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ABSTRACT 

The goal of this study was to measure the Flame Transfer 
Function of a perfectly and a partially premixed turbulent 
flame by means of Laser Interferometric Vibrometry. For the 
first time, this technique is used to detect integral heat release 
fluctuations. The results were compared to classical OH*-
chemiluminescence measurements. Effects of equivalence ratio 
waves and vortex rollup were found within those flames and 
were then investigated by means of time resolved planar 
CH*/OH*-chemiluminescence and Frequency modulated 
Doppler global velocimetry. This work is motivated by the 
difficulties chemiluminescence encounters when faced with 
partially premixed flames including equivalence ratio waves 
and flame stretching. LIV, recording the time derivative of the 
density fluctuations as line-of-sight data, is not affected by 
these flame properties. 

 

NOMENCLATURE 
 
c [m/s] speed of sound 
Dexit [mm] burner exit diameter 
fD [Hz] Doppler shift of laser light 
FTF [-] flame transfer function 
G [m³/kg] Gladstone-Dale constant 
ıԦ  [-] Laser incidence direction 
IOH* ICH* [-] light intensity of OH* and CH* 
kvib [mm/s/V] vibrometer calibration constant 
LIV  laser interferometric vibrometry 
LDA  laser Doppler interferometry 

i-OH*-CL  integral OH* Chemiluminescence 
oሬԦ [-] observation direction 
PPM  perfectly premixed 
Q’, [W] fluctuation of heat release 
qv’ [W/m³] fluctuation of heat release 
sԦ [-] sensitivity vector 
TPM  technically premixed 
u’ [m/s] fluctuation of Axial velocity 
U [V] voltage 
vሬԦ [m/s] velocity vector 
x, y, z [mm] coordinates 
Φ [-] equivalence ratio 
α [°] phase angle 
ߞ [m] length of measurement volume 
Κ [-] ratio of specific heats 
λ [nm] laser wave length 
 density [kg/mm³] ߩ

 

INTRODUCTION 

 Modern gas turbines for power generation rely on 
premixed combustion systems to achieve high combustion 
efficiency and low emissions. As a drawback, high power 
densities and reduced damping capabilities of the combustor 
increase the susceptibility to thermoacoustic oscillations. These 
instabilities arise from the positive coupling between the 
fluctuations of pressure and heat release [1]. Prediction of gas 
turbine stability is often achieved by network models, originally 
used in system dynamics analysis. Within the model the flame 
remains a ‘black box’. The flame is described as a single input 
single output block. Usually the data for this block comes from 
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Measuring Techniques 
Heat release fluctuations for the FTF were acquired by 

means of LIV and OH*-chemiluminescense using a 
photomultiplier with a filter. Velocity fluctuations for the FTF 
were acquired by means of laser Doppler anemometry. For 
planar time resolved velocity fields, FM-DGV was employed, 
and finally the phase averaged planar CH*/OH*-
chemiluminescence measurements were used to visualize 
equivalence ratio waves. Below the different measurement 
techniques are explained in detail. 

 
Laser interferometric vibrometry (LIV) detects the line 

of sight (ߞ) integrated density fluctuations of gasses by means 
of interferometry. This is shown in detail in [12] and applied in 
[13, 14]. Using a Polytec laser vibrometer (interferometer head 
OFV-353, velocity decoder OFV-3001, calibration factor 
5mm/s/V, 200kHz bandwidth, no filters, Polytec, Waldbronn, 
Germany), the measured voltage (U) is linked to the derivative 
of the density fluctuation (ρ) by the Gladstone-Dale constant 
(G) which is 2.59e-4 m³/kg for the present points of operation 
and the calibration factor (k) which was set to 5 mm/s: 
 

 න
݀
ݐ݀
ߞ݀	ሻݐሺߩ ൌ

2 ∗ ݇௩
ܩ

ܷሺݐሻ (1) 

The link between density fluctuations and heat release 
fluctuations has been derived and extensively discussed by [8, 
6, 7]. Neglecting pressure fluctuations which - for unconfined 
flames - are low compared to volumetric heat release rate qv, 
the following equation applies: 
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 (2) 

With the ratio of specific heats (κ) and the speed of sound (c). 
In combustion application LIV is used to locally or globally 
detect heat release fluctuations. In order to locally resolve the 
heat release fluctuations, the vibrometer must be traversed in a 
two dimensional field [14]. Since for FTFs, only the space 
integrated information of the flame is relevant, the laser beam 
of the vibrometer was expanded to and collimated at a diameter 
of 81 mm and centered at a height of 40 mm above the burner 
exit plane in order to acquire the entire combustion fluctuations 
at once. For the comparison with vorticity, the vibrometers 
beam was narrowed down to 5 mm in diameter and traversed in 
two directions with increments of 5mm. The result was 
interpolated in order to provide more readable plots. Areas of 
uncertainty of the LIV technique include the varying 
Gladstone-Dale constant discussed in [6], dependency on 
temperature discussed in [12] and a varying intensity of the 
laser beam over the beam diameter due to a Gaussian 
distribution of the laser light. Since only the central part of the 

beam covered the test section, the accuracy of the LIV detector 
signal is less than +/- 4 %, this can be further reduced, using a 
sufficiently strong light source. 

Alternatively, for the FTF, the integral OH*-
chemiluminescence (i-OH*-CL) intensity emitted by the flame 
was acquired using an UV filtered photomultiplier (PMM01, 
Thorlabs Inc., Newton, New Jersey, USA). On the 
photomultiplier  a narrow band OH* interference filter (310 nm 
CWL, FWHM 10±2 nm Bandwidth, 50mm Mounted Diameter, 
18 % Transmission, Edmund Optics, Barrington, NJ, USA) was 
mounted. 

