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Abstract. In this work, we provide the first security analysis of reduced
RIPEMD-160 regarding its collision resistance with practical complex-
ity. The ISO/IEC standard RIPEMD-160 was proposed 15 years ago and
may be used as a drop-in replacement for SHA-1 due to their same hash
output length. Only few results have been published for RIPEMD-160 so
far and most attacks have a complexity very close to the generic bound.
In this paper, we present the first application of the attacks of Wang et
al. on MD5 and SHA-1 to RIPEMD-160. Due to the dual-stream struc-
ture of RIPEMD-160 the application of these attacks is nontrivial and
almost impossible without the use of automated tools. We present prac-
tical examples of semi-free-start near-collisions for the middle 48 steps
(out of 80) and semi-free-start collisions for 36 steps of RIPEMD-160.
Furthermore, our results show that the differential characteristics get
very dense in RIPEMD-160 such that a full-round attack seems unlikely
in the near future.
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1 Introduction

In the last decade, several significant advances have been made in the field
of hash function research. Especially the collision attacks |16H18] on the MD4
family of hash functions, in particular on MD5 and SHA-1, have weakened the
security assumptions of many commonly used hash functions. As a consequence,
NIST is organizing the SHA-3 competition to evaluate alternative hash function
designs and choose a new hash function standard in 2012 [11]. During this on-
going evaluation, not only the three classical security requirements (preimage
resistance, second preimage resistance and collision resistance) are considered.
Researchers also analyze (semi-) free-start collisions, near-collisions, and any
other non-random behavior of a hash function or its building blocks. Commonly,
also simplified or round-reduced variants are studied to get new insights in the
design and strength of a cryptographic primitive.

RIPEMD-160 is a cryptographic hash function which was designed by Dob-
bertin et al. in 1996 [5] and standardized by ISO/IEC in 1997 [6]. As a part of the
ISO/IEC 10118-3 standard on dedicated hash functions, RIPEMD-160 is used
in many applications and is part of several standards, e.g. OpenSSL, OpenPGP.
Furthermore, RIPEMD-160 is often recommended as a drop-in replacement for
D. Gollmann and F.C. Freiling (Eds.): ISC 2012, LNCS 7483, pp. 23 2012.
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SHA-1 due to their same output length. Even though RIPEMD-160 relies on
the same design principles as MD5 and SHA-1, the dual-stream structure makes
RIPEMD-160 more secure against recent attacks on other members of the MD4
family. For this reason, only few results on RIPEMD-160 have been published
to date.

The only work regarding the collision resistance of RIPEMD-160 has been
published by Mendel et al. [9]. In this work, the application of the differential
attacks on RIPEMD by Dobbertin [4] and Wang et al. [16] has been studied.
However, due to the increased number of steps and the two streams are more
different than in RIPEMD, they concluded that RIPEMD-160 might be secure
against these types of attacks. The best currently known attack on the hash
function RIPEMD-160 is a preimage attack for 31 (out of 80) steps by Ohtahara
et al. [12]. However, the complexity of the attack is very close to the generic
complexity of 260, Recently, Sasaki and Wang [14] have shown non-random
properties for up to 51 steps when starting from round 2. However, the complex-
ity of the attack is very high 2'°® and the attack setting is much weaker than in
a collision attack.

In this paper, we provide the first analysis of unmodified RIPEMD-160
against collision attacks. We show how the collision attacks of Wang et al. can
be applied on up to 3 rounds of the RIPEMD-160 compression function. We
present semi-free-start collisions for 36 steps and semi-free-start near-collisions
for 48 steps when starting at round 2. Contrary to all previous results, our re-
sults have a very low complexity and we are able to show practical examples
in all cases. Although we were not able to attack the reduced round hash func-
tion, our results provide a significant improvement in the analysis of the collision
resistance of RIPEMD-160 and gives new insights in its security.

