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ABSTRACT

Historically, non-architectural state was considered non-observable.
Side-channel attacks, in particular on caches, already showed that
this is not entirely correct and meta-information, such as the cache
state, can be extracted. Transient-execution attacks emerged when
multiple groups discovered the exploitability of speculative execu-
tion and, simultaneously, the exploitability of deferred permission
checks in modern out-of-order processors. These attacks are called
transient as they exploit that the processor first executes operations
that are then reverted as if they were never executed. However, on
the microarchitectural level, these operations and their effects can
be observed. While side-channel attacks enable and exploit direct ac-
cess to meta-data from other security domains, transient-execution
attacks enable and exploit direct access to actual data from other se-
curity domains. In this paper, we show how the transient-execution
landscape evolved since the initial discoveries. We show that the
understanding and systematic view of the field has advanced and
now facilitate the discovery of new attack variants.
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1 INTRODUCTION

Modern processors are designed to comply with a defined inter-
face, the instruction-set architecture, allowing to run the same
binaries on different processors. Hence, processors can optimize
performance and efficiency as long as the behavior is architecturally
defined. One optimization that improves performance substantially
is caching. Caching is entirely transparent to software, but it intro-
duces a significant speed up for memory accesses and execution
by storing data likely to be accessed in the near future in small
internal CPU memories. Another optimization is branch prediction.
The processor guesses which direction of a branch is taken and
thus does not have to wait with the execution of further instruc-
tions until the branch is resolved. If the branch predictor correctly
predicted the outcome, a significant performance gain is possible.
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From a security perspective, non-architectural state was long
considered non-observable as there is no attacker-accessible inter-
face to check what is in the cache. Kocher [23] brought up the idea
that caches could be used in side-channel attacks. Such attacks mea-
sure the latency of memory accesses to infer what is in the cache,
yielding an interface that makes non-architectural state visible to
an attacker. However, the information extracted here is only meta-
information, i.e., whether the data was retrieved from the cache or
main memory. While this enables powerful cryptographic [28] and
non-cryptographic [12] attacks, both the security community and
the architecture community deemed it most reasonable to design
code in a way such that secrets do not influence meta-information,
e.g., no secret-dependent memory accesses [3].

In 2018, Spectre [22] and Meltdown [25] were disclosed to the
public. They exploit transient execution, the execution of opera-
tions which should not be executed, to leave microarchitectural
traces. The processor runs into transient execution when a branch
is mispredicted, due to lazy exception handling, or other microar-
chitectural constellations requiring at least a partial pipeline flush
or stall. Initially, it was expected that more Spectre variants would
be found, but Meltdown was perceived as a one-off vulnerability.

With Foreshadow [38, 41], it became clear that further Meltdown-
like effects exist. Foreshadow extended the user-to-kernel attack,
to a generic attack able to leak data from any physical memory
location. In some sense, it foreshadowed the further development
in this field, with many different Meltdown-type attacks discovered
by now [4, 32, 40].

While the field of transient-execution attacks has grown ever
since its initial discovery, so has the field of potential countermea-
sures. Concurrent work has analyzed and highlighted different
approaches from academia and industry in mitigating Spectre-,
Meltdown-, and LVI-type attacks [5].

In this paper, we show how the transient-execution landscape
evolved since these initial discoveries. We introduce a 6-phase gen-
eralization of transient-execution attacks. We describe the currently
known types of Spectre attacks, exploiting microarchitectural mis-
predictions. In contrast to previous work [7], we then provide a
novel systematic view on Meltdown attacks that emphasizes simi-
larities between Meltdown-type attacks rather than differences. We
show that the understanding and systematic view of the field has
advanced since the 2018 disclosure. We conclude that the discovery
of new attack variants increasingly builds on this systematic view.

