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ABSTRACT 

For turbulent swirl-stabilized flames combustion noise can 
be directly calculated, if density fluctuations as a function of 
time and space are known. It is however not easily possible to 
assess the density fluctuations directly. Therefore, in the past, 
combustion noise has been expressed as a function of 
chemiluminescence, an approach bringing in more 
assumptions. Now, by using interferometry, density fluctuations 
in the flame can be measured quantitatively. The advantage of 
this technique is that it measures the time derivative of density 
fluctuations directly. In this work laser interferometric 
vibrometry (LIV) was used to scan a two dimensional field in 
the flame in order to calculate the sound power emitted by the 
flame. Sound intensity was measured in a half-hemisphere by 
pressure-pressure-probes in order to record the total sound 
power of the direct combustion noise emitted by the unconfined 
flame. The goal of this study was to compare the measured 
sound power exhibited by the flame with the sound power 
predicted due to fluctuations of density within the flame. By 
using a siren to generate linear excitation, it was possible to 
qualitatively predict combustion noise with good agreement in 
trend. A quantitative comparison between both measurement 
techniques showed a deviation of a factor of six. 

 

NOMENCLATURE 
 
Ameas [m2] cross-sectional area of the laser 

vibrometer beam 
Asurf [m2] surface area of microphone 

hemisphere 
c0 [m/s] speed of sound 
f [Hz] frequency 

FFT  fast Fourier transform 
G [m3/kg] Gladstone-Dale constant 
Ir [W/m2] radial component of sound 

intensity 
Im  Imaginary part 
k [mm/s/V] vibrometer calibration constant 
LIV  laser interferometric vibrometry 
lat  latitudinal coordinate 
lng  longitudinal coordinate 
MP  measurement point 
natural 
spectrum 

 spectrum of flame without 
excitation 

Pfar, P [W] sound power 
pp-probe  pressure-pressure probe 
p’ [Pa] sound Pressure 
PPM det  detached perfectly premixed  
r [m] radial distance of observer 
r0 [m] radius of flame 
t [s] time 
TPM att  attached technically premixed  
TPM det  detached technically premixed  
U [V] voltage 
vr  [m/s] radial component of particle 

velocity 
VFl [m3] volume of the flame 
Δr [m] Distance between microphones of 

pp-probe 
ρ0 [kg/m3] mean density outside of the flame 
ρ’T  [kg/m3] density fluctuation within flame 
ρ’(r) [kg/m3] density fluctuation at radius of 

observer 
ζ [m] length of laser vibrometer beam 
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INTRODUCTION 

Combustion generated noise has been a topic for many 
years in industrial applications where reacting flows are 
predominantly turbulent. Especially the prediction, and 
consequently the reduction of correlated and stochastic sound 
radiation of flames has been investigated intensively [1, 2]. 
Early theories as well as experimental validations suggest that 
the far field sound pressure is proportional to fluctuations of 
heat release within the flame [3]. For measurability, many 
publications supported the use of the time derivative of OH*-
Chemiluminescence [4]. However, the density distribution 
within the flame had to be assumed. Progress in combustion 
noise theory made it possible to predict sound emission directly 
as a function of heat release without the need of the mean 
density field [5], but it remains a difficult task to acquire the 
heat release acurately.  Alternatively, early work [6] suggested 
the use the density fluctuations within the flame ρ’T in order to 
estimate density fluctuations in the far field ρ’ and 
consequently combustion noise:  
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with c0 speed of sound, r radial distance of observer, 
volume V and radius r0 of the flame. Since time resolved 
density fluctuations were difficult to measure, an adaption of 
the equation with application of OH*-chemiluminescence 
estimating the mean density within the flame was often 
preferred [2], Recent development and experimental work 
enabled accurate measurements of time resolved line-of-sight 
and local density fluctuations in turbulent jets [7, 8] and in 
laminar [9] and turbulent flames [10, 11]. Therefore, it is now 
possible to prove Strahle’s assumption directly. For the 
research presented herein, a novel technique recording the time 
derivative of the density fluctuation was used. The 
measurement device, a laser interferometric vibrometer (LIV), 
integrates along the laser beam path and scans the two 
dimensional field of the flame. In the standard application of 
vibrometers the motion of an object is measured. If that object 
is a fixed mirror the interferometer in the instrument measures 
the time derivative of the density fluctuations along the laser 
beam path.  
 

THEORETICAL BACKGROUND 

In the following paragraph the calculation of sound power 

from 	 ݐ߲/்′ߩ߲  directly measured by LIV and from 

microphone measurements are presented. Comparing sound 
power has the advantage that this number does not dependent 
on the distance of the observer (microphone) and it is easier to 
measure if the far field condition is not met [12]. It has the 
same significance as comparing density fluctuations since in 

the far field sound power is a direct function of the density 
fluctuation. Flames have a low pass characteristic and in a 
laboratory environment the far field condition for low 
frequencies is usually not fulfilled. Therefore, it is more 
convenient to calculate and compare sound power, which is not 
a function of the radial distance to the flame. 

