POWER: A Cloud-Based Mobile Augmentation
Approach for Web- and Cross-Platform Applications

Andreas Reiter, Thomas Zefferer
Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology
Inffeldgasse 16a, 8010 Graz, Austria
{andreas.reiter, thomas.zefferer} @iaik.tugraz.at

Abstract—Despite their continuously growing popularity, mo-
bile end-user devices still suffer from limited computing re-
sources. This complicates the use of complex mobile applications
that require resource-intensive computations. Recently, several
frameworks have been developed that enable mobile applica-
tions to follow the cloud-based mobile augmentation (CMA)
approach. This approach defines a strategy to dynamically out-
source resource-intensive tasks to external resources. None of the
existing frameworks focuses on cross-platform applicability and
interoperability issues. We propose an innovative approach, which
provides a high level of flexibility in order to meet requirements of
different mobile use cases and application scenarios. The POWER
framework is applicable on all major mobile platforms and sup-
ports various types of external resources. Furthermore, we prove
the feasibility of the proposed framework on current mobile end-
user devices by means of a concrete implementation. Evaluation
results yield significant performance boosts for resource-intensive
tasks on mobile end-user devices. With the POWER framework
we pave the way for complex mobile applications.

I. INTRODUCTION

Powered by the availability of powerful mobile end-user
devices and by the continuous improvement of wireless com-
munication networks, mobile computing has emerged as new
predominating computing paradigm. As mobile devices such
as smartphones or tablet computers gradually replace classical
end-user devices, more and more services and applications are
nowadays tailored to a mobile use. Although mobile devices
are continuously improved, they are still more limited in terms
of storage capacity and processing power compared to desktop
PCs or laptops. This complicates the use of resource-intensive
applications on mobile devices and prevents a full adoption of
the mobile-computing paradigm.

At the same time, the general availability of storage ca-
pacities and computing resources increases steadily. On the
one hand, cloud services offer virtually unlimited resources
usually based on consumption-based pricing models. On the
other hand, the number of smart devices increases steadily
as well yielding a situation, in which users are permanently
surrounded by proximity devices with at least rudimentary
storage and processing capabilities.

Limited capabilities of mobile end-user devices and the
omnipresent availability of resources, recently yielded a new
promising computing concept called cloud-based mobile aug-
mentation (CMA). The basic idea behind the concept of
CMA is the dynamic outsourcing, i.e. offloading, of resource-
intensive tasks from mobile end-user devices to currently

available external resources. Following the CMA approach,
mobile applications determine the current availability of ex-
ternal resources at runtime and dynamically offload resource-
intensive tasks to these resources in order to improve their
overall performance.

As the concept of CMA is rather new, current implemen-
tations of this concept do not tackle the usage of different
types of resources, and are focusing on single types of mobile
devices and operating systems. To target this problem, we
propose POWER, a new and innovative CMA framework
in this paper. In contrast to existing solutions, the proposed
framework provides interoperability and cross-platform ap-
plicability by achieving compatibility to all major mobile
platforms and operating systems. We show by means of a
concrete implementation that the proposed CMA framework is
feasible in practice. Finally, we evaluate and demonstrate its
capabilities by means of a real-world application. This way,
we show that the proposed CMA framework has the potential
to leverage the concept of CMA and to pave the way for a
migration of resource-intensive applications to mobile end-user
devices.

II. BACKGROUND AND RELATED WORK

CMA is a computing concept which enables resource-
constrained devices to offload resource-intensive tasks to other
devices or cloud-computing resources. A related concept called
surrogate computing has already been introduced in 2001 by
Satyanarayanan [1]. At that time, main focus had been put
on surrounding devices, as the utilization of cloud-computing
concepts was not state of the art. The surrogate-computing
concept enables a device to make use of other available
computing resources within reach. Applications can offload
tasks to these resources to speed up the execution. Beside the
speed-up, this approach saves energy and therefore extends
battery lifetime, which especially is of high interest for mobile
devices.

