
Paving the Way for Security in
Cloud-Based Mobile Augmentation Systems

Andreas Reiter, Thomas Zefferer
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a, 8010 Graz, Austria

{andreas.reiter, thomas.zefferer}@iaik.tugraz.at

Abstract—Despite their steadily increasing capabilities, mo-
bile end-user devices such as smartphones often suffer from
reduced processing and storage resources. Cloud-based mobile
augmentation (CMA) has recently emerged as a potential solution
to this problem. CMA combines concepts of cloud computing
and surrogate computing in order to offload resource-intensive
tasks to external resources. During the past years, different
CMA frameworks have been introduced that enable the devel-
opment and usage of CMA-based applications. Unfortunately,
these frameworks have usually not been designed with security
in mind but instead mainly focus on efficient offloading and
reintegration mechanisms. Hence, reliance on CMA concepts in
security-critical fields of application is currently not advisable.
To address this problem, this paper surveys currently available
CMA frameworks and assesses their suitability and applicability
in security-critical fields of application. For this purpose, relevant
security requirements are identified and mapped to the surveyed
CMA frameworks. Results obtained from this assessment show
that none of the surveyed CMA framework is currently able to
meet all relevant security requirements. By identifying security
limitations of currently available CMA frameworks, this paper
represents a first important step towards development of a secure
CMA framework and hence paves the way for a use of CMA-
based applications in security-critical fields of application.

I. INTRODUCTION

The two computing paradigms cloud computing and mo-
bile computing have dominated innovations and developments
in the computing area during the past years. While both
paradigms already show various advantages from a disso-
ciated perspective, their full potential is best utilized when
both mobile and cloud computing are combined and used
together. This approach is followed by mobile cloud solutions,
which employ the mobile character of end-user devices and
virtually unlimited storage and processing resources of cloud
solutions. It is hence unsurprising that mobile cloud solutions
have attracted attention and gained popularity during the past
years. Popular examples for such solutions are cloud-based
image-processing applications, voice-recognition solutions, or
navigation systems. All these solutions are available on current
mobile end-user devices such as smartphones or tablet com-
puters and outsource complex storage and processing tasks to
cloud infrastructures in order to save local capacities on the
mobile device.

Despite their continuously growing popularity, mobile
cloud solutions still suffer from one conceptual drawback:
most of them make use of dedicated cloud resources. If these
resources become unavailable for some reason, the entire

solution fails. For instance, mobile navigation systems do not
work, if required map data cannot be downloaded in time from
a predefined server. In situations, in which the mobile device is
disconnected from the Internet, mobile navigation systems are
hence usually useless. Similar limitations also apply to other
mobile cloud solutions that dependent on a working Internet
connection.

To overcome this limitation, the concept of cloud-based
mobile augmentation (CMA) appears to be a promising ap-
proach. CMA-related concepts have been proposed recently
e.g. by Chun et al. [1], Kosta et al. [2], Cuervo et al. [3],
Rellermeyer et al. [4], or Dou [5]. These concepts enhance
the basic idea behind mobile cloud solutions by breaking
the dedicated link between the mobile application and its
external cloud resources. Instead of relying on one or more
predefined cloud resources, CMA-based applications make use
of those processing and storage resources that are available
just at the time of execution. For instance, they outsource
processing tasks to other proximate end-user devices that are
currently in reach. If available, CMA-based applications also
make use of classical cloud resources. However, in contrast
to classical mobile cloud applications, cloud resources are not
the only outsourcing alternative for CMA-based applications.
Thus, these applications show a higher degree of flexibility
regarding external resources. This makes them more applicable
and less vulnerable to failures in offline scenarios compared
to mobile cloud solutions.

The dynamic outsourcing of tasks to available local and
remote resources is a complex task. In most cases, required
functionality needs to be integrated into and provided to
CMA-based applications during their development and also at
runtime. During the past few years, several CMA frameworks
have been introduced that enable and facilitate the devel-
opment and operation of CMA-based applications. Popular
examples for currently available CMA frameworks are MAUI
[3], CloneCloud [1], and ThinkAir [2]. So far, the main aim
of these frameworks is the identification of and the reliable
connection to available local and remote resources, as well
as the provision of efficient and easy-to-integrate outsourcing
mechanisms. Other aspects usually play only a subordinate role
in current CMA frameworks so far. This especially applies
to security aspects and to the protection of outsourced data.
However, security is a crucial aspect for cloud-based solutions.
This has been discussed by Rong et al. [6] and by Ryan [7]
in detail. This also holds true for CMA-based applications,
for which external resources are not predetermined. As secu-

rity considerations play only a minor role in current CMA
frameworks so far, it is yet not clear if these frameworks are
able to meet potentially high security requirements of CMA-
based applications. Development and operation of CMA-based
applications in security-critical fields of application is hence
currently not advisable.