The paper is structured as follows. In Sect. 2] we briefly describe the dual-
stream hash function RIPEMD-160. In Sect. |3| we present different strategies to
construct collisions for round-reduced RIPEMD-160 using local collisions in both
streams. In Sect. [d we show in detail how to find high-probability differential
characteristics and confirming inputs using an automatic search tool. Finally, we
conclude in Sect. [Bl

2 Description of RIPEMD-160

RIPEMD-160 was designed by Dobbertin, Bosselaers and Preneel in 1996 as a
replacement for RIPEMD [5] and is part of the international standard ISO/IEC
10118-3:2004 on dedicated hash functions. It is an iterative hash functions based
on the Merkle-Damgard design principle [2/[10] and produces a 160-bit hash value
by processing message blocks of 512 bits. Like its predecessor RIPEMD, the
compression function of RIPEMD-160 consists of two parallel streams. The two
streams of RIPEMD-160 are designed more differently than those of RIPEMD.
In each stream the expanded message block is used to update the state vari-
ables. After the computations the results of both streams are combined with the
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chaining input, which is illustrated in Fig. [l]and defined as follows:
ho = B_1+ Brg + (3/77 K 10) hs = B_4+ (B75 XK 10) + Bég
hy = B_o + (B77 << 10) + (Bjg << 10) hy = B_5 + By + Big
hy = B_3 + (Brs << 10) + (Bj5 << 10)

The final values of one iteration hg, ..., hs are either the final hash value or the
chaining input for the next message block.
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Fig.1: The compression function (left) and state update transformation (right)
of RIPEMD-160.

State Update Transformation. The five 32-bit input state variables of both
streams hg = B_5 = B’ ; and h; = B_; = B, with 1 <4 < 4 are initialized
with the initial value (first block) or the previous chaining values. The state
update transformation updates the five state variables in five rounds of 16 steps
each using one expanded message word W; in each step.

Note that he Boolean functions f and rotation values s are different in each
stream and each round. f, is used for the r-th round in the left stream and fs_,
for the r-th round in the right stream with 1 < r < 5. For the rotation values s
and the constants K; we refer to [5].

AXY.Z)=XaeYeaZ AXY,Z)=(XANZ)V (Y A=Z)
[(X,Y,Z) = (X ANY)V (~X AZ) (XY, Z)=X & (Y V~-Z)
XY, Z)=(XVY)®Z

Message Expansion. The message expansion of RIPEMD-160 is a round-wise
permutation of the 16 message block words. For the left and the right stream
different permutations are used.
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Step 0123456 78 9101112131415
Round 1|0 1 2 3 4 5 6 7 8 9101112131415
Left |Round2 |7 4131106 153120 9 5 2 1411 8
Round 3310144 9158 1 2 7 0 6 1311 5 12
Stream | Round 4|1 9 11100 8 12 4 13 3 71514 5 6 2
Round 5|4 0 5 9 7122 1014 1 3 8 11 6 1513
Round 1|5 147 0 9 2114136 158 1 10 3 12
Right | Round2 |6 11 3 7 013 51014158 124 9 1 2
Round 3155 1 3 7146 9 11 8 12 2 10 0 4 13
Stream | Round4 |8 6 4 1 311150 5122 139 7 1014
Round 5 (121510 4 1 5 8 7 6 2 1314 0 3 9 11

3 Constructing (Local) Collisions for RIPEMD-160

In this section, we provide a general outline how to construct collisions for
RIPEMD-160. The idea is based on the recent differential attacks on the MD4
family of hash functions |16}|18] and its application to the dual stream hash
function RIPEMD-128 in [§]. The high-level strategy is basically the same in all
attacks and can be summarized as follows:

1. Find a characteristic for the hash function that holds with high probability
after the first round of the hash function.

2. Find a characteristic (not necessary with high probability) for the first round
of the hash function.

3. Use message modification techniques to fulfill conditions imposed by the
characteristic in the first round to increase the probability of the character-
istic.

4. Use random trials to find values for the remaining free message bits such
that the message follows the characteristic.

The most difficult and important part of the attack is to find a good differential
characteristic for both the first round and the remaining rounds of the hash
function, since this defines the final attack complexity.

3.1 Constructing High-Probability Characteristics for RIPEMD-160

In a differential attack on hash functions, we first need to construct differential
characteristics that hold with high probability. In general, a characteristic has
a high probability if the number of differences and conditions imposed by the
differential characteristic is small. We refer to such a characteristic to be sparse.
For single-stream hash functions, a characteristic does not need to be sparse in
the first round, since we can use basic message modification [18] to determinis-
tically construct conforming message pairs. However, in the case of dual-stream
hash functions, a single message word is used to update two streams in each
round which complicates message modification. Therefore, we try to construct
sparse characteristics also in at least one stream of the first round such that the
message modification part can be carried out more efficiently.
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For MD5 a very sparse characteristic with only differences in the MSB of the
chaining variable exists, which can be used to construct long high-probability
characteristics [1]. RIPEMD-160 consists of two MD5-like step update transfor-
mations. However, due to the additional rotation of the state variable B;_4 this
high-probability characteristic does not exist in RIPEMD-160. Moreover, be-
cause of the additional rotation also differences spread rather quickly such that
differential characteristics get dense easily. Therefore, also using a linearized ap-
proximation of the hash function and algorithms from coding theory (as it is
done for instance in the attacks on SHA-1 [13]) does not result in sparse charac-
teristics [9]. The best choice is to use local collisions, which result in large areas
which do not contain any differences at all. This strategy is usually advantageous
for hash functions using permuted message words in the message expansion.