Outline. Section 2 provides technical background on specula-
tive and out-of-order execution, cache attacks, and store-to-load
forwarding. Section 3 introduces transient-execution attacks and
structures them in 6 attack phases. Section 4 describes state of the
art on Spectre-type attacks, Meltdown-type attacks based on the
similarities we identified, and LVI attacks as inverted Meltdown-
type attacks. Section 5 concludes our paper.
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2 BACKGROUND

In this section, we provide background on speculative and out-of-
order execution, cache attacks in general as well as on store-to-load
forwarding.

2.1 Speculative and Out-of-Order Execution

As CPUs need to outperform the previous generation of CPUs,
vendors include many different forms of optimizations. Two such
optimizations are speculative and out-of-order execution.

Out-of-Order Execution. CPUs parallelize more and more
parts of the execution of instructions. In the pipeline, the fetch,
decode, execute, and write-back stages handle a multitude of opera-
tions simultaneously. This parallelization allows the CPU to execute
instructions out-of-order as soon as their operands are available,
while instructions that precede them in the instruction stream are
still waiting for their operands. Even though the instructions are
executed out-of-order, they must still retire (commit) in-order as
in the instruction stream to ensure a correct architectural state
and enable precise interrupts. This design goes back to Tomasulo’s
algorithm [37].

Speculative Execution. Speculative execution is an optimiza-
tion that tries to improve the performance of the non-linear instruc-
tion stream of an application. The CPU contains a branch prediction
unit (BPU) that tries to predict, based on past behavior, what the
most likely direction of control flow is in the instruction stream.
The BPU typically consists of several structures, each designed to
predict the behavior of different control-flow mechanisms. We refer
to Canella et al. [7] for a more detailed description of the individual
structures that comprise the BPU.

2.2 Cache Attacks

Cache attacks have become a widely used building block in mi-
croarchitectural attacks, especially for transient-execution attacks.
Cache attacks exploit the timing difference between accessing data
that resides in the cache, e.g., data was used recently, and data in
main memory. Hence, due to the cache being closer to the CPU, its
latency in responding to a memory request is far lower than a main
memory access. While there are a variety of cache attacks such as
Flush+Reload [13, 44], Prime+Probe [28, 29], Flush+Flush [10], or
Evict+Time [3, 28], all of them share the same three stages.
(1) The attacker brings the microarchitecture into a pre-defined
state.
(2) The attacker lets the victim perform an operation.
(3) The attacker infers information on victim behavior based on
microarchitectural state changes.
Covert channels are a special case of cache attacks. In such a
scenario, the attacker controls both the sender and the receiver,
enabling them to bypass restrictions on the architectural level.

2.3 Store-to-Load Forwarding

For store-to-load forwarding, two components are used, namely the
memory disambiguation predictor and the store buffer. The idea
for store-to-load forwarding is to forward the data from a store
that is in the store buffer and has not yet been written back to the
cache to a load that uses the same address. There are four different
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Figure 1: High-level overview of a transient-execution attack
in 6 phases: (1) preparation, (2) transient-execution trigger,
(3) access secret, (4) encode secret, (5) architectural revert, (6)
decode secret.

cases that need to be considered for store-to-load forwarding with

respect to the load address:

e True positive match. A store buffer entry is matched with
the same full physical address. In this case, the data is for-
warded, which is the correct behavior.

e True negative match. No store buffer entry matches, and
there is no store buffer entry with the same full physical
address. No data is forwarded, which is the correct behavior.
False negative match. No store buffer entry matches, al-
though there is one with the exact same full physical address.
The load retrieves stale data, e.g., from the L1 cache, and has
to be reissued later on.

o False positive match. A store buffer entry is matched, but
the full physical address check at the end fails. In this case,
data is first transiently forwarded, but the load has to be
reissued later on.

