]) I : FN[n] :
| 1
| | | !
| | | !
| | | !
| I

FN[1]
|FN(/75 Az"[k,L 1)) | e |FN(p5 Am’l[k, r,,m,m])|
[L e o o e e e e e e e D e | N,
\ 1 |
1

Fig. 1: Diagram of the whole circuit. Dashed boxes symbolize parts of the circuit
that are built analogously to the neighboring parts drawn in detail.

true. L.e., we step to the innermost onion ring possible. We use SELECT cir-
cuits, as described in Section 3.1, to achieve this by ordering the selector (enable
signals) and data inputs (function signals) lexicographically according to (r,1).

FN[j] = SELECT((EN[j,1,1],...,EN[j,1, m], (6)
EN[j,2,1],...,EN[},2,m],...,
EN[j, rmax, 1], - - -, EN[j, Fmax, m]),
(FN[j, 1,1],...,FN[j,1,m],
FN[j,2,1],...,FN[j,2,m],...,
ENG, maes s+ > PN, fmass)

This gives us circuits for approaching each of the guarantee states eagerly. Each
FN[j] corresponds to one of the dashed boxes in Fig. 1.

3.4 Bookkeeping Circuit for Guarantee Selection

Finally we have to choose which guarantee to approach next. In [16], this was
done in a round-robin fashion using a modular counter jx. We present a new
approach that satisfies each guarantee as quickly as possible without having to
wait for a counter to match a guarantee’s index j. We will first informally describe
the principal idea behind the bookkeeping circuit we employ, and afterwards
define it formally.

Our approach uses one bit of memory for each guarantee (JX[1],...,JX[n]),
plus one master bit (master). Initially, the master bit and all JX bits are all
set to the same (arbitrary) value. The semantics of these bits is as follows:
JX[j] XOR master is true if and only if guarantee j has already been satisfied in
the current round. A guarantee j will be satisfied when the play is about enter
a state in the set represented by J]’-G. When this happens, the corresponding bit
JX[j] is flipped (if it was not already different from the master bit). As soon as
all guarantees were satisfied in one round (i.e., all JX bits are different from the
master bit), the master bit is flipped and the procedure starts another round.
Thus, the JX bits together with the master bit allow us to determine which
guarantees still have to be pursued at a given time.

Note that the sets JjG are not necessarily disjunct. Empirical evidence sug-
gests that there are often states which belong to several (or even all) sets JJ-G .
Imagine, for example, an arbiter with N request and grant signals, and N guar-
antees stating that every request must eventually be granted. Then the state in
which no requests are made (and thus no grants are given) fulfills all N guaran-
tees and thus belongs to all sets JjG . Our bookkeeping circuit can take advantage
of that by flipping all the JX bits corresponding to (yet unfulfilled) guarantees
that are fulfilled in a particular state. This leads to a much more eager systems
compared to systems using a modular counter for bookkeeping. We will illustrate
this with an example in Section 3.6.

We will now provide a formal definition of our bookkeeping circuit.

JX flip signal. We need flip signals to determine whether a guarantee is being
satisfied or not. Guarantee j is being satisfied whenever we move to the states
represented by J’ JG

Xaiplil = C(J'f) (7)

JX update. The value of a JX bit is updated (flipped) whenever the corre-
sponding JXgip signal is true and the JX bit is still equal to the master bit. A
diagram of this circuit is shown in Figure 2.

IX'[i] = JX[j] XOR (JXgip[] AND COMP(JX[j], master)) (8)

Master update. The update of the master bit works as follows: The master bit
is flipped when it is unequal to all next JX bits. L.e., the flip happens if and
only if all guarantees have been satisfied in a round. A diagram of this circuit is
shown in Figure 3.

master’ = master XOR (AND; (NOT COMP(JX'[j], master))) (9)

Guarantee selection. Finally, we need to select a guarantee that should be
pursued at the moment. Candidates are all those guarantees whose JX bit equals

J(G IXsel []]

J

master =
= — JX'[j]

X

Fig. 2: Circuit for updating a JX bit with the signal for selecting a guarantee.

I D'— master’
master

Fig. 3: Circuit for updating the master bit.

IX[1]

IX'[n]

the master bit, as these are the guarantees not yet fulfilled in the current round.
The signal JXqq[j] tells whether or not guarantee j is a candidate for selection.

