
Collision Attacks on the Reduced Dual-Stream
Hash Function RIPEMD-128

Florian Mendel1, Tomislav Nad2, Martin Schläffer2

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
2 Graz University of Technology, IAIK, Austria

Abstract. In this paper, we analyze the security of RIPEMD-128 against
collision attacks. The ISO/IEC standard RIPEMD-128 was proposed 15
years ago and may be used as a drop-in replacement for 128-bit hash func-
tions like MD5. Only few results have been published for RIPEMD-128,
the best being a preimage attack for the first 33 steps of the hash func-
tion with complexity 2124.5. In this work, we provide a new assessment of
the security margin of RIPEMD-128 by showing attacks on up to 48 (out
of 64) steps of the hash function. We present a collision attack reduced
to 38 steps and a near-collisions attack for 44 steps, both with practical
complexity. Furthermore, we show non-random properties for 48 steps of
the RIPEMD-128 hash function, and provide an example for a collision
on the compression function for 48 steps.
For all attacks we use complex nonlinear differential characteristics. Due
to the more complicated dual-stream structure of RIPEMD-128 com-
pared to its predecessor, finding high-probability characteristics as well
as conforming message pairs is nontrivial. Doing any of these steps by
hand is almost impossible or at least, very time consuming. We present
a general strategy to analyze dual-stream hash functions and use an au-
tomatic search tool for the two main steps of the attack. Our tool is able
to find differential characteristics and perform advanced message modi-
fication simultaneously in the two streams.

Keywords: hash functions, RIPEMD-128, collisions, near-collisions, dif-
ferential characteristic, message modification, automatic tool

1 Introduction

In the last few years, the cryptanalysis of hash functions has become an impor-
tant topic within the cryptographic community. Especially the collision attacks
on the MD4 family of hash functions have weakened the security assumptions
of many commonly used hash functions. Still, most of the existing cryptanalytic
work has been published for this particular family of hash functions [17,19,20]. In
fact, practical collisions have been shown for MD4, MD5, RIPEMD and SHA-0.
For SHA-1, a collision attack has been proposed with a complexity of about
263 [18]. However, some members of this family including the ISO/IEC standard
RIPEMD-128 (the successor of RIPEMD) seems to be more resistant against
these attacks. In this paper, we analyze the security of RIPEMD-128 against
collision attacks and show that the security margin is less than expected.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 226–243, 2012.
The original publication is available at http://www.springerlink.com/content/u0m124116127v7j6/
c© International Association for Cryptologic Research 2012

http://www.springerlink.com/content/u0m124116127v7j6/

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 227

Related Work. Since its proposal 15 years ago only a few results have been
published for RIPEMD-128. Most published results are concerning the preim-
age resistance of the hash function [13, 16]. The best currently known attack is
a preimage attack for 33 steps and 36 intermediate steps of the hash function
with a complexity only slightly faster than the generic complexity of 2128 [16].
The only work regarding the collision resistance of RIPEMD-128 has been pub-
lished by Mendel et al. [11], where the application of the differential attacks on
RIPEMD by Dobbertin [5] and Wang et al. [17] is studied. However, due to the
increased number of steps and the fact that the two streams are more different
than in RIPEMD, they concluded that RIPEMD-128 is secure against this type
of attacks.

Our Contribution. In this paper, we first provide a general strategy to analyze
dual-stream hash functions in Sect. 2. We analyze different methods to find high-
probability differential characteristics which work for both streams. Similar as in
the attack on RIPEMD [17], characteristics in two streams are impossible with
a high probability. Therefore, in our attacks an automatic search tool is essential
for finding valid differential characteristics [4, 10]. This is especially important
in the first round of a hash function where characteristics are usually quite
dense. In this first round, one usually assumes that conditions imposed by the
characteristic can be fulfilled efficiently using message modification techniques.
However, message modification is much more difficult in the dual-stream case
since two state words are updated using a single message word. This reduced
freedom could in general be compensated with hand-tuned advanced message
modification techniques [8,9, 15,20]. However, another contribution of our work
is to provide a fully automatic tool which can be used to find conforming message
pairs in the first round of a dual-stream hash function.

Table 1. Summary of our new and previous results on RIPEMD-128.

component attack steps complexity generic reference

hash collision 38 example, 214 264 Sect. 4

hash near-collision 44 example, 232 247.8 Sect. 5.1

hash non-randomness 48 270 276 Sect. 5.2

compression collision 48 example, 240 264 Sect. 5.3

hash preimage 33 2124.5 2128 [13]

hash preimage interm. 35 2121 2128 [13]

hash preimage interm. 36 2126.5 2128 [16]

We apply our attack strategy and tools to the ISO/IEC standard RIPEMD-128
which we describe in Sect. 3. Using our automatic tools, we are able to construct
the first practical collisions for up to 38 steps of RIPEMD-128 with a complexity
of 214. We describe the collision attack in details in Sect. 4. The attack can be
extended (Sect. 5) to practical near-collisions on 44 steps with complexity 232.