3 BASIC IDEA OF TRANSIENT-EXECUTION
ATTACKS

With transient execution, we describe the execution of instruc-
tions that are executed but whose results are never committed to
the architectural level. We refer to these instructions as transient
instructions [7, 22, 25]. Nevertheless, these transient instructions
leave traces behind in the microarchitecture by changing its state,
e.g., loading data into the cache. The literature has so far identified
two different causes of transient execution, namely speculative and
out-of-order execution [7, 22, 25]. With speculative execution, it is
possible to execute transient instructions due to a wrong prediction
of a branch or data dependency. Out-of-order execution can lead
to transient execution due to a previous instruction in the pipeline
triggering an exception. In that case, the next instructions in the
pipeline may still be executed. Both cases have one thing in com-
mon: the operations and the architectural state have to be reverted,
including flushing the pipeline.

While transient-execution attacks so far have relied on side chan-
nels, i.e., predominantly the cache, for the transmission, we note
that they themselves are not side channels, contradicting previous
literature [14].

Canella et al. [7] proposed 5 distinct phases for a transient-
execution attack while Xiong and Szefer [43] propose 3 phases.
The phases by Xion and Szefer [43] are similar to the ones by
Canella [7] with the three middle phases merged together. We ex-
tend the proposal by Canella et al. [7] with one additional distinct



Phase 3 that we will describe in the following. Our extended phases
are shown in Figure 1. Note that each phase may be either per-
formed indirectly by the victim, i.e., attacker provides the necessary
trigger to the victim, or directly by the attacker.

Phase 1. This phase is the preparation phase of the attack
and consists of two parts. In the first, the attacker prepares the
microarchitecture in a way that allows entering transient execution
during which the secret data is accessed. This includes ensuring that
the transient window, i.e., the time between the execution of the
first transient instruction and the last one, is large enough. In the
second, the attacker prepares the microarchitectural transmission
channel so that the data can be recovered.

Phase 2. The attacker triggers transient execution using a trig-
ger instruction. For Spectre-type attacks, this could be any branch
in the victim domain. For Meltdown-type or LVI-type attacks, this
could be any form of an aborting instruction, i.e., an instruction that
triggers a fault, an assist, or an interrupt. In the case of Spectre-type
and LVI-type attacks, the trigger instruction is in the victim domain.
For Meltdown-type attacks, it is in the attacker domain.

Phase 3. We split Phase 3 from the proposal by Canella et al.
[7] into two phases, Phase 3 and Phase 4. In Phase 3, the transient
instructions are executed either in the victim or the attacker do-
main. Typically, these instructions access data of interest to the
attacker, ie., a secret such as a password. As a final step in this
phase, the attacker prepares the data for transmission through a
microarchitectural covert channel such as the cache.

Phase 4. This phase is the last in the transient domain. In this
phase, the attacker encodes the previously prepared data in the
microarchitecture. So far, the covert channel that has been used
predominantly in the published literature is the cache [7].

Phase 5. In this phase, the CPU realizes the mistake, i.e., the
misprediction or that an exception has been raised. The architec-
tural changes are reverted and the pipeline is flushed. The CPU
then continues with the execution of the correct instructions, i.e., a
number of instructions may have to be reissued. In the case of Spec-
tre, the CPU executes the correct side of the branch; in Meltdown,
it executes the exception handler. Nevertheless, in this phase, the
information the attacker wants to obtain is already encoded in the
microarchitecture where not all changes are reverted.

Phase 6. In the recovery phase, the attacker extracts the encoded
data from the microarchitectural level to the architectural level. As
the data is usually encoded in the cache, the attacker uses cache
side channels, such as Flush+Reload, to perform this task.

4 TRANSIENT-EXECUTION ATTACKS

In this section, we discuss the known transient-execution attacks
in more detail. We first focus on attacks that belong to the Spectre
class of attacks, then move on to the Meltdown class of attacks, and
finally discuss LVI-type attacks.