We start by constructing a very sparse (high probability) characteristic for
the hash function after the first round. Then a suitable characteristic for the first
round needs to be constructed. The goal is to use one or more message words
to construct short local collisions within only a few steps in both streams of
the later rounds. This is obviously more difficult for dual-stream hash functions,
since more constraints have to be fulfilled. In particular, the different message
word permutations and rotation values in each stream of RIPEMD-160 make
the construction of many short local collisions difficult.

3.2 Local Collisions

In MD4-like hash functions, a local collision has to start and end by a difference
in a message word. We basically have three options to construct local collisions
for two rounds which are shown in Fig. 2] First, we can use differences in two
message words, to construct local collisions within each round. Second, we can
use differences in a single message word, to construct local collisions spanning
over two rounds. Thirdly, we can combine the two approaches or use even more
message word differences.
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Fig. 2: Three options to construct local collisions for two rounds

Remember that we aim for a high probability differential characteristics after
the first round in both streams. This can be achieved by using short local colli-
sions in the second round. Another possibility is to use local collisions spanning



28 F. Mendel et al.

over two rounds and cancel the differences very early in the second round in each
stream.

To get high-probability differential characteristics, we aim for local collisions
over as few steps as possible. The minimum number of steps for a local collision
in RIPEMD-160 is five since a difference has to pass through all 5 state words.
A single 5-step local collision can easily be constructed using differences in at
least three message words depending on the Boolean function f,.. Assuming that
the differences at the input of the Boolean function can always be absorbed, one
needs only differences in the message words that are used in step one, four and
five of the local collision. Note that if the differences can not be absorbed also
differences in the other message words might be needed.

However, even if we have differences in three message words, we need to
construct up to four (short) local collisions. This places several constraints on the
message words. Possible candidates for message words which contain differences
are given in Sect. [3.3]

If differences in a single message word are used, the local collisions have to
be constructed over two rounds. The advantage is that we only need two local
collisions instead of four. In general, this places less constraints on the message
words and may also lead to sparser characteristics in the third round. However,
this approach has consequences on the minimum number of steps of a local
collision:

Observation 1 The shortest local collision, which uses difference(s) in a single
message word, has to be constructed over siz steps.

The reason for this is the update process of RIPEMD-160. A 5-step local collision
only allows non-zero differences in a single state variable, more precisely if a
message word W; is introducing a difference in step 4, only the state variable
B, contains a difference. This difference can be canceled five steps later using
the same message word. However, at the input of step ¢ + 4 of the 5-step local
collision we get the following setting:

ABi_l = 0, ABi_._g = O, ABH_Q = 0, ABi_._l =0 and ABl 7é 0 and AWk =0

Then, the following step update transformation has to lead to a zero difference
in AB;y4 = 0 in order to produce a 5-step local collision:

A=0 A=0

~

Bits =(((Bi—1 < 10) + f(Bit3, Bita, (Biy1 &< 10)) + Wi + K;14) K s) +
(B; « 10)
N————

A0

However, this equation leads to a contradiction since only one term contains a
non-zero difference. Hence, a 5-step local collision cannot be constructed using
a difference in a single message word. Note that this restriction also applies
to local collisions constructed within one round using only differences in two
distinct message words.
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Since RIPEMD-160 consists of two streams with different permutations of
message words, both streams need to be considered concurrently. The first step
in the attack is to determine those message words, which may contain differences
in order to lead to local collisions. We have several constraints regarding those
local collisions such that the whole attack can be carried out efficiently.

3.3 Choosing Message Word Differences

In this section, we describe the different options to construct sparse local collision
in RIPEMD-160. The best result and the semi-free-start near-collision on 48
steps (see Sect. was obtained using a difference in a single message word.
However, we have also analyzed the use of differences in two or three message
words and present local collisions for these cases as well.