CMA extends the surrogate-computing approach by not
only utilizing proximity devices with free resources, but by
consuming e.g. available cloud resources as well. The con-
nection to the different types of resources can be established
using Wi-Fi, 3G, 4G, or any other kind of communication
technology. Reiter and Zefferer [2] propose a classification
scheme for external resources, based on their distance to the
mobile device and on their degree of mobility. Concretely, they
differentiate the following three types of resources: Distant
Immobile Clouds as resources with high availability but also

a larger distance to the user and therefore a higher latency
compared to the others, Proximate Immobile Computing Enti-
ties as resources that are located near to the user and therefore
have a low latency, and Mobile Computing Entities as other
mobile device resources which can be utilized as computing
resources.

By considering various factors, a CMA framework decides
which type of available resource to use and if a pending
computation should be offloaded at all. This decision process
considers the following factors:

e Network latency: The latency of network connections
that access external resources has major impacts on the
performance of an offloaded task. Evaluation results
from Cuervo et al. [3] show that the energy con-
sumption of an offloading operation almost doubles,
if the round-trip time increases from 10ms to 25ms.
Together with the bandwidth, the network latency also
determines how fast the execution can be migrated
from a client device to the offloading server.

e Bandwidth: Depending on the size of the offloaded
part and the size of the data associated to this part,
the bandwidth to the external resource has a major
impact on the migration speed of the execution to the
external resource.

e Computational power: An offloading framework can
run under different profiles, e.g. to maximize battery
lifetime or to achieve the best possible performance.
The selected profile influences a CMA framework’s
offloading decisions.

e Estimated run-time: The estimation or prediction of
the run-time can be based on sophisticated analysis
tools or on data collected in previous runs.

All of these factors are fed into the CMA framework’s
decision engine. Based on these inputs, the decision engine
determines the optimal way of execution.

There are already solutions in place, targeting different
aspects. Reiter and Zefferer [2] provide an overview of the
current CMA-framework landscape, and different approaches
followed by available CMA solutions. The most relevant
solutions are briefly sketched in the following.

The CMA framework MAUI [3] aims at an energy-
optimizing and hence battery-saving execution. It is tailored
to managed code environments and eases integration into
existing applications. CloneCloud [4] uses externally executed
virtual clones of the end-user device to offload tasks. This
is advantageous, as the system can operate on unchanged
applications, but requires a modified operating system to catch
the relevant offloading spots. The CMA framework ThinkAir
[5] combines the concepts of MAUI and CloneCloud and
adds more flexibility and scalability. Instead of requiring the
end-user device to run a custom operating system, ThinkAir
induces an additional compilation step where code for remote
execution is generated. The CMA solution COSMOS [6] pro-
vides Offloading-as-a-Service and does not dedicate a single
VM to a specific user. Instead, the so-called COSMOS-Master
keeps track of all available resources and distributes work
among available VMs.

This brief overview shows that existing CMA frameworks
and solutions follow different approaches to offload resource-
intensive tasks to external resources. However, all of these
solutions come with certain drawbacks, especially when it
comes to interoperability among different operating systems
or cross-platform applications. All of the existing solutions
are tailored to specific platforms or programming languages
which are only available on single platforms.

III. REQUIREMENTS

To better understand the needs of CMA frameworks to
also be applicable in cross-platform scenarious and at the
same time protecting user’s privacy, we identified the following
requirements. Our analysis is based on the requirements as
proposed by Reiter and Zefferer [2]

e RI - Reliability: Reliability refers to the availability
of the system.

e R2 - Integrity: Data offloaded to external resources
for processing must not be modified by unauthorized
parties.

e R3 - Privacy and confidentiality: Sensitive data of-
floaded to external resources must be kept confidential.

e R4 - Non-repudiation: A user cannot deny that he or
she has used a certain external resource. This enables
e.g. a reliable billing of resource usage.

e R5 - High isolation level: The framework needs to
have a high isolation level among different users, even
if they are utilizing the same resources.

e R6 - Avoidance of misuse of provided resources:
Resource providers must have means to prevent a
misuse of provided resources for fraudulent activities.

In order to appropriately consider aspects related to inter-
operability and cross-platform applicability, we extend the set
of requirements by means of the following requirements.

o R7 - End-user interoperability: CMA frameworks
must be applicable on all major mobile platforms.

e RS8 - Resource interoperability: Frameworks must not
statically offload tasks to fixed external resources, they
have to dynamically decide at run-time which resource
is currently best suited to adhere to the used profile.

Under consideration of these requirements, a CMA frame-
work is proposed. The architecture of the proposed framework
is derived in the following section.