4.1 Spectre-type Attacks

Spectre-type attacks so far exclusively rely on exploiting transient
execution following a misprediction. Misprediction occurs when-
ever the CPU predicts to take the wrong path based on past behavior.
To make this prediction, the BPU consists of multiple predictors,
each designed to predict a different type of branch. The Pattern

History Table (PHT) is used to predict the outcome of a direct
branch, such as an if-statement. Typically, the PHT is indexed by
some bits of a virtual address and contains a saturating counter per
entry [9]. The Branch Target Buffer (BTB) is used to predict the
target of a branch following an indirect branch. For that, the BTB
stores the previous jump target for the current address. The Return
Stack Buffer (RSB) is used to improve the performance of return
statements. Every call stores the return address at the top of the
RSB, and each return pops the top of it. The last predictor that has
been exploited so far is the memory disambiguator that is involved
in store-to-load forwarding. This predictor tries to predict whether
a load operation overlaps with a previous store operation [20].

Canella et al. [7] systematically analyzed Spectre-type attacks
and how each unit is shared within a processor core. Their analysis
showed various potential strategies for mistraining the individual
branch predictors. Same-address-space strategies mistrain within
the same address space using either the target address or a congru-
ent address that refers to the same entry in the predictors. They
also showed that the same two strategies can be exploited in a
cross-address-space scenario if the predictor is shared between hy-
perthreads. Their proposed classification also indicates for each
Spectre variant which predictor is exploited.

Spectre-type attacks require different types of gadgets, i.e., code
sequences, to execute. These types, as well as different detection
techniques, have been analyzed by Canella et al. [7]; hence we refer
the reader to their paper for further information.

Spectre-PHT. Spectre-PHT was one of the first two Spectre
variants discovered by Kocher et al. [22]. Here, the PHT is exploited
by mistraining it repeatedly to take a certain path following, e.g.,
a bounds check. Afterward, the attacker can supply a value that
would cause the CPU to execute the other path of the bounds
check, but due to the prediction, it still executes the mistrained
path. Schwarz et al. [33] have demonstrated that such an attack is
also possible via the network.

Spectre-BTB. Spectre-BTB is the second variant discovered by
Kocher et al. [22]. As the name indicates, it exploits the behavior
of the BTB to force the CPU to predict a wrong jump target. With
Spectre-BTB, the attacker can redirect control-flow to virtually any
address within the victim domain. Similarly to return-oriented pro-
gramming (ROP) [34], the attacker can chain multiple jump targets
together to achieve arbitrary transient execution as far as the tran-
sient window allows. Straight-line speculation vulnerabilities [2]
exploiting exception generating instructions, unconditional direct
and indirect branches also fall into this category.

Spectre-RSB. Horn [15] and Kocher et al. [22] first mentioned
the possibility of exploiting the RSB, but the first attack was demon-
strated by Koruyeh et al. [24] and Maisuradze and Rossow [27]. In
a Spectre-RSB attack, the attacker poisons the RSB with malicious
return destinations that the victim program pops from the stack
upon a return, redirecting control flow to a leak gadget. Straight-
line speculation vulnerabilities [2] exploiting exception or function
returns fall into this category as well.

Spectre-STL. Horn [16] demonstrated that loads can transiently
obtain stale values. The reason for that is that the memory dis-
ambiguator predicts that a current load does not depend on any
previous store. The load operation is then scheduled before the
preceding store and obtains the old value from the cache. In its



essence, Spectre-STL exploits a false negative match in the store
buffer.

4.2 Meltdown-type Attacks

Canella et al. [7] proposed a canonical naming scheme for Meltdown-
type attacks. In the first layer, they distinguish the type of the fault
or the assist that causes transient execution. In the following layers,
they distinguish different reasons for the fault or assist and from
which buffer they leak from. Consequently, every Meltdown-type
attack has a precise canonical name.