228 F. Mendel, T. Nad and M. Schläffer

Furthermore, we provide a theoretical distinguisher of the hash function for 48
steps (3 out of 4 rounds) and show that 3 rounds of the RIPEMD-128 com-
pression function are not collision free. Our results are summarized in Table 1,
together with all known previous results. Finally, we conclude in Sect. 6 and
discuss directions of future work on hash functions with parallel state update
transformation.

2 Cryptanalysis of Dual-Stream Hash Functions

In this section, we describe our attack strategy for the cryptanalysis of dual-
stream hash functions. The general attack strategy is based on the recent results
in cryptanalysis of the MD4-family of hash functions [17, 20]. However, the ap-
plication of this strategy is nontrivial in the case of dual stream hash functions.
Since in each step, one message word is used to update two state words, the
freedom of an attacker in finding valid differential characteristics and perform-
ing message modification is limited. Hence, a more careful analysis is required
to overcome this problem.

2.1 Collision Attacks on Hash Functions

In the following, we first give a brief overview of the attack strategy used in the
recent collision attacks on the MD4-family of hash functions [17,20]. All attacks
basically use the same strategy which we adopt for dual-stream hash functions.
The high-level strategy can be summarized as follows:

1. Find a characteristic for the hash function that holds with high probability
after the first round of the hash function.

2. Find a characteristic (not necessary with high probability) for the first round
of the hash function.

3. Use message modification techniques to fulfill conditions imposed by the
characteristic in the first round. This increases the probability of the char-
acteristic.

4. Use random trials to find values for the remaining free message bits such
that the message follows the characteristic.

The most difficult and important part of the attack is to find a good differential
characteristic for both the first round and the remaining rounds of the hash
function, since this defines the final attack complexity. There are several methods
to find good differential characteristics. The second important part of the attack
is to find conforming inputs for the complex nonlinear differential characteristic
in the first round of the hash function using message modification techniques.

2.2 Collision Attacks on Dual-Stream Hash Functions

In the following, we will describe our approach to construct good differential
characteristics and find colliding message pairs for dual-stream hash functions.
We focus on hash functions like RIPEMD-128, but the general idea is applicable
to any hash function with two or more streams.

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 229

Finding suitable differential characteristics. If the two streams of the
hash function are the same except for constant additions, the same differential
characteristic can be used in both streams. For instance, in the case of RIPEMD,
the permutation and rotation values are indeed equal for both streams. Hence,
it is sufficient to find a collision-producing characteristic for only one stream
(3 rounds) and apply it simultaneously to both streams [17]. Nevertheless, the
number of necessary conditions increases for two streams. Hence, it is more likely
to have contradicting conditions. In fact, Wang et al. reported that among 30
selected collision-producing characteristics only one can produce a real collision.

If the two streams are more different, we first need to find a differential
characteristic for the hash function after round 1, which holds with a high prob-
ability in both streams. One approach is to find such characteristics is to use a
linearized model of the hash function and algorithms from coding theory [2,7,14].
This works quite well for hash functions with a regular message expansion and
step update transformation (like SHA-1), and can be applied to dual-stream
hash functions in a straight-forward way.

However, the linearization approach does not work well for hash functions
with a permutation of words in the message expansion and different rotation
values in the state update transformation (RIPEMD-128 and RIPEMD-160).
One usually gets linear differential characteristics with high Hamming weight and
hence, a high complexity. However, for such hash functions, we can still make use
of the approach of Wang et al. in the attacks on MD4, RIPEMD and MD5 [17,20].
The idea is to use differences in one or more message words to find local (or
inner) collisions within a few steps in the last round(s) of the hash function.
Then a suitable characteristic for the remaining steps, preferably also using short
local collisions, has to be constructed. Although this is obviously more difficult
for dual-stream hash functions, we were able to construct such high-probability
differential characteristics for reduced RIPEMD-128 (see Sect. 4.1).

Once, the characteristic after round 1 is fixed we need to find a characteristic
(not necessary with high probability) for the first round of the hash function
for both streams. Note that in the previous part of the attack it might still
be possible to construct inner collisions with hand by choosing the differences
carefully. However, to construct a valid nonlinear differential characteristic for
both streams in the first round, an automatic search tool is needed. While one can
use complex differential characteristics in both streams, we aim for differential
characteristics that are sparse in at least one of the two streams, since such sparse
characteristics will then also reduce the complexity of the message modification
step.

Using message modification techniques. Once we have fixed the differential
characteristic for both streams we start with the message search. In the first
round, the freedom of the whole message block can be used to get a conforming
message pair for the first 16 steps. For single-stream hash function, basic message
modification techniques simply choose conforming state words and invert each
step update transformation to get the message word [20]. However, as already

230 F. Mendel, T. Nad and M. Schläffer

noted by Wang et al. [17], message modification is more complicated for two
streams since the conditions on two state words need to be fulfilled using a
single message word. While in RIPEMD the same message word is used in the
same step of the left and right stream, this is not the case in RIPEMD-128,
which significantly increases the complexity of message modification.