IV. ARCHITECTURE

In this section, the architecture of the proposed CMA
framework is introduced. For this purpose, a general
technology-independent architecture is defined first, which
can be applied to arbitrary technologies. To further develop
this general architecture towards a concrete implementation, a
technology-specific architecture is derived afterwards. Deriva-
tion of the technology-specific architecture is based on an
elaborate selection of currently available technologies. The
architecture introduced in this section is finally evaluated
against the requirements defined in Section III.

A. General Architecture

We propose a general architecture as shown in Figure 1.
This architecture comprises a central repository that stores
complete application packages. Each application package con-
tains all necessary files and dependencies required to run a
specific application. The central repository is shared among all
potential external resources. It is up to the resource provider
to only support a certain subset of applications. To enable the
referencing of application packages at run-time, a couple of
identifiers are used. At compile time, each application part
considered for offloading is assigned with an identifier that is
unique in the context of the application package. In addition,
each package is assigned with a globally unique identifier as
well.

) Resource constrained device

toposton
Repository Application
Discover available devices
Reintegrate results
Send offloading request

rl\:/!oblijleddeyices, Offloading Transport medium (e.g.
ixed devices, i

s Resource Internet, or Wi-Fi for
Server resources local connections)

Fig. 1: High-level architecture

During run-time, a resource-constrained device maintains
a list of available offloading resources. If the CMA framework
decides that a particular part of an application needs to be
offloaded, a connection to a suitable offloading resource is
established and the offloading process is initiated. Once an
offloading resource receives a request, it downloads the com-
plete package from the package repository using the package
ID, identifies the part to execute, executes it, and sends back
the results to the resource-constrained device, where the results
are finally reintegrated into the application. We are aiming at a
lightweight approach operating on the source level of the ap-
plication. This architecture basically enables two approaches.
Either the application developer provides implementations in
different programming languages for various platforms, or a
single implementation utilizing cross-platform frameworks or
common programming languages.

B. Technological Considerations

The proposed general architecture is completely
technology-independent. To develop this architecture
towards a concrete solution, an appropriate technology
must be selected to further enhance the architecture’s various
building blocks. When selecting an appropriate technology,
the heterogeneous landscape of current mobile platforms
and programming environments must be taken into account.
Concretely, to minimize the development effort a single
programming language with support for all platforms is
desirable. Currently the only language that is supported by
all platforms and that can equally be executed on all mobile
operating systems is JavaScript. We are totally aware that
JavaScript is not a panacea and introduces other problems, but
it forms a common basis. JavaScript is the common anchor
and technological basis for a new class of programming
languages. The compilers of these programming languages
produce highly optimized JavaScript code to be executed in
the browser. Representative examples are Coffeescript [7] or
TypeScript [8]. The Dart [9] programming language, which

is heavily supported by Google, even goes one step further. It
does not only define a new syntax, which can be compiled to
JavaScript, but provides a complete Dart ecosystem. The Dart
ecosystem is based on a Dart VM executing native Dart code.
In addition Dart applications can be compiled to JavaScript
files to be run in the browser or in standalone JavaScript
environments. Dart thereby hides the complexity and still
remaining incompatibilities between the different JavaScript
engines from the developer. The Dart ecosystem further offers
access to public and private package repositories, which are
fully integrated into the build process.

The provided overview shows that there are currently var-
ious programming languages available that base on JavaScript
and hence provide cross-platform applicability. From the sur-
veyed languages, Dart appears to be best evolved and most
promising approach to meet requirements of CMA-based ap-
plications. Furthermore it eases the development of cross-
platform applications by hiding peculiarities. At first sight Dart
seems to be a very tailored and narrowed choice. Currently
the landscape of available native Dart applications is very
limited, but Dart features a high grade of compatibility with
JavaScript in just a few lines of code. From a JavaScript
enabled browser’s perspective, there is no difference if an
application uses HTMLS5 and JavaScript technology, or if
it uses HTMLS and Dart technology. Furthermore, there is
currently active development in progress to create a framework
called Sky' enabling direct mobile app development in the Dart
programming language. Currently the project primarily targets
the Android platform but may be extended to also support
other platforms.