In this paper, we address this issue by assessing current
CMA frameworks in terms of their capability to meet potential
security requirements of CMA-based applications. For this
purpose, we identify relevant security requirements of CMA-
based applications that process security-critical data. We then
survey current popular frameworks for the development and
operation of CMA-based applications. Surveyed frameworks
are subsequently classified according to established catego-
rization schemes. Finally, we evaluate the surveyed CMA
frameworks against the identified security requirements in
order to identify those frameworks that are suitable for the
development and operation of CMA-based applications that
process security-critical data. This way, this paper contributes
to a future application of the CMA approach also in security-
critical fields of application.

II. BACKGROUND AND RELATED WORK

The concept of CMA aims to enhance the computing
power and storage capacity of mobile end-user devices by
dynamically outsourcing resource-intensive tasks to external
resources. The augmentation of mobile devices with the help
of external resources is actually not a new idea. A similar ap-
proach has already been introduced in 2001 by Satyanarayanan
[8] and has become known under the terms cyber foraging
and surrogate computing. These terms cover technologies that
enhance the computational power of resource-constrained de-
vices with available resources from proximate devices such as
laptops, desktop PCs or other mobile device, in order to enable
the execution of applications requiring more computational
power.

CMA develops the basic concepts of surrogate computing
and cyber foraging further by incorporating the concept of
cloud computing. Today, various applications already rely
on the concepts of cloud computing e.g. to offload voice
recognition, image processing, and other resource-intensive
tasks to the cloud. Furthermore, cloud services are used to
virtually extend the storage capacity of mobile devices. As
a pre-condition, these techniques require a fast and reliable
connection to the cloud service or, more generally speaking,
to the Internet. The separation between locally and remotely
executed tasks is defined statically during the development
phase of the application. For classical cloud solutions, there
are only very limited ways to dynamically consider factors
like available bandwidth or latency. This limitation of classical
cloud computing is overcome by CMA, which can be regarded
as a combination of surrogate computing and cloud computing.
CMA-based applications rely on the basic concept of surrogate
computing and dynamically assign tasks to available external
resources. In contrast to the plain surrogate-computing con-
cept, outsourcing mechanisms of CMA-based applications are
however not limited to proximate devices but can also rely on
available cloud resources.

In this section, we provide an overview of relevant back-
ground information and related work on CMA. We start with

a brief overview of the evolution of CMA and introduce in
more detail the underlying concepts of cloud computing and
surrogate computing. We then elaborate on different types of
external resources that can be used by CMA-based applica-
tions. Finally, we discuss available offloading and reintegration
mechanisms that are used by current CMA frameworks.

A. CMA Concepts

CMA basically combines the concepts of cloud computing
and surrogate computing. These concepts are described in the
following in more detail.

1) Cloud Computing: Cloud computing is a service-
oriented approach to offer IT services to users based on a pay-
as-you-go model. Cloud computing services are typically pro-
vided on three levels: Infrastructure-as-a-Service (IaaS) offers
virtualized hardware platforms, Platform-as-a-Service (PaaS)
offers ready-to-use runtime environments for own service
development and Software-as-a-Service (SaaS) offers ready-
to-use services with a particular purpose. One key advantage
of cloud computing over traditional IT infrastructures is that
service providers can offer their services without requiring high
investments in advance, resulting in a reduced time to market.
Furthermore, due to the dynamic nature of cloud computing
and cloud resources, service providers can absorb load spikes,
which in turn improves the experience for users.

The possibility to make use of virtually unlimited pro-
cessing power and storage capacities makes cloud computing
especially attractive for mobile end-user devices, which often
suffer from limited capabilities. The use of cloud computing
on mobile devices has become known under the term mobile
cloud computing (MCC). Shiraz et al. [9] define MCC as
a new paradigm in the field of utility computing, which
extends the concepts to devices with constrained resources.
To offload resource-intensive tasks, MCC utilizes different
components, as illustrated in Figure 1. MCC does not only
cover the outsourcing of computational power, but also e.g.
the outsourcing of storage space among different devices.

Fig. 1. Mobile Cloud Computing components

2) Surrogate Computing: Surrogate computing [8] also
targets the augmentation of resource-constrained devices. In
contrast to MCC, this concept considerably increases the set
of utilized devices and also takes proximate resources such
as notebooks, desktop computers, or other mobile devices
into account. This way, lower latencies can be achieved for
outsourcing processes compared to pure cloud-computing so-
lutions.