In the attack on RIPEMD, two techniques have been proposed exploiting
the freedom of other message bits using carry effects, the Boolean function and
previous message words. The same rotation values in RIPEMD allow an easier
application of this idea since it is still possible to fulfill conditions from LSB to
MSB. However, for streams with different rotation values, previously corrected
conditions may become invalid again. In general, conditions on two state words
using a single message word can be fulfilled using advanced message modification
techniques. Many dedicated techniques have been proposed in recent years [8,
9, 15, 20], which could also be used to fulfill conditions in the first round of
dual-stream hash functions.

To simplify the message modification we use a more general approach. In-
stead of complicated, dedicated techniques, we use an automated tool for the
message modification in the first round. To be more precise, we use the same
tool as for the differential path search in the first round. Instead of searching
for valid differential characteristics in both streams, we search for valid bit-wise
assignments of 0’s and 1’s to the message and state bits in the first round. Since
we solve for conforming message words bit-wise, a different message word per-
mutation, different rotation values and carry effects are handled automatically,
similar as in the search for differential characteristics. Moreover, this approach
can be generalized to any ARX based design.

The disadvantage of our automated bit-wise approach is a slightly higher
complexity, compared to a hand-tuned word-wise approach. However, this in-
creased costs can be amortized by randomizing message words at the end of
round 1 to find solutions efficiently for the high-probability characteristic of the
remaining rounds.

2.3 Automatic Search Tool

The application of the above strategies is far from being trivial and requires an
advanced set of techniques and tools to be successful. Due to the increased com-
plexity of dual-stream hash functions with different streams, finding good differ-
ential characteristics by hand is almost impossible. Therefore, we have developed
an automatic tool which can be used for finding complex nonlinear differential
characteristics as well as for solving nonlinear equations involving conditions on
state words and free message bits, i.e. to find confirming message pairs. Our tool
is based on the approach of Mendel et al. [10] to find both complex nonlinear
differential characteristics and conforming message pairs for SHA-2.

The basic idea is to consider differential characteristics which impose arbi-
trary conditions on pairs of bits using generalized conditions [4]. Generalized
conditions are inspired by signed-bit differences and take all 16 possible condi-

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 231

tions on a pair of bits into account. Table 2 lists all these possible conditions
and introduces the notation for the various cases.

Table 2. Notation for possible generalized conditions on a pair of bits [4].

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X
- X - - X
x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X
- - - -

(Xi, X
∗
i) (0, 0) (1, 0) (0, 1) (1, 1)

3 X X - -
5 X - X -
7 X X X -
A - X - X
B X X - X
C - - X X
D X - X X
E - X X X

Using these generalized conditions and propagating them in a bitsliced man-
ner, we can construct complex differential characteristics in an efficient way. The
basic idea of the search algorithm is to randomly pick a bit from a set of bit
positions with predefined conditions, impose a more restricted condition and
compute how this new condition propagates. This is repeated until an inconsis-
tency is found or all unrestricted bits from the set are eliminated. Note that this
general approach can be used for both, finding differential characteristics and
conforming message pairs.

For example, the search strategy for finding nonlinear characteristics works
as follows (for a more detailed description of the search algorithm or how the
conditions are propagated we refer to [4, 10]):

1. Define a set of unrestricted bits (?) and unsigned differences (x).
2. Pick a random bit from the set.
3. Impose a zero-difference (-) on unrestricted bits (?), or randomly choose a

sign (u or n) for unsigned differences (x).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until this

bit can be restricted without leading to a contradiction.
6. Repeat from step 2 until all bits from the set have been restricted.

We use the same strategy to find conforming input pairs for a given dif-
ferential characteristic. Instead of picking an unrestricted bit (?) we pick an
undetermined bit without difference (-) and assign randomly a value (0 or 1)

until a solution is found:

1. Define a set of undetermined bits without difference (-).
2. Pick a random bit from the set.
3. Randomly choose the value of the bit (0 or 1).
4. Check how the new conditions propagate.
5. If an inconsistency occurs, remember the last bit and jump back until this

bit can be restricted without leading to a contradiction.

232 F. Mendel, T. Nad and M. Schläffer

6. Repeat from step 2 until all bits from the set have been restricted.

Note that the efficiency of finding a conforming message pair can be increased
if the undetermined bits without difference (-) are picked in a specific order. The
order strongly depends on the specific hash function. In general, fully determin-
ing word after word turns out to be a good approach for word-wise defined
ARX-based hash functions. Using this approach, we can instantly (milliseconds)
find solutions for the first round of dual-stream hash functions without the need
for hand-tuned advanced message modification techniques.