Web-based applications are no longer limited to the web.
In fact, web-based applications are emerging even on classical
and mobile end-user devices. For instance, Firefox OS [10]
natively supports HTMLS with JavaScript applications. Fur-
thermore, Windows Phone also natively support apps based
on HTMLS5 and JavaScript. For all other platforms, cross-
platform solutions like Adobe PhoneGap [11] or Appceler-
ator Titanium [12] exist. They wrap web-based applications
into native packages and display content by using web-view
technology. Of course, there are also disadvantages of using
web-based technologies on mobile devices. Native applications
get the look and feel of the respective platform out of the
box, whereas web-based solutions require additional effort
or libraries to mimic a platform-specific look and feel. Fur-
thermore, applications utilizing web technologies still do not
achieve the performance of native applications, even though
the performance of web-based applications is continuously
improved?.

The most significant advantage of web-based technologies
is the fact that the hurdle of maintaining multiple code bases
for different platforms is removed, which reduces maintenance
effort. In the context of CMA, we see this as a great chance
to build a system that is available on all major platforms,
is not locked to a single system, and does not need major
adaptations once new operating-system versions are released.
To fully employ the potentials of web-based technologies, we
have chosen Dart as our fundamental programming language

Thttps://github.com/domokit/sky_sdk
Zhttp://arstechnica.com/information-technology/2013/05/native-level-
performance-on-the-web-a-brief-examination-of-asm-js/

for our proposed CMA framework. In the following subsection
we derive a technology-specific architecture that is tailored to
the Dart ecosystem.

C. Technology-Specific Architecture

The resulting refined technology-specific architecture as
shown in Figure 2 takes into account the decision to rely
on Dart and applies refinements on the general architecture.
According to the architecture, it is assumed that the com-
munication with proximity resources takes place using low-
latency Wi-Fi connections. High-latency 3G/4G connections
are used, if no suitable proximity resources are available. Wi-
Fi connections can also be used to connect to resources that
are not in the proximity of the user. In this case, potentially
untrusted resources are used as gateways.

()
Public Private Resource constrained device
Package Package
Repositol Repositories -
Q 4 P Application
A
1' Reintegrate results Discover available devices
Resources Resources

with JS with Dart ()
-— () —
) |—> T ? Transport medium
3G/4AG Wi-Fi

support support
Fig. 2: Technology specific architecture

Send offloading request

e.g. Mobile e.g. highly
devices, available cloud
Fixed devices resources

For the package repositories we are re-using entities as
already provided by the Dart ecosystem. Dart provides a
package repository system, with the option to use a centralized
repository or a private repository. Developers can place appli-
cation packages there to be referenced by offloading resources.
Deploying new application versions to this repositories is com-
pleted in a matter of seconds with an already pre-existing tool
chain. On the offloading resource level the refined architecture
envisages the following two different types of resources:

e Resources with native Dart support: These resources
reach a high performance, but can be only applied on
target architectures providing full Dart support. This
type of resources is hence mainly available in cloud-
based environemnts.

e Resources with JavaScript support: These resources
cannot provide the high performance of native Dart
resources and are targeted at other end-user devices in
the surrounding of the user. As JavaScript is supported
by virtually all devices featuring a web browser, all
end-user devices like notebooks, tablets, computers,
or smartphones represent potential target offloading
resources.

At the architectural level we are recommending to organize
the offloading resources in a distributed manner, but we are
intentionally not locking the resource discovery and communi-
cation to certain techniques as current web and cross-platform
technologies are evolving fast and are changing frequently.

Even though the refined architecture has been tailored
to the Dart programming language, similar architectures can
easily be derived for other technologies as well. The general
architecture proposed in Section I'V-A is an ideal starting point
for these attempts. Nevertheless, this paper focuses on the
Dart-specific architecture. An evaluation of this architecture by

means of the requirements defined in Section III is provided
in the following subsection.

D. Evaluation Against Requirements

Eight requirements have been defined as relevant for CMA
frameworks. In the following, the proposed technology-specific
architecture is evaluated against these requirements. This way,
the suitability of the architecture is assessed.

1) Reliability: Employed offloading resources are orga-
nized in a distributed manner with no single point of fail-
ure. Nevertheless, the package repository being an integral
component of the proposed architecture needs to be repli-
cated to different locations to achieve redundancy. In a real
world example, the package repository can for instance be
located and replicated in a cloud environment. This way,
the requirement for reliability can be met by adopting an
appropriate deployment strategy. The distributed organization
of the offloading resources can be implemented using overlay
networks organized in a distributed hashtable approach, so that
no central servers are required.