This is relevant as according to Satyanarayanan et al. [10],
even relatively low latencies of 33ms already significantly im-
pact user experience. Satyanarayanan et al. conducted a test, in
which an application was run locally and with different remote
desktop applications utilizing wide area networks (WANs). In
contrast to the local execution, either the frame rate of the
remotely executed application dropped significantly or the ap-
plication responded slowly. One way out would be to improve
the latencies of WANs. However, recent developments rather
go the way of increasing bandwidth than reducing latency.
Therefore, it is not foreseeable that significant improvements
will be made on the latency issue in the near future. It is hence
reasonable to rely on approaches such as surrogate computing
that provide outsourcing with low latencies.

Figure 2 shows the extended component model for
surrogate-computing systems. Resource-constrained devices
can offload tasks to other surrounding devices, with the limita-
tion that these devices should have a similar movement pattern
so that they remain in range for a long time. Devices could also
use so-called Cloudlets for computational offloading, or as a
gateway to other cloud resources. The concept of Cloudlets has
been introduced by Satyanarayanan et al. [10] and describes
resources that, from the user’s perspective, provide computa-
tional resources and are hence comparable to classical cloud
resources.

Fig. 2. Components of a Cyber Foraging system

B. CMA Resources

Cloud computing and surrogate computing form the basis
for CMA. Hence, CMA-based applications make use of both
cloud resources and resources that are provided by proximate
devices and can be accessed through surrogate-computing
approaches. Abolfazli et al. [11] introduce a classification of
utilized resources of CMA-based applications. They differen-
tiate between Distant Immobile Clouds, Proximate Immobile
Computing Entities and Proximate Mobile Computing Enti-
ties. These different types of resources are introduced in the
following in more detail. In practice, CMA-based applications
should follow a hybrid approach and use more than one type
of resources. A comparison of the different types of resources
is also provided in Figure 3.

1) Distant Immobile Clouds: Distant immobile clouds are
classical cloud resources from major cloud-service providers
with large data centers. Additionally, also private-cloud re-
sources from companies and organizations can be classified
as distant immobile clouds. The connection to these resources

low computing power

Resources for Cloud-based
Mobile Augmentation

Distant Immobile
Clouds

Proximate Immobile
Computing Entities

Proximate Mobile
Computing Entities

● Public Cloud Providers
● Company Private Clouds
● User operated computing

units

● Underutilized near
computing units (used for
advertising, shop
computers, ...)

● Cloudlets

● Underutilized near mobile
computing units
(smartphones, tablets,
notebooks,...)

low to high bandwith,
high latency

high bandwidth,
low latency

medium to high computing power

Fig. 3. Overview of resources utilized by CMA-based applications

is established through the Internet with measures in place to
maintain connection security. Large data centers are highly
efficient in terms of power consumption and utilization of
available resources. However, due to their large distance to the
users, the latency is relatively high compared to other types of
resources. This can significantly impact the user experience
and can potentially lower the performance of the whole appli-
cation. If only low bandwidth and high-latency connections to
the cloud resources are available, distant immobile clouds are
typically not the first choice for CMA-based applications to
offload tasks.

2) Proximate Immobile Computing Entities: Proximate im-
mobile computing entities are resources that are located in the
surrounding of users, e.g. in public places. Such resources may
be used to show advertisements, play music, or are used as
simple input devices. It is likely that they have a fast wired
or wireless connection to the Internet, and are, at least most
of the time, not fully utilized. These resources can also be
used by surrounding users and their CMA-based applications
to offload tasks.

Another approach in this category is based on so-called
Cloudlets, which have been introduced by Satyanarayanan et
al. [10]. The concept of Cloudlets is sometimes also referred to
as Cloud-in-the-Box. Cloudlets are a special kind of proximate
immobile computing entities. They are dedicated to CMA-
based applications that need to offload resource-intensive tasks.
Cloudlets can also be used as low-latency gateways to other
offloading resources such as distant immobile clouds. A known
challenge of the concept of Cloudlets is the trust relationship
between the user and the Cloudlet provider. Without further
security measures, the Cloudlet provider can theoretically spy
on the user and can extract sensitive or personal information.

3) Proximate Mobile Computing Entities: Proximate mo-
bile computing entities refer to the utilization of surround-
ing mobile devices like smartphones, tablet computers, or
notebooks. Because mobile devices are dedicated to be on
the move, using proximate mobile computing entities is only
feasible, if they have a similar movement pattern than the user.
Only in this case offloading targets will be available during
a sufficient period of time. Security concerns for proximate
immobile computing entities also apply to proximate mobile
computing entities, as used resources are under control of
another person and can also be infected with malware.

C. CMA Building Blocks

CMA-based applications need to integrate several basic
building blocks that implement required functionality. Most
relevant functionality is covered by the so-called offloading
and reintegration mechanism, which is a core functionality of
each CMA-based application. The offloading and reintegration
mechanism is composed of two components: the partitioning
algorithm and the offloading component.