3 Description of RIPEMD-128

RIPEMD-128 was designed by Dobbertin, Bosselaers and Preneel in [6] as a
replacement for RIPEMD. It is an iterative hash functions based on the Merkle-
Damg̊ard design principle [3,12] and processes 512-bit input message blocks and
produces a 128-bit hash value. To guarantee that the message length is a multiple
of 512 bits, an unambiguous padding method is applied. For the description of
the padding method we refer to [6].

S
tr
ea
m

1

S
tr
ea
m

2

Mj+1 Mj+1

≪ 64 ≪ 32 ≪ 96

Hj

Hj+1

Fig. 1. Structure of the RIPEMD-128 compression function.

Like its predecessor, the function of RIPEMD-128 consists of two parallel
streams. In each stream the state variables are updated corresponding to the
message block and combined with the previous chaining value after the last
step, depicted in Figure 1. While RIPEMD consists of two parallel streams of
MD4, the two streams are designed differently in the case of RIPEMD-128. In
the following, we describe the compression function in detail.

Each stream of the compression function of RIPEMD-128 basically consists
of two parts: the state update transformation and the message expansion. Fur-
thermore, RIPEMD-128 consists of a feed-forward where the input and output

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 233

state words are added in a different order. For a detailed description we refer
to [6].

State Update Transformation. The state update transformation of each
stream starts from a (fixed) initial value IV of four 32-bit words B−4, B−3,
B−2, B−1. and updates them in 4 rounds of 16 steps each. In each step one
message word is used to update the four state variables. Figure 2 shows one step
of the state update transformation of each stream of RIPEMD-128.

Bi−3

Bi−4

Bi

Bi−1

Bi−1

Bi−2

Bi−2

Bi−3

Ki

Wi

f

≪ s

Fig. 2. The step update transformation of RIPEMD-128.

The function f is different in each round. fr is used for the r-th round in the
left stream, and f5−r is used for the r-th round in the right stream (r = 1, . . . , 4):

f1(x, y, z) = x⊕ y ⊕ z,
f2(x, y, z) = (x ∧ y) ∨ (¬x ∧ z),
f3(x, y, z) = (x ∨ ¬y)⊕ z,
f4(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z).

A step constant Kr is added in every step; the constant is different for each round
and for each stream. For the actual values of the constants we refer to [6], since
we do not need them in the analysis. For both streams the following rotation
values s given in Table 3 are used.

Message Expansion. The message expansion of RIPEMD-128 is a permuta-
tion of the 16 message words in each round. Different permutations are used for
the left and the right stream. For both streams the message words are permuted
according to Table 4.

Feed-Forward. After the last step of the state update transformation, the ini-
tial values B−4, . . . , B−1 and the output values of the last step of the left stream

234 F. Mendel, T. Nad and M. Schläffer

Table 3. The rotation values s for each step and each stream of RIPEMD-128.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left
Round 1 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8

stream
Round 2 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12
Round 3 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5
Round 4 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

right
Round 1 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6

stream
Round 2 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11
Round 3 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
Round 4 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

Table 4. The index of the message words mi which are used as the expanded message
words Wi in each step and each stream of RIPEMD-128.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

left
Round 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stream
Round 2 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
Round 3 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12
Round 4 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2

right
Round 1 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

stream
Round 2 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
Round 3 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
Round 4 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14

B63, . . . , B60 and the last step of the right stream B′63, . . . , B
′
60 are combined,

resulting in the final value of one iteration (feed-forward). The result is the final
hash value or the initial value for the next message block:

B−1 �B62 �B′61
B−4 �B63 �B′62
B−3 �B60 �B′63
B−2 �B61 �B′60

4 Collision Attacks on RIPEMD-128

To find collisions in reduced RIPEMD-128 we use the strategy proposed in
Sect. 2.2. The attack consists of 3 major parts given as follows:

1. Starting Point: Find a good start setting, i.e. differences in only a few
specific message words that may lead in a differential characteristic with
high probability after step 15.

2. Differential Characteristic: Search for a high-probability differential char-
acteristic for the whole hash function where at most one stream has a low
probability in step 0-15.

3. Message Pair: Find a colliding message pair using automated message
modification and random trials.

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 235

4.1 Finding a Starting Point

In MD4-like hash functions, differences are introduced and canceled using dif-
ferences in the expanded message words. Since RIPEMD-128 has two streams
with different permutation of message words, the first step in the attack is to
determine those message words which may contain differences. We have several
constraints such that the whole attack can be carried out efficiently.

First of all, we aim for a high probability differential characteristics after
step 15 in both streams. Such high probability differential characteristics can
be constructed if the differences introduced by the message words are canceled
immediately using local collisions spanning over only a few steps. The shortest
local collision in the MD4 step update goes over 4 steps. However, due to the
different message permutation used in each stream, it is difficult to achieve short
local collisions in both streams simultaneously.

Another possibility is to cancel all differences in each stream as early as possi-
ble in round 2 and find message words, such that new differences are introduced
late in round 3. A further constraint is to have a short local collision and hence
sparse differential characteristic in one stream between step 0-15 such that the
message modification part can be carried out more efficiently (see Sect. 2.2).