JXsal]] = COMP(master, JX[j]) (10)

3.5 Combining Functions with Guarantee Selection

To achieve eagerness, we use the signals JXq[j] selector signals for the topmost
SELECT circuit in Figure 1. Le., we choose to make progress towards the lowest-
numbered unsatisfied guarantee by choosing the corresponding function.?

FN(1,0,1' = 0') = SELECT((JXsel[1], - . ., IXsar[n]), (FN[1], ..., FN[n])) (11)

Note that the outputs of the circuit in Equation 11 are also the primary
outputs (O’) of the overall system.

2 This gives designers the possibility to prioritize guarantees by reordering them in
the specification.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14
clk

re | ‘ ‘

(a) Modular counter jz as in [16]

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14
0 e

re | ‘ ‘

rf ‘ ‘ |

ge| | |
of \

(b) Bookkeeping as Section 3.4.

Fig.4: Timing diagram of a 6-input arbiter. The request and grant signals with
indices a, . .., d have been omitted, as they are all zero for the entire time shown.

3.6 Demonstration of Eagerness

To illustrate how the circuits synthesized according to our new method are more
eager, we make the following comparison. We take a specification for a full-
handshake arbiter with six request lines (ra to rf) and six corresponding grant
lines (ga to gf). We synthesize circuits for this specification, once according to
[16], and once according to the method presented in this paper. We simulate
both circuits with the same input values. We set the request rf to 1 in clock
cycles 0 to 4 and we set request re to 1 from cycle 6 on. The timing diagrams
of our simulations are shown in Figures 4a and 4b. For increased readability, we
have omitted some of the signals which are 0 the entire time in the waveform.

We observe a difference in the behavior of granting the requests by the two
circuits in comparison:

1. Round-robin strategy: We see that the first request (rf) is immediately
answered with grant gf. The second request (re), however, is only granted in
cycle 11 (i.e., with a delay of 5 cycles), because the modular counter jx has
to loop around first, in order to reach the value 4, which corresponds to ge.
In each of the “wasted” 5 cycles, the implementation discovers that there
is no request on one particular request line, and thus, the corresponding
guarantee is fulfilled.

10

2. Guarantee selection with bookkeeping: In this case the first request is
granted in the same clock cycle as in the circuit with the round-robin strat-
egy. The grant answering request re is given in cycle 7, though. This is a
delay of only 1 cycle; a 4-cycle improvement: the bookkeeping approach dis-
covers immediately that the guarantees corresponding to those request lines
where no request is made are all fulfilled. Thus, the system can immediately
fulfils the remaining guarantee concerning request re.

4 Implementation

We implemented the proposed synthesis method as an extension to RATSY
(Requirements Analysis Tool with Synthesis) [4]. Computation of the winning
region (and the necessary intermediate results) had already been implemented in
this tool. We start with our new approach after the computation of the winning
region finishes. Instead of building a monolithic strategy, we construct the cir-
cuits as described in Section 3. We have two slightly different implementations,
which are described in the following sections.

4.1 Onion Rings without BDD Reordering

Our first approach is to create one sub-circuit after the other, immediately freeing
any BDDs that are no longer required for subsequent computations. We keep
a hash table of all BDD nodes for which we already constructed multiplexers.
Since BDDs within the same manager may share internal nodes, we can reuse
the corresponding multiplexers whenever necessary.

This advantage, however, comes at a price. We have to disable dynamic BDD
reordering when we create the first circuit, because dynamic reordering may
remove and/or reassign internal BDD nodes. Note, however, that reordering can
of course be used before we create the first circuit. Thus, we enable dynamic
reordering of BDDs during the computation of the winning region.

4.2 Onion Rings with BDD Reordering

As an alternative method, we first compute BDDs corresponding to all circuits
without actually writing them out already. Thus, we can keep dynamic reordering
enabled during all the computations.

Once we have computed all BDDs to be dumped, we perform a final (forced)
reordering to reduce the size of the resulting multiplexer circuit, and then dump
all BDDs at once, again taking advantage of node sharing.

5 Experimental Results

We used the specifications of the AMBA bus arbiter [5] for our experiments. We
compared runtime, memory usage, and circuit size. We already had a working

11

Table 1: Experimental results for each test case and method.