2) Integrity: From an resource operator’s point of view,
digital signatures can be applied to the packages to assure that
they have not been changed. From the user’s point-of-view
the integrity can only be assured when the user has a certain
level of trust in the operator. Although, again highlighting the
distributed manner of the offloading resources, by applying
end-to-end security techniques, untrusted resources can be used
as low-latency gateways to trusted resources. Still, we consider
the requirement for integrity as partially met only at this point.
As future work, means must be provided that enable the secure
offloading and full utilization of untrusted resources.

3) Privacy and confidentiality: In general, it is up to the
offloading engine to decide where to execute particular parts
of an application. Furthermore, it is up to the developer to
properly specify the parts of an application that operate on sen-
sitive data. Utilizing data-security policy languages, the flow
of sensitive data through the application can be tracked. Based
on this flow graph, the offloading engine can decide where to
offload a particular part of an application. Hence, there exist
means to design and develop a mobile application such that
privacy and confidentiality is assured in CMA scenarios.

4) Non-repudiation: By applying digital signatures to is-
sued offloading requests, resource-requesting users can be
reliably identified by resource providers. This requires that
users can offer signatures which can be mapped to unique
users by the offloading resources. Another and possibly more
practical way is to use decentralized authentication systems
like OpenID or the OpenID Connect identity layer. This way,
the requirement for non-repudiation can be met.

5) High isolation level: Browsers already feature sophisti-
cated isolation and sandboxing mechanisms. Running the Dart-
generated JavaScript code in a separate HTML IFRAME pro-
vides a high isolation level. For the native Dart environment,
there are still further improvements necessary, as Dart does not
integrate a sandboxing mechanism. Therefore, this requirement
is regarded as partially fulfilled only.

6) Avoidance of misuse of provided resources: The misuse
of provided resources can be avoided either by locking out

fraudulent users, or by analyzing the provided source code to
detect bogus applications. The threat of resource misuse can
be countered by establishing a pay-per-use model. This can
prevent misuse, as all consumed computational power is billed.
Thus, the requirement to avoid misuse of provided resources
can be met by adopting suitable strategies.

7) End-user interoperability: As the technology-specific
architecture assumes reliance on Dart and JavaScript, it is
available on all major platforms. Therefore, the requirement
for end-user interoperability is met.

8) Resource interoperability: Regardless of the used plat-
form, each user can use all provided external resources, also
combining different platforms. The proposed architecture con-
siders the possibility of different target resources ranging from
mobile proximity devices to powerful servers in the cloud.
Hence, the requirement for resource interoperability is met.

In summary the obtained evaluation results show that most
relevant requirements of CMA frameworks are already met on
architectural level by the solution proposed in this paper.

V. IMPLEMENTATION

In this section, a concrete implementation of the proposed
architecture is presented and discussed. The implemented
framework makes use of Dart’s browser-integration feature, but
also targets standalone Dart virtual machines. In Section V-A
we are elaborating on our basic building blocks. Afterwards
in Section V-B we are evaluating the current state of the
framework by applying it to a real-world application.

A. Basic Building Blocks

Most functionality of the implemented CMA framework
is covered by the three basic building blocks: Annotator, Of-
floading Transformer, and Offloading Engines. Implementation
details of these building blocks are discussed in the following
subsections.

1) Annotator: The Annotator defines a marker attribute,
which represents a simple way of annotating relevant parts
of an application considered for offloading. The use of this
marker attribute is illustrated in Listing 1.

Listing 1: Applying the marker attribute to a method

Listing 2: Transformed source code

Future<String> sample (){
var m=() { <your calculation> };

String s="""() { <your calculation source> }””7;
return engine.execute(m, s, [], "sample”,
“example/example.dart”, ”samplePackage —0.0.17,

”samplePackage ”);

}

@OffloadMe (SENSITIVITYLEVEL) Future<String> sample (){
<your calculation>

Applying these attributes throughout an application provides
the offloading engine with an initial developer-defined offload-
ing decision. However, it is still up to the offloading engine
to decide at run-time, if offloading is performed or if the
developer decision is ignored. The attribute further allows to
define the sensitivity of the marked method and processed data.
Based on the specified sensitivity, the offloading engine is able
to derive the required trust level of the offloading resource.