A single message word which seems to be a good choice is m13. In this case,
we get one short local collision between round 1 and round 2 in the left stream
and one slightly longer local collision between round 1 and round 2 in the right
stream. Both local collisions end in the first few steps of round 2. Furthermore,
the message word m13 introduces differences very late in the last few steps of
round 3 (see Fig. 3). Note that a similar approach was used by Dobbertin in the
attack on RIPEMD [5]. Unfortunately, no local collision spanning over 5 steps
in the left stream between round 1 and 2 can be constructed which renders the
attack impossible.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

left

right

impossible

Fig. 3. Using only message word m13.

A better choice is to use differences in two message words, like it was done
by Wang et al. in the attack on RIPEMD [17]. If we choose differences in m0

and m6 then we get for the left stream one local collision over 6 steps in round 1,
and another local collision over 4 steps in round 2. Note that in the right stream
a short local collision over 4 steps (step 16-20) is actually impossible. This is
due to the fact that for f3 (ONX-function), a local collision over 4 steps with
differences in only two message does not exist. Hence, we combine in the right

236 F. Mendel, T. Nad and M. Schläffer

stream the two local collisions resulting in one long local collision between step
3 and 20. In round 3, the first difference is added in step 38. Hence, using this
starting point we can get a collision for 38 steps of RIPEMD-128.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

left

right

Fig. 4. Using message words m0 and m6.

4.2 Finding a Differential Characteristic

Once we have fixed the starting point, i.e. the message words which may contain
differences, we use an automated tool to find high-probability differential char-
acteristics. Note that we do not fix the message difference prior to the search to
allow the tool to find an optimal solution.

In order to get a differential characteristics resulting in a low attack complex-
ity, we aim for a low Hamming weight difference in state word B21. The best we
could find is a differential characteristic with 2 differences in B21 (see Table 8).
Furthermore, the Boolean function XOR in the first round of the left stream pro-
vides less freedom in constructing local collisions than the non-linear functions.
Hence, we first search for a differential characteristic in the left stream.

Once the characteristic in the left stream is fixed, we use an arbitrary first
message block to fulfill the conditions on the chaining value. Since we have
14 conditions on the chaining value (see Table 8), finding the 1st block has a
complexity of about 214.

Next, we search for a differential characteristic in the right stream. To get a
low complexity for the message search in round 2, we search for characteristics
with only a few differences in state words B′14 and B′15. Using our search tool,
we can find many differential characteristic for the left and right stream within
only a few minutes on an ordinary PC. A colliding differential characteristic for
38 steps of RIPEMD-128 is given in Table 8.

4.3 Finding a Confirming Message Pair

To fulfill all conditions imposed by the differential characteristic in the first
round, we need to apply message modification techniques. Since we have many
conditions in the first 6 steps of the left stream and the first 15 steps of the
right stream this may not be an easy task. However, using our tool and general-
ized conditions, we can do message modification for the first 16 steps efficiently
and immediately within milliseconds on a PC. Of course, by hand-tuning basic

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 237

message modification the complexity might be improved, but using our tool this
phase of the message search can be fully automated. Furthermore, the cost of
message modification is fully amortized by randomizing e.g. message word m12

to find a solution also for the high-probability characteristic in round 2 (and 3).
Using the approximately 230 possible value for m12, we can find a solution for
the differential characteristic (complexity 214 after round 1) including message
modification in less than a second on our PC. The resulting message pair for a
collision on 38 steps of RIPEMD-128 is given in Table 5.

Table 5. Collision for 38 steps of RIPEMD-128.

M1
9431bddf 7b9827d6 f54a64a9 df41a58a fd707a50 dad10eb6 48b0cc76 be66cb8c

ab3b7afa 084ba98e ab0a4798 2a4b0d06 a79bf8b7 3fd6008a 4da2112d 849c5b9c

M2
952bc70f d0840848 eafffa57 0ca3c38a 45383ffb ddc6a9a1 796f1e20 0b9ff55f

ddb80113 f0ffe1b5 b7d75dc0 82c7298f f2c442f4 96cbf293 c441d662 06e9eec2

M∗2
952bc50e d0840848 eafffa57 0ca3c38a 45383ffb ddc6a9a1 79ef1e21 0b9ff55f

ddb80113 f0ffe1b5 b7d75dc0 82c7298f f2c442f4 96cbf293 c441d662 06e9eec2

∆M2
00000201 00000000 00000000 00000000 00000000 00000000 00800001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 a0a00507 fd4c7274 ba230d53 87a0d10a

H∗2 a0a00507 fd4c7274 ba230d53 87a0d10a

∆H2 00000000 00000000 00000000 00000000

5 Extending the Attack to More Steps

In this section, we will show how the collision attack on 38 steps can be ex-
tended to more steps of the hash function by using a weaker attack setting, i.e.
near-collisions and subspace distinguisher. Furthermore, we present a free-start
collision for 48 steps of RIPEMD-128 compression function.