The partitioning algorithm separates an application into
parts that can be run remotely and into parts that are required to
run locally. A local execution is for instance required for parts
that require an interaction with the local user interface or with
sensors of the mobile device such as GPS, compass, or camera.
The partitioning algorithm also requires an estimation for the
efficiency of offloading under current conditions, in order
to achieve a suitable partitioning. The partitioning itself can
happen statically at compile time, dynamically at runtime, or
can be a combination of both. In practice, the developer usually
defines a static pre-partitioning of the application by marking
specific classes and methods. Alternatively, the offloading can
also be based on separate threads. Additionally, a runtime
component analyzes, which parts are candidates for offloading
under current conditions and takes into account parameters
such as available bandwidth, latency, energy consumption, or
available computational power.

The offloading component is the second basic building
block that needs to be implemented by CMA-based applica-
tions. This component outsources parts of the application to
available remote resources. The outsourcing of components
can be based on different concepts with different levels of
granularity. These concepts are explained in the following in
more detail.

1) Virtual Machine Based Approaches: Virtual machine
(VM) based approaches, as described by Chun et al. [1],
aim to provide a runtime environment, which is similar and
compatible to the environment of the resource-constrained de-
vice. Following this approach, the VM can execute unchanged
mobile-device applications, lowering the required development
effort and enabling a fast and broad rollout. The disadvan-
tages of this approach are obvious. First, a vast amount of
different virtual-machine images reflecting different hardware
and operating-system combinations is required. Second, for
efficiency reasons, a VM will only be started when required,
which results in a few seconds delay for the user. Third, all
applications need to be available at the resource provider’s side
or need to be uploaded, which again results in a delay. Finally,
the VMs consume a non-negligible amount of resources, which
may even exceed the resources required by the application. In
general, VM-based approaches are hence inappropriate in most
cases.

2) Class or Method Based Concepts: As described by
Cuervo et al. [3], class or method based concepts provide
a more fine-grained approach and focus on the offloading of
classes or methods instead of entire applications. Before meth-
ods are invoked, it is decided, if the method is executed locally
or remotely. Depending on the utilized programming language,
it may not be required to provide a compatible execution envi-
ronment. Using managed programming languages (for example
the Java programming language or the .NET environment), it

is possible to transfer the current state of an application to
another machine, which may be running a different operating
system. Class or method based concepts require more support
from the developer, but in return eliminate delays induced by
the VM-based approach. These concepts might also require
the mobile device to upload parts of the application to the
offloading target. However, by using smart extraction of the
relevant application parts, it is possible to minimize the size
of these data.

3) Object-Based Concepts: Object-based concepts as pro-
posed by Sinha et al. [12] extend the class-based approach
to a even more-fine grained level. Sinha et al. [12] introduce
object-based concepts by means of the concrete example of
an image-manipulation software, where a certain class is used
to apply different effects. With a class-based approach, this
class would always be offloaded to the same target, or would
always run locally. Utilizing the object based approach, the
system bases the offloading decision on the prediction of the
required computational effort for one specific instance of a
class, i.e. an object. This way, different instances of the same
class can be offloaded to different targets.

III. REQUIREMENTS

Independent of the utilized external resources and the
followed outsourcing approach, the main aim of current CMA
frameworks is the provision of efficient offloading mecha-
nisms. Security aspects usually play only a marginal role in
these frameworks. This is problematic, as a lack of security
renders the use of CMA-based applications in security-critical
fields of application impossible. As a first step towards a
solution to this problem, this section identifies requirements
for security-critical CMA-based applications. The list of re-
quirements will be used in Section V to evaluate and assess
current CMA frameworks.

Requirements listed in this section have been derived
from related literature. Some requirements are very similar to
the requirements of general cloud computing, others can be
derived from requirements of classical IT systems. According
to Ryan [7], cloud computing differentiates from the paradigms
of classical IT systems in the following key points:

• Cloud resources are shared among a certain amount
of users. Every user is a potential attacker.

• Cloud resources could be retrieved using unsafe pro-
tocols, or could be transferred using public networks.

• The cloud provider has full responsibility of the data
integrity of all users.

• The cloud provider and its sub contractors potentially
have access to all stored data.

These key points influence cloud computing related secu-
rity challenges as defined by Rong et al. [6]:

Location of data: In the field of cloud computing, big
players are acting around the globe with data centers in regions
that are beneficial in terms of location or costs of operation.
Users usually do not have control or tracing possibilities where
cloud providers store or backup data. Cloud providers will
store data at those locations that are most attractive for them.

Multi-tenancy: Generally, cloud services are built to serve
multiple users and user groups. As a user, one needs to trust the
cloud provider to have mechanisms in place to isolate different
users and their data from each other.

