
Adaptive Dynamic Software Diversity:
Towards Feedback-Based Resilience

Andrea Höller, Tobias Rauter, Johannes Iber, and Christian Kreiner
Institute for Technical Informatics, Graz University of Technology, Austria
{andrea.hoeller, tobias.rauter, johannes.iber, christian.kreiner}@tugraz.at

Abstract—Embedded systems are increasingly based on com-
mercial off-the-shelf processors that limit the use of hardware-
based reliability techniques. At the same time faults are on the
rise due to shrinking hardware feature sizes, increasing software
complexity, and security vulnerabilities. Since such faults cannot
be completely prevented, systems have to cope with their effects.
However, there is a lack of methods that allow embedded systems
to recover from detected faulty states. In order to contribute
towards filling this gap, we introduce the concept of adaptive
dynamic software diversity. The main idea is to create a feedback-
based system that adapts the execution of the program in such a
way that a fault is bypassed regardless of its root cause. To achieve
this, we propose the use of automated diversity techniques.

I. INTRODUCTION

Embedded systems with high reliability and availability
requirements have to realize ever more features and have
increasing demands on computing performance. Consequently,
designers often use commercial off-the-shelf (COTS) proces-
sors that offer cost efficiency and high performance. At the
same time, embedded systems have to cope ever often with
unforeseen scenarios caused by an increasing number of faults
that can have numerous causes:

• Random hardware faults, such as soft errors and
permanent errors due to manufacturing, process vari-
ations, ageing, etc. occur more and more frequently
due to continuing structure downscaling.

• Software faults are increasing due to growing software
complexity.

• Security attacks pose an emerging risk, since ever
more systems are interconnected.

Faults cannot be prevented, so they remain in every complex
system. Consequently, to make systems resilient, they have
to cope with changing circumstances regardless of their root
cause. In order to deal with unforeseen events the idea of soft-
ware self-adaptability has received attention [1]. For example,
self-healing systems autonomously detect and recover from
faulty states by changing their configuration. However, so far
these techniques are mainly used in complex server systems.

Methods for embedded systems to recover from an un-
healthy state are still a research challenge. Although hardware
faults can be bypassed with self-modifying hardware (e.g.
[2]), this technique is not applicable for COTS hardware and
only offers limited flexibility. Thus, there remains the need
for sophisticated software-based methods to handle unforeseen
scenarios caused by faults. In this paper, we propose adaptive
dynamic software diversity as means of adapting the system in
order to mask faults. We introduce this method as a high-level
concept that is based on automatic diversity approaches.

II. AUTOMATED DIVERSITY

Recently, automated diversity gained attention in the se-
curity domain as a technique of diversifying each deployed
program version [3]. This forces attackers to target each system
individually. However, it can also increase the hardware and
software fault tolerance by automatically introducing diversity
in redundant systems [4], [5].

In contrast to static techniques (e.g. diverse compiling)
that are applied before deployment, dynamic software diversity
techniques integrate randomization points in the executable.
Then, the same program can perform diverse executions lead-
ing to the same results [6]. Diversity in execution can mean, for
example, diverse performances, diverse memory locations, or
diverse order of execution. Table I shows examples of dynamic
diversity techniques. Data re-expression is a well-established
method of obtaining data diversity by transforming the original
input to produce new inputs to redundant variants [7]. After
execution the distortion introduced by the re-expression is
removed before comparison. So a given initial data within
the program failure region can be re-expressed to an input
data that circumvents the faulty region [8]. Dynamic diversity
techniques can be efficient to in addressing memory-related
faults as shown in [9], [10], [11].

TABLE I. EXAMPLES OF DYNAMIC SOFTWARE DIVERSITY
TECHNIQUES AND THEIR ADJUSTABLE PARAMETERS

Randomization method Parameter

Memory gaps between objects [11] Gap size
Changing base address of program [11] Base address
Changing base address of libraries and stack [9] Base address
Permutation of the order of routine calls variables [11] Order of calls
Permutation of the order of variables [10] Order of variables
Insertion of NOP instructions [12] Number of NOPs
Data re-expression / data diversity
(in=f(in,k), out = f−1(out,k)) [7]

Parameter in re-expression
algorithm (k)

III. ADAPTIVE DYNAMIC SOFTWARE DIVERSITY

A promising approach for resilience, is software that offers
a reliable operation despite uncertain environments. Hardware
faults, software bugs, or security exploits can be regarded as
sources of uncertainty in the operation that has to be handled.

For example, permanent hardware faults cannot be fixed
during runtime. Thus, the software has to change the way
it uses the faulty hardware such that the fault is masked.
Adapting the software execution is probabilistic and does not
require knowledge about the exact root cause of the fault. We
propose to learn from detected anomalies and to adapt the
software by diversifying the execution with adaptive dynamic
software diversity (ADSD). We define ADSD as



Program 
Execution (P)

Inputs
Decision 

Mechanism 
(DM)

Program outputs 
or alarm signal

Randomization 
Paramters

Error 
information

Diversification 
Control (D)

Fig. 1. Basic structure of ADSD. Based on information of a monitoring
component (DM), a diversification controller decides whether and how to
reconfigure the randomization mechanism of the main program.

a method to automatically and dynamically diversify the
way of execution (e.g, used resources, executed code) in such
a way that it learns from previous observed anomalies in order
to increase the fault tolerance regardless of the fault’s cause.