The processing of LIV and the i-OH*-CL signal were acquired 
with 100 kilosamples per second using a data acquisition with 
analog input modules NI-91215 (National Instruments, Austin, 
Texas) and Labview 8.6 software. The spectral analysis was 
performed using a fast fourier transform (FFT) based on Matlab 
routines. In order to tackle the scalloping loss of Fourier 
transforms, a Matlab 2015a implementation of a Flattop filter 
was used, which is valid if frequencies are known in advance, 
ensuring a high signal to noise ratio. 

To record the velocities for the FTF a classical laser Doppler 
anemometer (LDA) was used to measure the axial velocity at 
the burner exit at z=2 mm x=r= 5.5 mm. (FibreFlow, DANTEC 
Dynamics, Roskilde, Denmark). Since LDA does not provide 
frequency spectra per se, with the help of a siren trigger the 
result was phase averaged and then divided into 64 bins. A FFT 
was performed on the phase averaged result and the base-
frequency was used for the FTF. 

A particle image velocimetry (PIV) was used as reference. 
The PIV setup was the same as in [10] with 1200 averaged 
images and two cameras set up at an angle of 45°.  

A Doppler global velocimetry measurement system with laser 
frequency modulation (FM-DGV) was employed to assess the 
flame dynamics of the non-excited flame in part two of this 
article. The FM-DGV technique relies on measuring the 
Doppler frequency shift fD of laser light, which is scattered by 
seeding particles moving with the flow: 
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(3) 

with ߣ as laser wavelength, Ԧ as observation direction and ଓԦ 
as laser incidence direction. Hence, the velocity component 
ݒ ൌ Ԧݒ	 ∗  ,.Ԧ (i.eݏ Ԧ along the direction of the sensitivity vectorݏ
along the bisecting line of Ԧ and െଓԦ) can be derived from the 
measured Doppler frequency. For determining the Doppler 
frequency shift, a frequency stabilized laser source in 
combination with a molecular cesium absorption cell with 
frequency dependent transmission was used. The frequency 
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obvious but still distinct, the fluctuations in heat release start at 
x = 5 mm, z = 10 mm and float down- and outwards following 
the inner shear layer of the right-side jet. For interpretation of 
the results, it is important to keep in mind that the measurement 
resolution is only 5 mm in comparison to 1 mm for velocity 
measurements. 

Comparison of results from two measurement techniques 
shows that both fluctuations occur within the upper inner shear 
layer of the jet, which is also the lower part of the main heat 
release, and the region where the flame is anchored.  Looking at 
the phase evolution, it shows that negative vorticity leads to 
positive heat release, which means that a vortex veering away 
from the jet curls up the surface of the flame. This leads to an 
increased surface area and consequently to an increased burn 
rate. At x = 5 mm and z = 15 mm the heat release is highest and 
this is also the region where the vortex fully hits the flame just 
after it merged and grew in strength. Here both measurement 
techniques acomplish each other, in order to gain insight into 
the flame dynamics. 

 

CONCLUSION 

The focus of this study was to discuss an alternative way of 
recording heat release rate and the FTF. It was the first time 
integral LIV was used for this application. The technique is 
promising of a better prediction of heat release in partially 
premixed (technically premixed) flames, where it is less 
receptive to equivalence ratio waves than the classical i-OH*-
CL method.  

Heat release spectra and FTF’s for both perfectly premixed 
and technically premixed flames were analyzed. The trend of 
both systems correlated very well for the perfectly premixed 
flame as the literature suggests. While for the technically 
premixed case the agreement of the overall trends were good as 
well, a strong overshoot at one peak in the spectra of the i-
OH*-CL signal was found. This was related to the known 
dependency of OH*-emission on equivalence ratio and 
correctly identified as such by visualizing the ratio between 
OH* and CH* fluctuations. A significant overshoot of OH*-CL 
without a considerable fluctuation of heat release can occur 
when the system features a high pressure drop over the injector. 
This acoustically stiff fuel line is then less sensitive to 
fluctuations of air flow. In the special case of this swirl-
stabilized flame, the overshoot of the photomultiplier signal 
does not affect the FTF significantly because the trend of the 
FTF is mainly dominated by velocity fluctuations. Therefore 
the LIV method is an interesting alternative to i-OH*-CL in 
order to measure and quantify heat release fluctuations in 
perfectly as well as partially premixed flames. Secondly, 
naturally excited frequencies of the technically premixed flame 
were investigated, since the LIV technique clearly identified 
this effect as a heat release fluctuation. Time resolved velocity 
was an obvious quantity to investigate, in order to identify the 
root of these fluctuations. By means of FM-DGV the heat 
release fluctuation was tracked back to flame front roll up and 

consequently vorticity. Pulsations of heat release can be 
observed in the shear layer where the flame is anchored and 
where vortices hit the flame, heat release is in phase with the 
vortices. Detailed analysis of the plots identifies the vortices as 
the source of the heat release pulsations. This leads to the final 
conclusion that LIV is a promising technique for full field heat 
release measurements. It has been shown, that it is possible to 
measure the heat release rate of an unconfined flame. Similar to 
chemiluminescence, it is not free of restrictions. These include 
sensitivity of the Gladstone-Dale constant to mixture 
fluctuations, and sensitivity to temperature. Additionallly, care 
must be taken when adjusting the laser beam in order to 
maintain a homogenous illumination of the measurement 
volume. 
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