Monitoring and logging: With the increasing amount of
applications being migrated to the cloud, it is of highest
importance for the service operator to have decent logging
and monitoring mechanisms in place. This goes hand in hand
with the requirement for multi-tenancy, as the logging needs a
complete isolation between different services and users. This
is mandatory as log files may contain sensitive data.

Cloud-related standardizations: For specific cloud-related
branches, standardizations are available today. Generally, a
provider only supports applications which are developed par-
ticularly for one specific platform (vendor-lock-in).

From the identified security challenges of cloud com-
puting, security requirements can be derived. The derivation
and identification of security requirements for cloud-based
solutions has been a topic of scientific interest for several
years. Accordingly, several publications are available, which
focus on security requirements for cloud computing in general
[13] [14]. To a certain extend, these requirements also apply
to CMA-based applications. CMA can be regarded as spe-
cific framework or application for cloud-computing resources.
CMA approaches in general are not bound to classical cloud re-
sources, but can also utilize other types of resources including
proximate devices. From a devices perspective, these resources
can also be seen as just another special type of cloud resources.
Due to the similarity between cloud computing and CMA,
some of the cloud computing related security requirements
as defined by Honer [13] and Iankoulova [14] also apply to
CMA systems without changes. In summary, the following
requirements can be regarded as relevant for security-critical
CMA-based applications.

• R1 - Reliability: Reliability refers to the availability
of the system. The reliability is negatively affected by
the presence of single points of failures in the system.
An example is a central server, which is organizing
the whole offloading process.

• R2 - Integrity: Integrity means that data remains
consistence over its whole life cycle. In the context
of CMA, integrity means that cloud resources execute
offloaded code without applying any modifications.
As illustrated in Figure 4, the cloud provider could
modify the offloaded code unnoticed by the user.
The modified code could then introduce a different
behavior or return erroneous results. As modifications
are applied remote from the user and its CMA-based
application, they are hardly detectable.

Fig. 4. Integrity requirement

• R3 - Privacy and confidentiality: This requirement
tackles the issue of unauthorized third parties trying
to access sensitive information. In a CMA context as
seen in Figure 5, the cloud providers generally do
not deal with data as, for example, a storage provider
does. However, they execute parts of an application
that potentially contains sensitive information. It might
be more complex to extract relevant data, but the data
potentially also contains highly relevant information
like passwords, user names and others.

• R4 - Non-repudiation: Non-repudiation means that a
party cannot deny that she has sent a message. Only
the sender is in charge of the necessary information
to produce messages that refer to the particular party.
In the CMA context it is important that resources
can link requests to particular clients without a doubt
as resources may expose sensitive information to the
clients and resources may charge the clients based
on the consumed resources. Therefore, it is of high
interest for attackers to impersonate other clients.

• R5 - High isolation level: This requirement is tightly
coupled with Requirement R3, but due to the discussed
types of offloading mechanisms is a very important
requirement for CMA frameworks. Depending on the
used mechanism, the system has a low to high iso-
lation level between different users. On a classical
virtual machine based approach, where each offloaded
application gets its dedicated virtual machine, a high
isolation level can be achieved. A high isolation level
implies a low risk of outbreak, as the attacker would
need to find a security flaw in the virtual-machine
hypervisor. On the other end, there are systems that
better utilize the available resources, but in contrast
may share a single virtual machine and execution
environment among different users and applications.
Without further security measures, it seems much
easier to get access to data of other applications
running in the same environment.

• R6 - Misuse of provided resources: All requirements
identified so far relate to the user and his or her data.
Considering a CMA-based application, providers of
external resources generally have less control of the
executed application and therefore also need to be pro-
tected. This requirement addresses ways for resource
providers to assure that users do not misuse provided
computational power for fraudulent activities.

The six security requirements defined in this section will
be used to systematically assess security capabilities of current
CMA frameworks. Relevant frameworks that will be assessed
are surveyed and briefly sketched in the next section.

Fig. 5. Privacy and confidentiality requirement

Ressource constrained
device

Application developer

Developer assisted
partitioning

Static application
analyser

Application profiler Dynamic application
analyser

Client-side
offloading

Client-side
reintegration

Offloading resource
discovery

Offloading resource
communication

Offloading resource

Algorithm specific
environment provider

Inter-resource
communication

Server-side offloading
component

Fig. 6. Offloading system components

IV. EXISTING CMA FRAMEWORKS

In this section, an overview of existing CMA frameworks
is provided in order to sketch the current state of the art. In
general, CMA frameworks comprise components that assist de-
velopers in creating CMA-based applications, components that
enable the use of CMA-applications on resource-constrained
devices, and components that are part of external offloading
resources used by CMA-based applications. This is illustrated
in Figure 6, which identifies and lists relevant components of
CMA frameworks.