A. Basic Structure

Fig. 1 shows the basic structure of an ADSD system.
Typically, a fault tolerant system contains the program, which
performs the intended functionality of the system and a de-
cision mechanism (DM) that monitors the program execution
[8]. The DM detects anomalies, indicates alarms and decides
which outputs to forward. For example, the diagnosis could
be a plausibility check, a voter of a redundant system, or a
self-aware technique that detects anomalies. Additionally, we
propose to add a component denoted as diversification control
that creates a feedback-loop. This component manages the
ADSD by collecting and analyzing data on detected anomalies
obtained from the DM. We propose to design the program
in such a way that it can be randomized during execution
according to parameters that can be adjusted during runtime
(see Table I). Then, the diversification control can decide to
alter the execution by changing one or multiple randomization
parameters. Finally, the program reconfigures itself by using
the adapted parameters.

B. ADSD as an Autonomic Control Loop

Feedback loops are essential for self-adaptive systems [1].
Theories about feedback-based systems from control engineer-
ing and nature may supply adaptive software techniques. As
shown in Fig. 2 the generic model of a feedback loop involves
four key activities: collect, analyze, decide and act [13].
In classical self-adaptive systems sensors and probes collect
data from the executing system and its current state. This
data is then filtered, preprocessed and collected. A diagnosis
mechanism then analyzes the data by recognizing trends and
identifying symptoms. Then, it tries to predict the future in
order to decide how to act so that the reliability is increased.

ASDS techniques can be represented as such an autonomic
control loop (see Fig. 2). The DM collects data about detected
anomalies. This data is forwarded to the diversification control,
which analyzes the trend of the anomalies. Furthermore, the
diversification control keeps track of the previously used
randomization parameters. If this trend indicates that a specific
component of the system is faulty, then the system has to learn
from this observation and it decides to change its behavior.
Therefore it acts by adapting the parameters under considera-
tion of previously changed parameters and their effects.

Collect

Analyze

Decide

Act

Reconfigure the
dynamic randomization

Collect detected errors

Analyze the trend of 
collected errors

Decide whether and 
how the software 

should be reconfigured

Program Execution

Diversification 
Control

Decision 
Mechanism

Fig. 2. ADSD as an autonomic control loop. The decision mechanism collects
error statistics. The diversification control analyzes trends of these statistics
and decides whether the software should be reconfigured. If this is the case,
the program acts by reconfiguring itself. Adapted from [13].

IV. CONCLUSION

Here, we presented the idea of increasing the resilience
of COTS-based systems with ADSD. However, the actual
realization of ADSD depends on the application and the
considered fault model. Thus, we plan to develop ADSD
techniques for specific complex applications. Furthermore, we
hope to encourage further researchers to explore techniques
based on the promising yet challenging idea of ADSD.

REFERENCES

[1] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezze, and M. Shaw, “Engineering Self-Adaptive Systems
Through Feedback Loops,” Software Engineering For Self-Adaptive
Systems, 2009.

[2] S. M. A. H. Jafri, S. J. Piestrak, O. Sentieys, and S. Pillement, “Design
of a Fault-Tolerant Coarse-Grained Reconfigurable Architecture : A
Case Study,” International Symbosium on Quality Electronic Design,
2010.

[3] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
Software Diversity,” in Proceedings of IEEE Security & Privacy, 2014.

[4] G. Gaiswinkler and A. Gerstinger, “Automated software diversity for
hardware fault detection,” in Emerging Technologies & Factory Automa-
tion, 2009.

[5] A. Hoeller, N. Kajtazovic, T. Rauter, K. Roemer, and C. Kreiner, “Eval-
uation of Diverse Compiling for Software Fault Detection,” Design,
Automation and Test in Europe, 2015.

[6] B. Baudry and M. Monperrus, “The Multiple Facets of Software
Diversity : A Survey,” 2014.

[7] P. Ammann and J. C. Knight, “Data Diversity: An Approach to Software
Fault Tolerance,” IEEE Transactions on Computers, 1988.

[8] L. Pullum, Software Fault Tolerance: Techniques and Implementation,
2001.

[9] M. Chew and D. Song, “Mitigating Buffer Overflows by Operating
System Randomization,” Tech. Rep., 2002.

[10] S. Bhatkar, D. DuVarney, and R. Sekar, “Address Obfuscation: An Effi-
cient Approach to Combat a Board Range of Memory Error Exploits,”
in USENIX Security Symbosium, 2005.

[11] S. Bhatkar, R. Sekar, and D. DuVarney, “Efficient Techniques for
Comprehensive Protection from Memory Error Exploits,” in USENIX
Security Symbosium, 2005.

[12] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” IEEE/ACM International
Symposium on Code Generation and Optimization, 2013.

[13] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A Survey of
Autonomic Communications,” ACM Transactions on Autonomous and
Adaptive Systems, 2006.