Circuit Runtime 5] Memory usage [GE] [regsiiftlt‘cc? IFZ{if]
Ref |Oniongo |Onionpeoro| Ref |Oniongro|Onionyero |Oniongo |Onionyero

amba02| 3 6 11 0.55| 0.57 0.57 18.3 31.9
amba03| 53 27 44 0.67| 0.62 0.66 4.5 8.0
amba04| 176 517 846 0.99 1.55 1.19 40.5 66.6
amba05| 492 885 846 1.41 1.13 1.49 23.6 62.7
amba06| 1,059 723 1,370 1.55 1.45 1.18 16.9 42.9
amba07| 1,960 | 1,532 1,592 |1.63| 1.56 1.50 12.3 22.5
amba08{13,390| 19,800 36,433 | 7.45| 16.62 16.89 X X

amba09| 5,394 | 4,011 4,578 2.45 2.63 2.41 16.9 28.4
ambal0]12,673| 5,413 8941 |7.20] 3.11 2.67 25.4 46.7
amball|10,685| 7,609 11,277 4.24 4.41 2.68 13.2 23.9
ambal2|55,997| 7,831 11,585 9.18 4.79 2.79 19.2 28.5
ambal3[40,229| 14,787 15,825 |13.81] 5.05 4.39 10.8 25.7
ambal4|41,538| 17,077 14,287 8.92 5.77 2.98 21.1 30.3
ambalb|43,173| 17,721 19,646 |[14.98| 8.10 4.24 16.7 24.7

synthesis implementation, based on cofactors [6] and used it as a reference point
for our new technique. All experiments were conducted on a 64-bit Linux machine
powered by a 2.66GHz Intel Xeon CPU with 64GB RAM. The 3 methods we
have compared are as follows:

1. Reference: The cofactor-based approach described in [6]. This method
serves as a reference point.

2. Onion Rings without reordering: The method described in Section 4.1.

3. Onion Rings with reordering: The method described in Section 4.2.

We will use the abbreviations Ref, Onion,,gro and Oniongp to denote the meth-
ods. The results are presented in Table 1 and in Figures 5 and 6. We do not
know why amba(08 has a significantly higher time and memory consumption
than amba09 in all three methods. A similar discrepancy has been observed
before [6].

5.1 Runtime

We can see that for larger examples, method Oniongo performs much better than
the reference method. For smaller examples, the 3 methods perform similarly.
We also see that finding a better BDD order pays off by improving the runtime.
Le., Oniongg is typically faster than Onion,oro-

5.2 Memory Usage

The memory requirements are taken from the Cudd PrintInfo function of the
CUDD |[21] library and reflect the memory requirements of the BDD manager.
Note that almost all memory used by RATSY is used by the BDD manager.

12

Runtime Memory usage

—e— Ref —e— Ref

—8— Onion RO —8— Onion RO

—— Onion noRO —6— Onion noRO
o—°

15
I
o

seconds
GB
o

10000 20000 30000 40000 50000
| |
°
o
\
10
|
°
° 0\
°
o] \ /

L L
BN
(Y,

||
o 9,

o>
/\u
N
oo
5
L
gﬂ

| \@/

L %

ok

/ o

AV

.

0
I

amba02 — ©
amba03 - ©
amba04 - @
amba05 -| @
amba06 -| @
amba07
amba08 -
amba06 —
amba07
amba08 —
amba09 -

Fig. 5: Runtime for each approach and Fig.6: Memory usage for each ap-
test case. proach and test case.

We can see that the memory usage of our methods is better than the reference
method. Again, smaller examples perform similarly, but for larger examples we
gain an advantage. The method Onion,,go performs best, as it only needs to
have the BDDs for creating a specific onion ring in memory. In contrast, Ref has
to have the whole strategy BDD in memory, and Oniongo has to have the BDDs
for all onion rings in memory to find a consistent BDD order before building the
circuits.

5.3 Circuit Size

Circuit size was measured with abc®. Table 1 shows the relative circuit sizes
with respect to the Reference method. For example, when synthesizing amba02
with method Oniongrg, the resulting circuit is 18.3 times the size of the circuit
obtained when synthesizing amba02 with the Reference method. Note that fac-
tors have been rounded to one decimal. For amba08, abc runs into a timeout
(marked with “X” in Table 1).

6 Conclusion and Future Work

We have presented a novel approach to GR(1) synthesis. Our technique builds
upon [16], but circumvents the generation of a large, monolithic strategy relation.
We have shown in our experiments that, using our technique, we can, in general,
reduce the runtime and memory usage significantly. For larger examples, our
method is able to synthesize results, where previous methods might have run
out of memory, or run into timeouts. These results, however, come at the cost
of larger circuits.