5.1 Near-Collisions for the Hash Function

It is easy to see that by appending 6 steps to the characteristic for 38 steps one
gets a near-collision for 44 steps of the hash function with only 6 differences in
the hash value. However, note that while in the collision attack one can always
append a message block with the correct padding this can not be done for a
near-collision. Hence, in order to construct a near-collision for the hash function
the padding has to be fixed on beforehand. Luckily, we have such a high amount
of freedom in our attack the we can easily fix m15,m14 and parts of m13 in the
attack to guarantee that the padding is correct. The result is a practical near-
collision (see Table 6) for 44 steps of RIPEMD-128 with complexity of 232. Note
that the generic attack to find a near-collision with only 6 differences in the hash
value has a complexity of about 247.8.

238 F. Mendel, T. Nad and M. Schläffer

Table 6. Near-collision for 44 steps of RIPEMD-128.

M1
2ca95052 425a8f73 08be4537 c790e019 0dcc7d4e 29075123 75327262 8d0d4803

1e57a6a4 73550688 59263eb1 98c6f6ce f03b8b4b 62d3fdf7 638db196 68c0b7b3

M2
aa1437ef f3646663 c339343a 52c43a1a 779995d5 7b6bd784 e927bb74 5e7cb217

7af2ac15 93392ccf 07e847cf 86318b70 d9d33105 809693dd 000003b8 00000000

M∗2
aa1435ee f3646663 c339343a 52c43a1a 779995d5 7b6bd784 e9a7bb75 5e7cb217

7af2ac15 93392ccf 07e847cf 86318b70 d9d33105 809693dd 000003b8 00000000

∆M2
00000201 00000000 00000000 00000000 00000000 00000000 00800001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 92dd7ef7 b1f15ee4 b3e6a250 9db2131b

H∗2 929d5ef7 b1f15ee4 b3e6a250 bdb21b5f

∆H2 00402000 00000000 00000000 20000844

5.2 Non-Randomness for the Hash Function

In this section, we show non-random properties for 48 steps (3 rounds) of the
hash function. It is based on the differential q-multicollision distinguisher and
the differential characteristic for 44 steps which is extended to 48 steps.

Differential q-multicollisions were introduced by Biryukov et al. in the crypt-
analysis of the block cipher AES-256 [1]. Note that in [1] the attack is described
for a block cipher. However, it can be easily adapted for a hash function. Below we
repeat the basic definition and lemma, we need for the attack on RIPEMD-128.

Definition 1. A set of one difference and q inputs

{∆M ; (M1), (M2), · · · , (Mq)}

is called a differential q-multicollision for h(·) if

h(M1)� h(M1 �∆M) = h(M2)� h(M2 �∆M)

= · · · = h(Mq)� h(Mq �∆M).

The complexity of the generic attack is measured in the number of queries.

Lemma 1. To construct a differential q-multicollision for an ideal has function
with an n-bit output an adversary needs at least

O(q · 2
q−1
q+1 ·n)

queries on the average for small q.

The proof for Lemma 1 works similar as in [1] for an ideal cipher. Finally,
we construct a differential q-multicollision to show non-random properties for
RIPEMD-128 reduced to 48 steps. The attack has a complexity of about 4 · 268
while the generic attack has a complexity of about 276.

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 239

5.3 Collisions for the Compression Function

When attacking the compression function an adversary has additional the pos-
sibility to inject difference in the chaining input. Using this additional freedom
and the same techniques as for the collision attack on the RIPEMD-128 hash
function (see Section 4), we can construct a collision for the compression function
of RIPEMD-128 reduced to 48 steps. In Table 9 the differential characteristic is
shown, resulting in a practical collision for 48 steps of the compression function
with a complexity of 240. The example is given in Table 7.

Table 7. Free-start collision for 48 steps of RIPEMD-128.

H0 5a1d2fbd cd6d40c7 128dd546 900e0e65

H∗0 5a1927bd edad5cc7 128dd542 900e0e65

∆H0 00040800 20c01c00 00000004 00000000

M1
06083719 9ae0b19b 7ffae1ec 637041ad 28d722d7 fa0082c3 5e78f84e 416ee5e7

faf2b4fc 56738a9f 363c6155 cc7d7ae3 0cb5fc95 b362a16f 6cac81a9 cc11fedd

M∗1
06083719 9ae0b19b 7ffae1ec 637041ad 28d722d7 fa0082c3 5e78f84e 416ee5e7

faf2b4fc 56738a9f 363c6155 cc7d7ae3 0cb5fc95 b362a16f 6cac81a9 cc11fedd

∆M1
00000200 00000000 00000000 00000000 00000000 00000000 00000001 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H1 e6428c57 a9f1f589 fc045baf a9cdbc1f