During the development process of a CMA-based applica-
tion, the application developer can assist in the pre-partitioning
process as described in Section IV-C and illustrated in Figure
6 by the developer assisted partitioning component. For this
purpose, the developer can use static application analyzer
tools provided by the CMA framework. These tools help the
developer to identify those program parts that need to run
locally and those that can be executed remotely.

The resource-constrained mobile device may contain a
dynamic analysis component, which operates on data from the
application profiler and from the offloading resource discovery
component. The application profiler monitors the execution
of the application and provides time or memory consumption
estimations for particular parts of the program. The offloading
resource discovery component has connections to available
external resources and can provide computational power on
demand. The communication with offloading resources is
performed using the offloading resource communication com-
ponent, which may use simple web APIs or more complex
systems like peer-to-peer networks. The central component,
which is split among the mobile device and the offloading
resource, consists of the client-side and server-side offloading
and reintegration components. These components perform the
migration of the execution to the remote resource and reinte-
grate the results once finished.

The server-side offloading component runs the offloaded
part on the available resource and sends back the results to
the calling client. The offloading resources may also have
mechanisms for inter-resource communication and may dis-
tribute work among other resources. Depending on the utilized
offloading method, an algorithm-specific environment provider
component is required to provide the execution or virtual
machine environment to the offloading component.

Figure 6 shows that CMA frameworks can potentially com-
prise various different components that enable the use of CMA
concepts. In practice, CMA frameworks typically support and

provide only a subset of all possible components. In the
following subsections, relevant existing CMA frameworks are
introduced. Focus is put on those frameworks that do not limit
the applications to particular cases, but are generally applicable
in different fields of application.

A. AlfredO

AlfredO [4] is based on the R-OSGi [15] middleware,
which improves the concepts of OSGi [16] to a distributed
manner. OSGi enables Java application developers to loosely
couple modules in an efficient way. R-OSGi extends this
concept and enables distribution of modules among different
computing units. The vision of AlfredO is to use mobile
phones as generic interfaces to proximate devices. Addition-
ally, AlfredO preserves the device’s unique features like touch
screen or different sensors. To maintain the security of the
devices and to achieve the defined goals, AlfredO introduces
three main paradigms:

• AlfredO utilizes a service-oriented software distribu-
tion to execute software using the R-OSGi framework
and to retrieve remote interfaces.

• A multi-tier service architecture is defined, consisting
of presentation tier, logic tier, and data tier. The exe-
cution can be distributed dynamically among mobile
devices and offloading resources within the boundaries
of the defined tiers.

• The device-independent presentation tier utilizes ad-
vantages of all platforms. The framework only sends
out a high-level description of the user interface. The
end-user device then generates a corresponding user
interface utilizing available technologies.

AlfredO has a very small footprint on mobile devices with
a minimal size of 290 kBytes. In practice, the size heavily
depends on the provided components, e.g. different renderers.
As the framework is based on R-OSGi and OSGi, it requires
mobile platforms, on which Java virtual machines are available,
and which additionally support the concepts of R-OSGi. As
Java in general is available on various devices [17], the former
does not raise any problems. However, the Java VMs are only
available in a very limited version. Hence, each platform needs
a re-evaluation in terms of R-OSGi compatibility. Furthermore,
AlfredO requires the developer to provide a static partitioning
of the application. Therefore, a fine-grained dynamic partition-
ing is not possible with AlfredO.

B. Misco

Misco [5] utilizes the Map-Reduce mechanism to complete
tasks. This mechanism splits tasks into smaller ones, and
processes them in parallel. The processing takes place in two
steps: The first step is called map phase. There, the processing
function is applied to a set of input data, which results in
intermediate results. The second step, i.e. the reduce phase,
groups the intermediate results to get the final result.

The Misco environment consists of a server component,
which enables the user to define new tasks via a web interface,
and multiple workers, which process these tasks. Each Misco
worker processes a single map or reduce task at any given

time. Misco workers could for instance also be other mobile
devices.

The concept of Misco differs from other described frame-
works in the way how tasks are added and managed. The
critical path in the system is the central Misco server, which
manages and coordinates all of the available resources. If this
component is taken down, the whole system fails. Dou [5]
introduced a prototype system that is based on the Python
programming language and offers a wide compatibility with
existing systems. This prototype shows the feasibility of the
underlying concept of Misco. However, beside the fact that
Python does not really have an impact on mobile devices, it
is a potentially challenging and time-consuming task to port
existing applications to this framework.