In this paper, we want to highlight the similarities between
the different Meltdown-type attacks. Based on our analysis of the
attacks, we divide Meltdown-type attacks into the following three
groups based on their microarchitectural behavior:

e Deferred Permission Check. Meltdown-type attacks in
this category show architecturally correct behavior but with
a lack of permission checks, e.g., Meltdown-US [25]. These
Meltdown-type attacks perform operations that, from the
CPU’s perspective, would be valid and meaningful at a dif-
ferent permission level. For instance, attempting to access a
kernel address is valid and meaningful for kernel code.

o Incorrect Use of Intermediate Values. Some Meltdown-
type attacks exploit the usage of intermediate values to re-
trieve data, e.g., Foreshadow [38, 41]. The behavior exploited
in these attacks is always either not valid or not meaningful,
regardless of the permission level. For instance, the architec-
ture defines that a non-present page-table entry may contain
any data. Interpreting this data, e.g., as a physical address, is
always incorrect.

o Use-After-Free. Newer Meltdown-type attacks show behav-
ior that is similar to use-after-free vulnerabilities, causing
the usage of stale values, e.g., ZombieLoad [32], RIDL [40],
Fallout [4].

4.2.1 Deferred Permission Check. The idea behind Meltdown-type
attacks in this category is that data is forwarded despite the per-
mission check failing in parallel. For each load pOP that is added
to the re-order buffer, a new entry in the load buffer is reserved.
When the load pOP is scheduled, the load buffer is updated with
information about the new load, i.e., register number and virtual
address information. Simultaneous to the lookup in the memory
hierarchy, the TLB is checked to retrieve the corresponding phys-
ical address. Once the page-table information has been retrieved,
the permissions are checked. As the permission check fails, the
processor raises a fault but still updates the physical page number
in the load buffer. At this point in time, the data is ready to be
forwarded to the register and can be used in subsequent transient
instructions.

Attacks. Meltdown-US, the original Meltdown [25], exploits
faults following a check on the user-space-accessible bit and al-
lows leaking kernel data. Canella et al. [6] demonstrate such an
attack on 32-bit Linux systems using JavaScript and also provide
the first detailed analysis of Intel’s hardware Meltdown mitigation.
Canella et al. [7] used Meltdown-PK to bypass read and write isola-
tion provided by Intel’s memory protection keys. Furthermore, they
showed that hardware instructions for bounds checking provided
on both IA-32 and IA-64 can be bypassed with Meltdown-BND and

Meltdown-MPX. Meltdown-BND was also the first demonstration
of Meltdown-type effects on AMD processors. Other attacks demon-
strated that data can be leaked from registers. The first, Meltdown-
GP [1, 17, 18] can be used to leak data from privileged system
registers. With the second, Stecklina and Prescher [35] showed that
registers that can be switched between kernel and user mode can
be exploited. In their paper, they targeted FPU and SIMD registers.
Xiao et al. [42] developed a framework to study transient-execution
attacks, discovering a new Meltdown variant on AMD processors
that bypasses segment limits.

Two cases of store-to-load forwarding, namely the true positive
and the true negative match, also belong in this attack category. For
a true positive match, Kiriansky and Waldspurger [21] observed
that the writable bit is transiently ignored when performing store-
to-load forwarding. Schwarz et al. [31] and Canella et al. [6, 7]
demonstrated that this also happens for other checks, e.g., the user-
space-accessible bit. For a true negative match, Schwarz et al. [31]
and Canella et al. [6, 7] showed that the information about the
negative case can be abused in combination with the true positive
case for distinguishing valid addresses from invalid ones, enabling
KASLR breaks.