2) Offloading Transformer: The Offloading Transformer
preprocesses the source code of applications at compile time. It
analyzes all relevant source files and extracts annotated parts
that are marked for offloading. The Offloading Transformer
modifies these source-code parts such that they can be pro-
cessed by the designated offloading engine at run-time. Listing
2 shows the transformed source code from Listing 1.

At run-time, the offloading engine has the choice to execute
the preprocessed method directly (using the passed method
variable m) or remotely based on the provided method source
code, method identifier, file identifier, package identifier, and
package name. All these parameters minimize the required
amount of data being transferred to the offloading resource.

Generally speaking, the Offloading Transformer modifies
and redirects the execution flow of a particular method. In an
unmodified execution flow a method is executed directly. In
the modified execution flow a method call is redirected to the
offloading engine, where the decision happens if offloading
should be performed. If offloading should be performed the
execution is migrated to an available offloading resource. Once
the execution result is available from the external resource or
the local execution, it is returned and re-integrated.

3) Offloading Engines: The framework includes two Of-
floading Engines. The Dart-VM Engine relies on Dart’s
command-line environment and a JavaScript based engine for
browser environments. The implementation of both engines
is similar and involves the following steps. Both types are
separated into a client and a server part. The client part is
responsible for providing the server part with all the required
information to run a particular method of the application, and
to re-integrate the results. The server part is responsible for
loading the correct application and the relevant state of the
application as received from the client, before executing. Once
the execution completed, the result is returned to the client. To
speed up the loading process the server can cache particular
applications or may even pre-load frequently used packages.

The process includes additional steps for the browser
engine. The heart of the browser engine is a Dart-to-JavaScript
compiler inside the browser. Once an offloading request is
received, the server part of the browser engine basically
performs the same steps as described before. Additionally, the
Dart-to-JavaScript compiler is invoked to compile the modified
package and all its required dependencies to a single JavaScript
file. The JavaScript file is then executed in a dynamically added
HTML IFRAME and obtained results are posted back to the
caller.

For the communication with the offloading resources we
are using WebSocket and WebRTC technology. WebSockets
provide an asynchronous communication channel between
clients and servers based on HTTP. WebRTC is a technology
enabling the direct communication between browsers, without
requiring intermediary servers. WebRTC provides more flexi-
bility in terms of finding a path between two nodes, even if they
are behind NATs, but requires more set-up time compared to
WebSockets. Using these technologies we are not constrained
by the same-origin-policy, which would prevent the browser
communication to any other domain than the origin domain.
The current implementation makes direct use of WebRTC, for
the future we plan to use an overlay network, to gain flexibility
and at the same time cover the resource discovery process.

B. Evaluation with Real-World Application

To evaluate the capabilities of the proposed CMA frame-
work, it has been applied to a real-world application. Obtained
results, which show the strengths of the underlying concept
and reveal rooms for improvement, are discussed in this
subsection. We have tested our implementation on a test-
system comprising a Motorola G2 smartphone with Android
5 and a desktop computer equipped with an Intel i5 processor
at 3.4GHz and operated with Ubuntu 14.04. We focused our
testing system on the Android platform for basically two
reasons: (a) Android is today’s most used mobile platform and
(b) POWER makes use of bleeding-edge web technologies,
Android with its Chrome browser definitely has the best
support for these technologies among all mobile browsers?.
They are connected through a low-latency WiFi connection.
Higher latencies have direct impact on the performance values.
The offloading engine should decide at which latency it is
still beneficiary to offload. We have conducted two tests to
investigate general programming constructs and to show its
applicability to real-world applications. For the evaluation
we assume that the applications are already available on the
offloading resources as this overhead may anyhow only appear
once, for all benchmarks the offloading engine uses a cached
version.

1) General Programming Constructs: Our first test row is
based on the ported version of a Java and C++ benchmark*.
We ported the Fibonacci and the Nestedloop benchmark.
Furthermore we added a SHA1 benchmark, performing n-
SHAI1 calculations in a row. All benchmarks take a single input
parameter n which specifies the length of the Fibonacci row,
the iterations in the Nestedloop or the number of SHA1 itera-
tions. The goal of this evaluation is to show the lowest number
of n where offloading gives benefits in terms of performance.
The results are shown in Table I. They show that even for
state-of-the-art smartphones, the offloading approach is very
suited to gain application performance. The data transmitted
to the offloading resource is nearly equal over all tests, the
received data depends on the resulting values.