Prediction of Sound Power from 	 ࣀ࢚ࣔ/ࢀ′࣋ࣔ  

In the far field where sound pressure p’ and particle 
velocity are in phase sound power Pfar can be calculated from 
density fluctuations as follows. 
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Here, a sphere is defined as detection surface. Combining 
Equation 1 and Equation 2 results in the sound power as a 
function of density fluctuations: 
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After performing a fast Fourier transform (FFT) - now in 
the frequency domain - the time derivative of a variable is 
simply the variable times the angular frequency with a time lag 
of pi/2 : 
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Now, in frequency domain, the acoustic power in the far 
field Pfar(f) can be calculated for each frequency f from 
Equation 3. 
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The integral density fluctuation over the flame 

volume	 ρᇱಷ
 is equal to the sum of all fluctuations in the 

vibrometer grid, when the density fluctuations outside the flame 
are low compared to the ones within the flame. That this is the 
case, has been shown by [13]. 
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sound power.  From higher frequencies onward, the consistency 
of trends for both techniques is again very good. 

For linear excitation, the phase of the sound power derived 
from LIV and the microphone array is plotted in Figure 8 
(bottom). Measurements show that for all frequencies tested the 
phase of the LIV is very close to the photomultiplier signal. A 
low deviation of no more than 30 degrees (mostly below 10 
degrees) is expected, since both techniques represent the heat 
release of the flame. In order to compare the phase of the 
microphone with the phase of heat release recorded by LIV, 
firstly, one has to account for the time delay, the acoustic wave 
needs for the distance between the flame and the microphones. 
Secondly, the vibrometer signal is proportional to ∂ρ/ ∂t, but 
the resulting sound is proportional to the second time derivative 
of density. 90° phase shift have to be accounted for when the 
time derivative of a signal is calculated in the frequency 
domain. Therefore, the phase of the acoustics was corrected by 
adding a phase shift which is a function of the distance between 
flame and measurement position as well as the frequency. Then 
 was subtracted to correct for the time derivative in 2/ߨ
frequency domain. 

Analysis of Specific Sound Levels 
When comparing the natural spectrum and the amplitudes 

of linear excitation for the sound power measured by 
microphones, it can be found that the PPM detached flame is 
consistently quieter than the TPM det flame. However, the 
TPM att case is the quietest one for the natural spectrum but 
with excitation, all of a sudden, it becomes the noisiest flame. 
The reason for the natural spectrum to be of lowest amplitude 
has been identified to lie in the stabilization process of the 
anchored flame. But then, with siren excitation, the fluctuations 
of heat release get so violent that the flame anchoring region 
behind the bluff body is heavily disrupted. In Figure 9 left 
density gradients in space at one frequency and one phase angle 
are shown. The surface of the attached flame is heavily 
disrupted. At the end of the flame cone vortex an induced flame 
roll up is observed. This process enlarges the flame surface and 
coherent fluctuations in heat and consequently in noise can be 
observed. The attached V-cone flame almost acts like a rubber 
band, trying to keep the vortex attached to the flame, and then 
suddenly snaps back. In comparison to this, the other points of 
operation are purely dynamically stabilized. Therefore, those 
flames can, within limits, travel up and downstream of the flow, 
dampening the process. Vortex rollup, which introduces shear 
stress in the flow, is more suppressed by this flame motion. The 
vortex rollup in the flame can still be found in the detached 
flames (Figure 9 middle and right), but the density gradients are 
more smeared. 

 

CONCLUSION 

Strahle postulated that the sound of a flame in the far field 
is a function of density fluctuations within the flame. The focus 
of this study was to prove Strahle’s assumption by comparison 

between the predicted noise measured with LIV and a 
microphone array. In the first part, the acoustic field of the 
flame was analyzed. Normalization by the reference 
microphone corrected for sub-Hz frequency fluctuations during 
operation, results in an almost perfectly symmetrical sound 
field. In latitudinal direction, a slight dependency on angle was 
found as detected by other authors [23]. Overall sound power is 
in agreement with experience of former work as well. For the 
level of noise, the stabilization process was found to be the 
dominant factor. For siren excitation, the angular variation of 
sound intensity was traced back to the distribution of 
combustion fluctuations, which were particularly intense at the 
root of the flame.  

Considering sound prediction by heat release fluctuations 
qualitatively, both measurement techniques lie in the same 
order of magnitude.  In this study LIV underestimated the 
actual sound level by a factor of six. A very good agreement in 
trend over the range of investigated frequencies was shown. 
Some factors of influence lie within the equation of sound 
power due to density fluctuations. First, the assumption of a 
monopole, second, in the equation the diameter of the laser 
beam raised to the fourth is considered. Therefore, it is critical 
to accurately determine the diameter when the system is set up. 

Finally, the behavior of the TPM att was explained by 
means of the schlieren technique. This operation point initially 
was the quietest. However, once excited by the siren, it 
consistently had the highest amplitude.  

This leads to the final conclusion, that it is possible to 
predict combustion noise qualitatively due to density gradients 
within the flame. On the basis of direct physical quantities a 
comparison of both techniques revealed a deviation by a factor 
of six. 
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