4.2.2 Incorrect Use of Intermediate Values. This category mainly
consists of Meltdown-P attacks [7, 38, 41]. Meltdown-P attacks fol-
low the same behavior as a Meltdown-US attack, but instead of
exploiting the user-accessible bit it exploits the present bit. At the
point where the TLB is queried for the valid translation, the lookup
fails as the page is indicated as not being present. To perform the
page-table walk, a microcode assist is issued [32]. As the attacker
runs within a virtual machine, two such walks have to be issued
as the guest virtual address is first translated into a guest physical
which is then translated into a host physical address. When the
information of the guest page table is checked, none of the infor-
mation is valid as the present bit is not set, causing the processor
to raise a fault. Nevertheless, the physical address field in the load
buffer is filled out with the information from the page table, i.e., the
guest physical address. Similar to Meltdown-US, the data is ready to
be forwarded to the register, and the processor matches the guest’s
physical address to the cache line tag of the retrieved data. This
allows an attacker to read arbitrary host physical memory by ex-
ploiting non-present page-table entries and a transient access to
them.

Attacks. Van Bulck et al. [38] have demonstrated this effect
in the context of transiently forwarding data from SGX-protected
cache lines. Weisse et al. [41] have extended their work by demon-
strating the effect in a non-SGX environment, such as the afore-
mentioned virtual machine scenario.

The two remaining cases of store-to-load forwarding, namely
the false negative and the false positive match, are also in this
category. For a false negative match, Cauligi et al. [8] describe
a theoretical attack that combines Meltdown- and Spectre-type
effects. In such an attack, the memory disambiguator predicts a
dependency, allowing the load to continue. The store buffer then
only finds a partial match and returns the incorrectly matched data.
Canella et al. [4] exploited a false-positive match to read recent
writes from SGX enclaves or the kernel.



4.2.3 Use-After-Free. Use-after-free vulnerabilities are not only
common in software [36]. We discuss the basic idea behind attacks
in this category based on a ZombieLoad v1 attack. While the steps
are the same as in the previous attacks, the suspected reason for the
erroneous matching of the secret data is the stale physical address
from the load buffer. In a ZombieLoad v1 attack, the store buffer,
line-fill buffer, L1 data cache are looked up with the virtual address.
Due to a cache line conflict, the L1 data cache lookup fails, leading to
an abort and a subsequent re-issuing of the load. Nevertheless, the
current load, a zombie load, continues and returns data. The stale
physical page number (i.e., a use after free) is used to match the tag
of the previously retrieved data. If they match, the data is forwarded
to the register and can be leaked by subsequent instructions.

Attacks. The first description of such an attack was given by
Lipp et al. [25] when they demonstrated a Meltdown-US attack
on uncached and uncacheable memory. They showed that leaking
from uncacheable memory is only possible if an architectural access
to the same memory location occurs, i.e., a hyperthread performs a
legal load. According to Lipp et al. [11, 25], the leakage originates
in the line-fill buffer. Subsequent publications further investigate
this buffer as a leakage source [19, 26, 30, 32, 40]. On processors
that do not leak from L1 directly anymore, Van Schaik et al. [40]
and Schwarz et al. [32] showed that there is still leakage possible
via so called microarchitectural data sampling (MDS) attacks. For
instance, Schwarz et al. [32] demonstrated different variants to leak
data from the line-fill buffer due to aborted loads continuing their
execution. Additionally, they showed that one of these variants even
affects Intel Cascade Lake CPUs that contain fixes for Meltdown
and MDS attacks. Finally, Schwarz et al. [32] also demonstrated
that the initial mitigation of using the verw instruction to overwrite
buffers does not fully work.

4.3 LVI-Type Attacks

Spectre turned previously known attacks on branch prediction
around, not exploiting the branch prediction to retrieve data from
a previous execution, but instead injecting a transient control-flow
change into a victim to leak data. LVI (Load Value Injection) [39]
does the same with Meltdown, i.e., instead of exploiting Meltdown-
type effects to retrieve data from a victim domain, it uses them to
transiently inject data into the victim. Contrary to Meltdown-type
attacks, LVI attacks cannot always control when a fault and other
conditions occur as they occur within the victim domain. In that
sense, LVI is more similar to Spectre-type attacks where certain
gadgets within the victim are required. For LVI, the complexity of
gadgets is much lower as a single memory access can already be
a LVI gadget. The same is true for a single indirect call, jump, or
return.