Using a single message word difference, we need to construct local collisions
between round 1 and 2 of RIPEMD-160. If we consider only a difference in a
single message word, we get a sparse differential characteristic in the second
round if the local collisions end as early as possible in both streams. Using W7,
we can construct local collisions which end in the first and fourth step of the
second round in the left and right stream, respectively. The candidates, which
can construct local collisions that end in the first half of round 2 in both streams
are given in Table

Table 1: Local collision candidates (single message word)
Message Local Collision Lengths
Word Left Stream Right Stream
Wr 9 steps (step 7 to 16) | 17 steps (step 2 to 19)
Ws | 15 steps (step 6 to 21) | 7 steps (step 9 to 16)
Wio |10 steps (step 10 to 20)|10 steps (step 13 to 23)

Unfortunately, it is very hard to find a corresponding differential character-
istic for the first round (also see Section [)). Due to the XOR-function used in
round 1 of the left stream and the rather short local collision (9 steps), we did
not succeed in finding a corresponding differential characteristic. However, due
to the repeating pattern in the message expansion of RIPEMD-160, we can use
a local collision of the same length and position between round 2 and 3 using
message word W3 by skipping the first round. Note that this setting is used for
the main attack of this paper and is also shown in Fig.

Note that a single 5-step local collision can be constructed easily using differ-
ences in multiple message words. Since the Boolean functions in the second round
of both streams can absorb the differences, three message words are sufficient
to construct 5-step local collisions. However, due to the message permutation,
it is not possible to construct 5-step local collisions in the second round of both
streams concurrently. We list the shortest local collision for the second round
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Fig. 3: Using message word W3 and round 2-4.

and the resulting local collisions for the first round in Table[2] Unfortunately, we
did not find high-probability characteristics using differences in three message
words.

Table 2: Local collision candidates (triples of message words)

Triples of Local Collision Lengths
Message Left Stream Right Stream
Words Round 1 Round 2 Round 1 Round 2

(Wa, Wi, Wi2)| 8 steps (4 - 12) |7 steps (17 - 24)| 8 steps (7 - 15) |5 steps (23 - 28)
(Ws, Wy, Wis) |10 steps (5 - 15) (5 steps (22 - 27)|10 steps (0 - 10)|7 steps (22 - 29)
(Wa, Who, Wi2) 20 steps (4 - 24) 8 steps (7 - 15) |5 steps (23 - 28)

Another possibility is to use differences in two distinct message words. Only
three message pairs can construct 6-step local collision in round 2 of both streams
concurrently and suitable local collisions in round 1. Those pairs of message
words are presented in Table [3| as well as some candidates for a combined ap-
proach. In such 6-step local collisions, two state variables have to contain differ-
ences. Due to different rotation values and the additional modular addition in
the state update process, it is not possible to use a single bit difference in both
state variables concurrently. Moreover, we need a long carry expansion to cancel
differences in the modular addition which results in not so sparse characteristics.

Table 3: Local collision candidates (pairs of message words)

Pairs of Local Collision Lengths

Message Left Stream Right Stream

Words Round 1 Round 2 Round 1 Round 2
(Wo, Ws) | 8 steps (0 - 8) |6 steps (25 - 31)| 8 steps (3 - 11) |6 steps (20 - 26)
(W=7, Wis) | 8 steps (7 - 15) |6 steps (16 - 22)| 8 steps (2 - 10) |6 steps (19 - 25)
(W3, Wia) |11 steps (3 - 14)|6 steps (23 - 29)|13 steps (1 - 14)|6 steps (18 - 24)
(W12, Wis) 12 steps (12 - 24) 7 steps (8 - 15) |6 steps (21 - 27)
(W7, Whs) 15 steps (7 - 22) 8 steps (2 - 10) |6 steps (19 - 25)
(Wy, Who) 17 steps (9 - 26) 9 steps (4 - 13) |6 steps (23 - 29)
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4 Collision Attacks on RIPEMD-160

In this section, we show how to find semi-free-start near-collisions for 48 steps
and semi-free-start collisions for 36 steps of RIPEMD-160 using an automated
search tool. The results are obtained using the middle 3 rounds of RIPEMD-160
and a single bit difference in message word Wis.

4.1 Automatic Search Tool

To find a differential characteristic and confirming inputs after fixing the message
words which contain differences requires an advanced set of techniques and tools.
Due to the increased complexity of RIPEMD-160 compared to RIPEMD, finding
good (high probability) differential characteristics by hand is almost impossible.
Hence, we have used an automatic tool which can be used for finding complex
nonlinear differential characteristics as well as for solving nonlinear equations
involving conditions on state words and message words. The tool is based on the
approach of Mendel et al. to find both complex nonlinear differential character-
istics and conforming message pairs for RIPEMD-128 [§] and SHA-256 [7].