TABLE I: General Programming Constructs benchmark results

Benchmark n Data Tx (bytes) Data Rx (bytes)

Fibonacci 23 ~450 ~80
Nestedloop 16 ~450 ~80
SHA1 41 ~450 ~100

2) Face-Detection Performance: In this test, a face-
detection algorithm® has been applied to an image composed of
2.000.000 pixels. The application implementing this algorithm
has been executed on the mobile device, whereas the entire
face-detection functionality has been offloaded to the external
resource. The application requires a single offloading call only,
as the complete operation has been carried out on the target
resource. The image has been transported as link, therefore
only a small amount of data had to be transferred. The face
detection has taken nearly 19 seconds when being performed
directly on the mobile device. The overall execution time could

3https://html5test.com/results/mobile.html
“http://keithlea.com/javabench/
Shttp://liuliu.me/ccv/js/nss/

be reduced to 1.8 seconds by employing the proposed frame-
work’s offloading functionality. The obtained results again
highlight the potential of the proposed framework and its
implementation, when being applied to real-world applications.
In fact this is an ideal use case, as only little transfer is required
to trigger a computational heavy operation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented POWER, a CMA framework
based on a novel architecture. In contrast to existing CMA so-
lutions, the proposed framework provides interoperability and
cross-platform applicability by relying on web technologies.
Development of the proposed framework’s architecture has
been based on a set of relevant requirements. A conducted
evaluation against these requirements has revealed that the
proposed framework meets most requirements already on
architectural level. The feasibility of the proposed framework
has been evaluated by means of a concrete implementation.
The implementation already demonstrates the proposed frame-
work’s capabilities to boost the performance of resource-
intensive processes on mobile end-user devices and even for
web-based applications. We will focus our future work on fur-
ther improving the framework in terms of resource discovery
and end-to-end security. Furthermore, adherence to our defined
requirements is our top priority.

REFERENCES

[1] M. Satyanarayanan, “Pervasice Computing: Vision and Challenges,”
IEEE Personal Communications, pp. 10-17, 2001.

[2] A. Reiter and T. Zefferer, “Paving the Way for Security in Cloud-Based
Mobile Augmentation Systems,” in 3rd IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering (IEEE Mobile
Cloud 2015) (Note: to appear), 2015.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Stefan,
R. Chandra, and B. Paramvir, “MAUI : Making Smartphones Last
Longer with Code Offload,” in Proceedings of the 8th international
conference on Mobile systems, applications, and services, vol. 17, 2010,
pp. 49-62.

[4] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic Execution Between Mobile Device and Cloud,” in Proceedings
of the sixth conference on Computer systems, 2011, pp. 301-314.

[5S] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings IEEE INFOCOM. leee,
Mar. 2012, pp. 945-953.

[6] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,
“COSMOS : Computation Offloading as a Service for Mobile Devices,”
in Proceedings of the 15th ACM international symposium on Mobile ad
hoc networking and computing, 2014.

[71 T. Burnham and M. Swaine, Coffeescript: accelerated Javascript de-
velopment. Pragmatic Bookshelf, 2011.

[8] G. Bierman, M. Abadi, and M. Torgersen, “Understanding typescript,”
in ECOOP 2014 Object-Oriented Programming, ser. Lecture Notes in
Computer Science, R. Jones, Ed. Springer Berlin Heidelberg, 2014,
vol. 8586, pp. 257-281.

[9] M. Belchin and P. Juberias, “Darts flightpath so far,” in Web Program-
ming with Dart. Apress, 2015, pp. 1-11.

[10] Mozilla, “Firefox OS https://developer.mozilla.org/en-US/Firefox_OS,
accessed on February 18th 2015.”

[11] Adobe, “PhoneGap Documentation Overview, Available Online at
http://docs.phonegap.com/ accessed on 10th of March 2015.”

[12] Appcelerator, “Titanium Documentation, Available

http://docs.appcelerator.com/titanium/latest/ accessed on
March 2015

Online at
10th of