In principle, an LVI attack attempts to obtain data from the
victim domain that the victim can legally access. All three of the
previously identified types of Meltdown-type effects can be used
for LVI attacks, i.e., deferred permission checks, incorrect use of
intermediate values, and use-after-free. While all three types can
be exploited, the deferred permission check type of attacks is more
realistic in the threat model of SGX because they require repeated
illegal behavior of the victim domain. Table 1 shows the different

Attack Requirement

LVI-US victim repeatedly accesses a kernel address
LVI-RW illegal write to read-only memory

LVI-PK illegal access to a PKU-protected memory location
LVI-MPX, LVI-BND illegal out-of-bounds access

LVI-GP memory access triggering a general protection fault

LVI-NM
LVI on segment limits

FPU register access with FPU being unavailable
memory access outside segment limit

Table 1: The different LVI attacks relying on a deferred per-
mission check and what event they require to enter tran-
sient execution.

attack types relying on the deferred permission check and what
they require to trigger the attack.

In a normal scenario, faults are handled by the operating system,
preventing them from happening again. Hence, a more realistic
scenario for an LVI attack in a normal context is to use mispredic-
tion to suppress the fault. Using misspeculation, the attacker can
suppress the fault as previous work has already outlined [7, 22, 25],
but in this case, a Spectre-type attack might already be sufficient to
extract the targeted data from the victim. In this scenario, LVI may
only be of use if the Spectre-type attack does not allow enough
control of the victim, which LVI might be able to supply.

In the SGX scenario, one type of attack that is particularly rel-
evant is the incorrect use of intermediate values. By inverting
Meltdown-P to obtain LVI-P, the attacker can transiently inject
data from a chosen physical address into the victim’s execution
by unmapping a page and loading data into the L1 data cache. For
the LVI-NULL case, the attacker can inject a NULL value instead,
e.g., on processors with first-generation mitigations. Both cases
have been demonstrated by Van Bulck et al. [39]. For LVI-P-NULL,
the attacker transiently injects a NULL value when accessing the
stack to read the return address from virtual address 0, redirecting
control flow to the location that is contained at this location. In
LVI-P-L1D, fake return addresses are injected to re-direct control
flow to an attacker chosen location.

For non-SGX-based LVI attacks, use-after-free type of attacks
have been shown to be the most effective [39]. In these scenarios,
microarchitectural assists have been used to trigger the use-after-
free situation in the line-fill buffer. The store buffer false positive
match is one case that can occur easily, but the requirements on
gadgets are much higher than in the LFB case. For this attack, the
attacker has to place a matching store in the store buffer, which
is statically partitioned. Hence, the attacker has to inject the store
on the same hyperthread before a context switch or via a gadget
within the victim that stores to the attacker-tweakable address
before reading from an unrelated, but partially matching, address.
If the store is successfully injected, the store buffer false-positively
matches a store, i.e., without a full physical address match. As in
the case of ZombieLoad, the load in the victim continues but is
ultimately squashed. Nevertheless, the wrong data is transiently
forwarded to the dependent operations.

5 CONCLUSION

For a long time, the non-architectural state was considered to be
unobservable. Side-channel attacks have demonstrated that this is
not entirely true as meta-information can be extracted from the



microarchitectural state. To optimize the performance of modern
processors, vendors included various optimizations such as specula-
tive and out-of-order execution. Transient-execution attacks exploit
these features as their effect on the microarchitectural state is not
reverted even in the case that the result was unrolled. Contrary
to side-channel attacks, transient-execution attacks allow direct
access to the actual data from another security domain, not just
meta-data. In this paper, we showed how the transient-execution
landscape has evolved since the initial discoveries. We showed that
the understanding and systematic view of the field has advanced
and now facilitate the discovery of new attack variants.
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