The basic idea is to consider differential characteristics which impose arbi-
trary conditions on pairs of bits using generalized conditions [3]. Generalized
conditions are inspired by signed-bit differences and take all 16 possible condi-
tions on a pair of bits into account. Table [4] lists all these possible conditions
and introduces the notation for the various cases.

Table 4: Notation for possible generalized conditions on a pair of bits [3].

(Xivxi*) (0,0) (170) (071) (17 1) (XMX:) (070) (170) (07 1) (17 1)
? v v v v 3 v v - -
- v - - v 5 v - v -
X - v v - 7 v v v -
0 v - - - A - v - v
u - v - - B v v - v
n - - v - C - - v v
1 - - - v D v - v v
# - - - - E - v v v

By considering the propagation of these generalized conditions in a bit sliced
way we can construct differential characteristics efficiently. The basic idea of
the search algorithm is to randomly pick a bit from a set of bit positions with
predefined conditions, impose a more restricted condition and compute how this
new condition propagates. This is repeated until an inconsistency is found or all
unrestricted bits from the set are eliminated. Note that this general approach
can be used for both, finding differential characteristics and conforming message
pairs.
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For example, the search strategy for finding nonlinear characteristics works
as follows (for a more detailed description of the search algorithm or how the
conditions are propagated we refer to [7]):

1. Define a set of unrestricted bits (?) and differences (x).

2. Pick a random bit from the set.

3. Impose a zero-difference (=) on unrestricted bits (?), or randomly choose a
sign (u or n) for differences (x).

4. Check how the new conditions propagate.

5. If an inconsistency occurs, remember the last bit and jump back until this
bit can be restricted without leading to a contradiction.

6. Repeat from step 2 until all bits from the set have been restricted.

Note that in RIPEMD-160 we have two modular additions (separated by
a rotation operation) within one state update. Therefore, two different carry
expansions may occur and by only picking random bits of B; respectively B
in the search, the conditions propagate very slowly. Hence, we also consider
output bits of the first modular addition and impose more restrictions on these
conditions. This way contradictions are detected much earlier, which improves
the search significantly.

We use the same strategy to find conforming input pairs for a given dif-
ferential characteristic. Instead of picking an unrestricted bit (?) we pick an
undetermined bit without difference (-) and assign randomly a value (0 or 1)
until a solution is found:

. Define a set of undetermined bits without difference (-).

. Pick a random bit from the set.

. Randomly choose the value of the bit (0 or 1).

. Check how the new conditions propagate.

. If an inconsistency occurs, remember the last bit and jump back until this
bit can be restricted without leading to a contradiction.

. Repeat from step 2 until all bits from the set have been restricted.

Tk W N =

(=]

Note that the efficiency of finding a conforming message pair can be in-
creased if the undetermined bits without difference (-) are picked in a specific
order. The order strongly depends on the specific hash function. In general, fully
determining word after word turns out to be a good approach. It can be used to
find solutions without the need for hand-tuned advanced message modification
techniques.

4.2 Finding a Differential Characteristic

The starting point for the search tool to find a semi-free-start near-collision on
48 steps is given in Table [f] Note that we do not fix the message difference
prior to the search to allow the tool to find a good solution. In order to get a
differential characteristics resulting in a low attack complexity, we aim for a low
Hamming weight difference in the message words, and hence, also in the state
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words after the first 16 steps, i.e. after step 32. Hence, we first search for a good
characteristic in this area.

We start by searching for a sparse differential characteristic only in state
words B}, and Bj, in the right stream. This way the search space gets reduced
significantly on one hand, but also the resulting differential characteristics get
sparser after step 24 in the right stream. This in turn simplifies finding conform-
ing inputs later. We are able to find a differential characteristics with a single
bit differences in W3 (see Table (7)) and only few conditions after step 32, which
results in an overall low attack complexity.