H∗1 e6428c57 a9f1f589 fc045baf a9cdbc1f

∆H1 00000000 00000000 00000000 00000000

6 Conclusions and Future Work

In this work, we have presented new results on the ISO/IEC standard RIPEMD-128,
a dual-stream hash function where the message permutation and rotation values
are different in the two streams. More specifically, we have presented a collision
attack on reduced RIPEMD-128 and get practical collisions for 38 steps of the
hash function with a complexity of about 214. Furthermore, our attack can be
extended to near-collisions on 44 steps with complexity 232 and a theoretical
distinguisher on the hash function for 48 steps (3 out of 4 rounds) with com-
plexity 270. Furthermore, we present practical collisions for the RIPEMD-128
compression function, also reduced to 48 steps with complexity 240.

Apart from these new results, we have outlined a strategy to analyze ARX-
based dual-stream hash functions more efficiently. More precisely, we have shown
how to automate the most difficult parts of an attack involving more than one
stream: finding a differential characteristic and performing message modification
in the first round. In particular, message modification had to be hand-tuned or
was omitted in previous attacks on ARX-based hash functions. What remains
for an attacker is to determine a good starting point (possibly using tools from
coding theory) and to assist the tools in the order of guessing words or parts of
the state, to improve the overall complexity.

240 F. Mendel, T. Nad and M. Schläffer

Ideally, these tools can immediately be applied to more complicated hash
functions. However, the obtained results depend mainly on the choice of the
starting point for the nonlinear tool. If no good starting point can be found or
the search space is too large, no attack can be obtained. Future work is to analyze
also other, stronger dual-stream hash functions like RIPEMD-160. Furthermore,
the tools and techniques used in this paper can also be applied to other ARX-
based hash functions, where more than one state word is updated using a single
message word. Examples are SHA-2 or the SHA-3 candidates Blake and Skein.

Acknowledgments

This work was supported in part by the Research Council KU Leuven: GOA
TENSE (GOA/11/007), by the IAP Programme P6/26 BCRYPT of the Belgian
State (Belgian Science Policy) and by the European Commission through the
ICT programme under contract ICT-2007-216676 ECRYPT II. In addition, this
work was supported by the Research Fund KU Leuven, OT/08/027 and by the
Austrian Science Fund (FWF, project P21936).

References

1. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO. LNCS, vol. 5677, pp. 231–249.
Springer (2009)

2. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision
Attacks: Application to CubeHash and MD6. In: Matsui, M. (ed.) ASIACRYPT.
LNCS, vol. 5912, pp. 560–577. Springer (2009)

3. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO. LNCS, vol. 435, pp. 416–427. Springer (1989)

4. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. LNCS, vol. 4284, pp.
1–20. Springer (2006)

5. Dobbertin, H.: RIPEMD with Two-Round Compress Function is Not Collision-
Free. J. Cryptology 10(1), 51–70 (1997)

6. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Version
of RIPEMD. In: Gollmann, D. (ed.) FSE. LNCS, vol. 1039, pp. 71–82. Springer
(1996)

7. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. In: Dunkelman, O.
(ed.) FSE. LNCS, vol. 5665, pp. 246–259. Springer (2009)

8. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO. LNCS, vol. 4622, pp. 244–263. Springer (2007)

9. Kĺıma, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. IACR
Cryptology ePrint Archive 2006, 105 (2006)

10. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT. LNCS, Springer (2011), to appear

11. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the Collision Re-
sistance of RIPEMD-160. In: Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S.,
Preneel, B. (eds.) ISC. LNCS, vol. 4176, pp. 101–116. Springer (2006)

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 241

12. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO.
LNCS, vol. 435, pp. 428–446. Springer (1989)

13. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced
RIPEMD-128 and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt.
LNCS, vol. 6584, pp. 169–186. Springer (2010)

14. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Colli-
sion Attacks on SHA-1. In: Smart, N.P. (ed.) IMA Int. Conf. LNCS, vol. 3796, pp.
78–95. Springer (2005)

15. Sugita, M., Kawazoe, M., Imai, H.: Gröbner Basis Based Cryptanalysis of SHA-1.
IACR Cryptology ePrint Archive 2006, 98 (2006)

16. Wang, L., Sasaki, Y., Komatsubara, W., Ohta, K., Sakiyama, K.: (Second) Preim-
age Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-Collision
Approach. In: Kiayias, A. (ed.) CT-RSA. LNCS, vol. 6558, pp. 197–212. Springer
(2011)

17. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT. LNCS, vol. 3494, pp. 1–
18. Springer (2005)

18. Wang, X., Yao, A., Yao, F.: New Collision Search for SHA-1. Presented at rump
session of CRYPTO (2005)

19. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO. LNCS, vol. 3621, pp. 17–36. Springer (2005)

20. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT. LNCS, vol. 3494, pp. 19–35. Springer (2005)