C. MAUI

MAUI has been introduced by Cuervo et al. [3]. Its main
goal is to be as energy and battery saving as possible. Concep-
tually, MAUI is limited to managed code environments. The
prototype introduced by Cuervo et al. [3] is for instance limited
to Microsoft .NET [18]. MAUI uses a method-level offloading
approach and hence provides fine-grained outsourcing opportu-
nities. Methods that can be offloaded are marked as remotable.
An optimization framework is utilized to decide if a method
should be offloaded under current conditions such as available
connectivity, round-trip-time, or effort required to transfer the
current state of the application. There, the developer decision
on remotable methods is only an initial partitioning, which gets
fine-tuned during runtime.

MAUI mainly focuses on the offloading part and not on
details on how to manage or combine available resources. If
the connection to the offloading server is lost, the framework
restarts the process locally, resulting in a short delay only.
MAUI utilizes a profiling and solver model, where all execu-
tions are supervised by the profiler and changes are recorded.
The recorded data is used as input for the solver to decide
which methods to offload.

The most interesting aspect of MAUI is its simplicity.
No prior knowledge is required to make use of this CMA
framework. Only few internals need to be known by the de-
veloper to improve the execution of applications using MAUI.
Although MAUI focuses on the .NET programming language,
it can easily be adopted to other programming languages.
Unfortunately, the .NET framework is still not very popular on
mobile devices and basically restricted to the Windows Phone
platform. According to an IDC study from 2014 [19] only
2.5% of all smart phones are currently equipped with Windows
Phone. Although there are ways to execute .NET applications
also on other platforms, it is not very popular at the moment
and may not be of interest for platform vendors. Even if the
MAUI system gets ported to other programming languages,
compatibility issues would still remain.

D. CloneCloud

The CloneClouds [1] concept aims to offload tasks to
platform clones in the cloud with the goal to optimize the
execution time and to minimize the energy consumption on the
mobile device. The cloned virtual machines in the cloud need
to be as similar to the mobile device as possible. In contrast

to MAUI, CloneCloud can operate on unchanged applications,
utilizing a mixture of static and dynamic partitioning algo-
rithms.

The static analysis stores migration and reintegration points
for later usages. They need to fulfill three fundamental proper-
ties. First, they must not contain device-specific functionality.
Second, methods accessing native states always need to be
executed on the same target (device or clone). Third, nested
offloading operations are not permitted. The dynamic analysis
calculates a cost estimation of the identified program parts
using different execution parameters. Based on the collected
data, the solver decides at runtime if a method is offloaded.

The prototype introduced by Chun et al. [1] is based on
Java and Android. Therefore, it is theoretically able to operate
on every available application. The migration and reintegration
points are induced using special Java-VM commands. There-
fore, for the framework to run, it is necessary to provide a
modified Android version. No modified executable will run
on unmodified versions of Android. As the distributions of
currently used versions of Android is quite scattered from
version 2.2 to 4.4 [20], it is unlikely that this technology will
heavily be used in practice.

E. ThinkAir

ThinkAir, which has been introduced by Kosta et al. [2],
combines the concepts of MAUI and CloneCloud to add more
scalability. ThinkAir can dynamically allocate resources by
starting and stopping virtual machines. ThinkAir has been
designed based on four major principles:

• Dynamic adoption to changing environments: As
CMA frameworks mainly target resource-constrained
mobile devices, it is key that frameworks dynamically
adapt to changes in their environment.

• Ease of use for developers: To achieve a broad usage
and acceptance, the framework must be usable by both
inexperienced and experienced users.

• Performance improvement through cloud computing:
The main goal of ThinkAir is to improve the per-
formance of applications and to minimize the energy
consumption.

• Dynamic scaling of computational power: The frame-
work should be applicable for applications with dif-
ferent requirements.

ThinkAir provides a pre-partitioning mechanism, similar
to the approach used by MAUI and introduces an additional
compilation step, which generates code for the remote execu-
tion. The prototype introduced by Kosta et al. [2] has been
developed for Java and has been based on Android. It elimi-
nates the limitations induced from CloneCloud by combining
the approaches from MAUI and CloneCloud. However, it does
not eliminate the induced overhead due to the provisioning of
virtual machines as described in Section IV-D.

F. Cuckoo

Cuckoo, which has been introduced by Kemp et al. [21],
is a CMA framework based on Android with slightly different

goals compared to CloneCloud or ThinkAir. The top goal of
Cuckoo is to achieve a seamless integration in the development
workflow and in integrated development environments to foster
the ease of use. Furthermore, Cuckoo aims for simplicity on the
resource providers’ side. It does not require complete virtual
machines. Instead, it works with Java VMs, which can be
provided without much effort.

Cuckoo does not require the same code to be executed
locally and remotely. The integrated development environment
generates interfaces for the remotable parts. The developer can
choose to use the same implementation of remotable parts
for local and remote execution or provide different imple-
mentations depending on the location of execution. In fact,
during compilation the resulting application always contains
a separate library containing the parts that may be executed
remotely.