3 http://www.eecs.berkeley.edu/~alanmi/abc/abc. htm

13

Apart from that, circuits built with our new method are eager, meaning that
they fulfill the guarantees more quickly, whenever possible. First, we get as close
as we can to the next guarantee state in every time step. Second, we check which
guarantees are already fulfilled in parallel, instead of sequentially. This leads to
more responsive, robust systems.

For future work, we will investigate different relation determinization tech-
niques (cf. Section 2.4), which might improve circuit sizes. Also, we plan to in-
vestigate extensive “don’t-care propagation”. Whenever we have detected that
we are in onion ring r, the output functions corresponding to all rings s > r can
actually be set to arbitrary values. Such optimizations might improve circuit size
at the expense of additional CPU time.

References

1. Baneres, D., Cortadella, J., Kishinevsky, M.: A recursive paradigm to solve Boolean
relations. Design Automation Conference pp. 416421 (2004)

2. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T., Jobstmann, B.: Robustness
in the presence of liveness. In: Proc. Computer Aided Verification. pp. 410-424.
Springer (2010)

3. Bloem, R., Chatterjee, K., Henzinger, T., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Int. Conf. Computer Aided Verification
(CAV). pp. 140-156 (2009)

4. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Koenighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY — a new requirements analysis tool with syn-
thesis. In: Proc. Computer Aided Verification. pp. 425-429 (2010), LNCS 6174

5. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Automatic hardware synthesis from specifications: A case study. In: Proceedings
of the Design, Automation and Test in Europe. pp. 1188-1193 (2007)

6. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware form PSL. In: 6th International Workshop on
Compiler Optimization Meets Compiler Verification (2007)

7. Church, A.: Logic, arithmetic and automata. In: Proceedings International Math-
ematical Congress (1962)

8. Filiot, E., Jin, N., Raskin, J.F.: An antichain algorithm for LTL realizability. In:
Proc. Computer Aided Verification. pp. 263-277 (2009)

9. Jiang, J.H.R., Lin, H.P., Hung, W.L.: Interpolating functions from large Boolean
relations. In: Proceedings of the 2009 International Conference on Computer-Aided
Design. pp. 779-784. ICCAD ’09, ACM, New York, NY, USA (2009)

10. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: 6th Conference
on Formal Methods in Computer Aided Design (FMCAD’06). pp. 117-124 (2006)

11. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A tool for property
synthesis. In: Computer Aided Verification. pp. 258-262 (2007)

12. Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults.
Journal of Computer and System Sciences 78(2), 441 — 460 (2012)

13. Kozen, D.: Results on the propositional p-calculus. Theoretical Computer Science
27, 333-354 (1983)

14. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In:
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2010 (2010)

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Morgenstern, A., Schneider, K.: Exploiting the temporal logic hierarchy and the
non-confluence property for efficient LTL synthesis. In: Montanari, A., Napoli, M.,
Parente, M. (eds.) Games, Automata, Logics, and Formal Verification (GandALF).
Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 25, pp. 89—
102. Minori, Italy (2010)

Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: 7th Inter-
national Conference on Verification, Model Checking and Abstract Interpretation.
pp. 364-380. Springer (2006), LNCS 3855

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. Symposium
on Principles of Programming Languages (POPL ’89). pp. 179-190 (1989)
Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Automated Technology for Ver-
ification and Analysis (ATVA’07). pp. 474-488 (2007)

Sohail, S., Somenzi, F.: Safety first: A two-stage algorithm for LTL games. In: 9th
Int. Conf. on Formal Methods in Computer Aided Design. pp. 77-84 (2009)
Solar-Lezama, A.: The sketching approach to program synthesis. In: Asian Symp.
Programming Languages and Systems. pp. 4-13. Springer (2009), LNCS 5904
Somenzi, F.: CUDD: CU Decision Diagram Package. University of Colorado at
Boulder, ftp://vlsi.colorado.edu/pub/

Staber, S., Jobstmann, B., Bloem, R.: Finding and fixing faults. In: Borrione, D.,
Paul, W. (eds.) 13th Conference on Correct Hardware Design and Verification
Methods (CHARME ’05). pp. 35-49. Springer-Verlag (2005), LNCS 3725

Vechev, M., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization.
In: Proc. Principles of programming languages. pp. 327-338. ACM (2010)
Watanabe, Y., Brayton, R.: Heuristic minimization of multiple-valued relations.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
12(10), 14581472 (1993)

15