We continue the search for the remaining parts of the differential character-
istic. Using our search tool, we are able find many differential characteristic for
the left and right stream. The differential characteristic for round 2-4 (48 steps)
of RIPEMD-160 is given in Table

4.3 Finding a Confirming Message Pair

To fulfill all conditions imposed by the differential characteristic in the first 16
steps (steps 16-31), we need to apply message modification techniques. Since we
have many conditions in the first steps of the left and right stream this may
not be an easy task. However, using our tool and generalized conditions, we
can do message modification for the first 16 steps quite efficiently. Of course, by
hand-tuning basic message modification the complexity might be significantly
improved, but using our tool this phase of the message search can be automated
and still be done quite efficiently. It can be summarized as follows.

— Since the first steps in the right stream are very dense, we start with guessing
the remaining free bits in the state words Bjg to Bj,y. This determines the
message words W5 and Wis.

— Next we guess the state words Bog to Big in the left stream. This determines
B_1,B_5,B_3 and most of the message words, except W4, W7, and large
parts of Wy, Ws.

— Finally, we guess all free bits in the remaining message words to determine
the remaining state variables and to find a confirming message pair.

The resulting semi-free-start near-collision for three rounds (steps 16-63) of
RIPEMD-160 is given in Table Note that the same input also leads to a
collision for 36 steps of RIPEMD-160. Furthermore, one can combine two semi-
free-start near-collision as given in Table [5| to construct a second-order differ-
ential collision (4-sum) with practical complexity for 48 steps of RIPEMD-160,
which also improves the result of Sasaki and Wang in [15] by 8 steps.

5 Conclusions and Future Work

In this work, we have presented new results on the dual-stream hash function
RIPEMD-160 standardized by ISO/IEC. To be more precise, we show how the
collision attacks of Wang et al. on MD5 and SHA-1, and the recent attack on
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Table 5: Semi-free-start near-collision for round 2-4 (48 steps) of RIPEMD-160.

‘ Hy ‘b23f78a3 7775d378 20806ef8 8d6b662d 4669598 ‘
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00000000 00000000 00000000 00001000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
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AH,; 00000200 01004000 00000000 00000000 00000000
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RIPEMD-128 by Mendel et al. can be extended to RIPEMD-160. We have pre-
sented practical semi-free-start near-collisions for 48 out of 80 steps and semi-
free-start collisions for 36 steps by skipping the first round. Our results improve
upon previous results in a number of ways. First, we have increased the number
of steps for which (near-) collisions for the compression function of RIPEMD-160
can be found. Second, our attacks have a very low complexity and we are even
able to show practical examples.

Unfortunately, it is very hard to find a similar attack including the first round
of RIPEMD-160. Due to the XOR-function used in round 1 of the left stream
we did not succeed in finding a corresponding differential characteristic. It is
part of future work to apply the attack also to round 1-3 which will probably
require many improvements in the automated tool. Furthermore, to find (near-)
collisions also for the reduced hash function of RIPEMD-160 where the chaining
value is fixed, we need to construct sparser local collisions with more freedom to
perform message modification.

The ideas and techniques in this paper may also be used in attacks on other
hash functions, which update more state variables using a single message word,
like SHA-2 or the SHA-3 candidates Blake and Skein.
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Table 6: Starting characteristic for the attack on round 2-4 of RIPEMD-160.
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Table 7: Characteristic for the attack on round 2-4 of RIPEMD-160 once the

differential characteristic after step 24 in the right stream has been fixed.
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Table 8: Differential Characteristic for round 2-4 of RIPEMD-160 resulting in a
semi-free-start near-collision.

i VB; VB] J VW,

-2 1000000

16 00000000000000000000000000000000
17 00001010111111-11111000100011111
18 UuuL Ut tIIIIU I uU L Il u U U iy
19 01-01101001110101001100011-100--
20[---000 nu-nu01000uuuu0u0u01101011-unn--
21 1 11-000u0uu10--u1-111-11--10-00nn
22|---0 uu-0nu01 11-11n110--n1-10uu
23|---nu ----1-01---u-0-1-0n01111-1uuuul0
24|---00------- nuuuuuuuuuuuu000u---|-1--nu0u0---n011-00n0000--01----
25/000----- 10--111111111111111-0000|-10un-0-00------~ 011000---101u-0|| ¢
26|--101101nu111111--1111111-—-———|-~ 1---0u0111----- 100--1n-00100--|[10|----0101-========—==——————— 11--
27| -=——==-= 00----unnnnnnnnnnnnnnn--|===----- nil--u--1---1--0--10-n0--||11
28|-=====——m———— 100010000000000011 0 un--1 u--||12
29|----0000000001111111 00---n 11 1--||13|----11110
30 0|--1----- 1 u--||14 1---10-
31 --0 0--||15 00-----
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