242 F. Mendel, T. Nad and M. Schläffer

A Differential Characteristics and Conditions

Table 8. Characteristic for a collision on 38 steps of RIPEMD-128. Bits with gray
background have one additional conditions.

i ∇Bi ∇B′i ∇mi

-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 -------unnnnunnnnnnnn----------- -------------------------------- ----------------------u--------u

1 ------n--------------nuuuunnnnnn -----------0--------0----------- --0-----------------------------

2 ------unnunnnnnnnnnnnnnnnnnnnnnn -----------0--------0----------- --------------------------------

3 -------------------------------- --0100-----u--------u----0110--- --------------------------------

4 -------------------------------- --1101----1-1-------1----1111--- ---0----------------------------

5 -------------------------------- --unnn00--1-1-------1----unnn-00 --------------------------------

6 -------------------------------- --000010--n-u---00--n----0111-10 --------n----------------------n

7 -------------------------------- 001nuuuu--0-----11111----1001-nu --------------------------------

8 -------------------------------- 110100----1-----un11n-------u--- --------------------------------

9 -------------------------------- un1n00----------1-unn---1---1--- --------------------------------

10 -------------------------------- --n0u1----------0-10000-----1--- --------------------------------

11 -------------------------------- --0nuu------------01n11-----n--- --------------------------------

12 -------------------------------- --110--------------nuuu--------- --------------------------------

13 -------------------------------- ---01--------------11-1--------- --------------------------------

14 -------------------------------- -------------------00-1--------0 --------------------------------

15 -------------------------------- ----------------------n--------n --------------------------------

16 -------------------------------- ----------------------n--------n

17 -------------------------------- ----------------------0--------0

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------n --------------------------------

22 ----------------------0--------0 --------------------------------

23 ----------------------1--------1 --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128 243

Table 9. Characteristic for a free-start collision for 48 steps of RIPEMD-128 compres-
sion function. Bits with gray background have one additional conditions.

i ∇Bi ∇B′i ∇mi

-4 -------------u------u-----------

-3 --0-----00---------011-------1--

-2 -00-00--10-011-----101---10--u--

-1 -1n-11--nu-011-----nnn---10--1-1

0 un1nnnnn00nu01---un101nuunnnn0n0 010-1u-----nuu--1-101101-010-1-1 -----------0----------u--------1

1 nnnnnnnnnnnnnnnnn--010---01--n-u 1nn-n1-----n00-01-110110-n11-00u -------------------100----------

2 --0-----10--unnnnnnnnnnnnnnnnnnn u1n--1000-1n10-0n-un-nnn-unu---1 -----------11--------0---1------

3 --1-----00---------110---10----0 0n0--n1111-01u-u---01uu--1---nu1 -------------------------------1

4 -------------------110---10----1 u11---unn0u11111---001---10--0nu ------------------------110--111

5 -------------------------------- u1----011uuun010-0-1nu----0-01u1 --------------------------------

6 -------------------------------- 0u----10u11uu0n--1-n----10u---0u -------------------------------n

7 -------------------------------- 00------n1n0101--n-0----111---11 -------------------0------------

8 -------------------------------- -1------0unnnnn0000u0000un1----0 --------------------------------

9 -------------------------------- --------110---n11u10111-10n00--- 0----------1---------0----------

10 -------------------------------- ---------01---0unnnnnnnn1u011--- --------------------------------

11 -------------------------------- --------------1011-----nuuuuu--- -------0------------------------

12 -------------------------------- ---------------100-----010------ --------------------------------

13 -------------------------------- -----------------------101------ ------------------------------11

14 -------------------------------- ----------------------0--------- --------------------------------

15 -------------------------------- ----------------------n--------- ------------------------1-------

16 -------------------------------- ----------------------n---------

17 -------------------------------- ----------------------0---------

18 -------------------------------- --------------------------------

19 -------------------------------- --------------------------------

20 -------------------------------- --------------------------------

21 ----------------------n--------- --------------------------------

22 ----------------------0--------- --------------------------------

23 ----------------------1--------- --------------------------------

24 -------------------------------- --------------------------------

25 -------------------------------- --------------------------------

26 -------------------------------- --------------------------------

27 -------------------------------- --------------------------------

28 -------------------------------- --------------------------------

29 -------------------------------- --------------------------------

30 -------------------------------- --------------------------------

31 -------------------------------- --------------------------------

32 -------------------------------- --------------------------------

33 -------------------------------- --------------------------------

34 -------------------------------- --------------------------------

35 -------------------------------- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- -------------------------n------

39 -------------------------------- -------------------------0------

40 -------------------------------- -------------------------1------

41 ---------0---------------------- --------------------------------

42 ---------u---------------0------ --------------------n-----------

43 ---------1---------------n--0--- --------------------0-----------

44 ---------1---------------1--10-- --------------------1-----------

45 --0---------------0--0---1--nu-- ---------u----------------------

46 --u---------------u--n------11-- ---------0---n------------------

47 -------------------nu----------- --------------------------------

	Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128