In genereal, this approach seems more efficient than ex-
ecuting the same implementations on all platforms without
the possibility to optimize it for certain platforms. On the
other hand, Cuckoo does not fulfill the requirement of an easy
migration of applications to the cloud.

G. COSMOS

COSMOS has been introduced by Shi et al. [22] and
aims to provide Offloading-as-a-Service in order to minimize
offloading costs. COSMOS is also an VM-based approach
for Android. Other systems like CloneCloud always dedicate
a VM to one specific user. COSMOS tackles this issue by
introducing a COSMOS Master, which supervises all available
resources and can early react to prevent spikes by starting new
virtual machines. Moreover, COSMOS shares VMs among
multiple users.

The offloading algorithm has not been described in detail in
[22]. Anyhow, the described concepts eliminate the previously
described delay for starting new resources due to the COSMOS
Master and focus on cost minimization due to a smart control
of the resources.

H. Offloading for Web applications

Hwang et al. [23] propose a framework to offload web
applications based on the HTML5 Web Worker specification
[24]. Web workers are comparable to separate threads in other
programming languages but operate under a higher isolation
level. They can only communicate with the main thread using
the PostMessage mechanism. Hwang et al. [23] propose to
offload the separate worker threads using HTML5 Web Sockets
and reintegrate the results once processing has finished. The
technique is the first one that provides offloading capabilities
to the emerging field of web-based applications.

V. EVALUATION

The conducted survey has revealed that there is currently
a heterogeneous ecosystem of different CMA frameworks.
These frameworks differ significantly in terms of provided
features and underlying concepts. In this section, all surveyed
frameworks are evaluated systematically in order to enable
direct comparisons. The evaluation comprises two steps. First,
all surveyed CMA frameworks are classified according to their

TABLE I. OVERVIEW OF UTILIZED RESOURCES PER FRAMEWORK

D
is

ta
nt

Im
m

ob
ile

C
lo

ud
s

Pr
ox

im
at

e
Im

m
ob

ile
C

om
pu

tin
g

E
nt

iti
es

Pr
ox

im
at

e
M

ob
ile

C
om

pu
tin

g
E

nt
iti

es

V
M

-b
as

ed
ap

pr
oa

ch

C
la

ss
-o

r
m

et
ho

d-
ba

se
d

ap
pr

oa
ch

O
bj

ec
t-

ba
se

d
ap

pr
oa

ch

AlfredO · · 3 · 3 ·

Misco · · 3 · 3 ·

MAUI 3 · · · 3 ·

CloneCloud 3 · · 3 · ·

ThinkAir 3 · · 3 · ·

Cuckoo 3 · · · 3 ·

COSMOS 3 · · 3 · ·

Web 3 · · · · ·

supported external resources and their applied outsourcing ap-
proach. Subsequently, the provided security of all frameworks
is assessed with the help of the security requirements identified
in Section III.
A. Categorization

Depending on their underlying concept, CMA frameworks
make use of different external resources. Concretely, they can
rely on distant immobile clouds, proximate immobile entities,
or proximate mobile computing entities. Furthermore, CMA
frameworks follow different approaches to outsource tasks.
Possible approaches are outsourcing based on VMs, class
or method based concepts, and object-based concepts. Table
I shows, which types of external resources and outsourcing
approaches are used by the surveyed CMA frameworks.

The results in Table I show, that none of the evalu-
ated frameworks utilizes multiple classes of resources, each
framework sticks to one specific class. Proximate immobile
computing entities are not considered at all. A majority of the
evaluated systems only utilize distant immobile clouds in the
form of public-cloud resources. Furthermore, on the utilized
offloading methods, AlfredO and Misco have an outstanding
position. AlfredO is mainly designed as a universal smart
remote control for applications where the user interface dy-
namically adapts to the device. Misco utilizes a map-reduce
approach where worker threads distribute all over different
mobile devices, and is not designed to dynamically partition
applications. The other frameworks distribute among the VM-
based and class- or method-based approaches. However, the
full flexibility and performance gain of class or method based
offloading can only be employed when combined with multiple
different types of resources types. Interestingly, the object-
based approach is not utilized by any of the frameworks. This
remains rather a theoretical concept, as its implementation
requires much more effort.

B. Security Assessment

This section assesses security capabilities of all surveyed
CMA frameworks by means of the security requirements

defined in Section III. Considering pure cloud solutions, most
identified security requirements can be fulfilled using available
technologies, if the cloud provider is only used as a storage
provider. In this case, reliability can be guaranteed by using
multiple cloud providers and by replicating content. Integrity
can be assured by additionally storing hash values or digital
signatures. Privacy and confidentiality can be preserved by
applying strong encryption and by limiting the storage of
data to trusted entities. The requirement for non-repudiation
does not really apply to storage providers but is comparable
with applying digital signatures to preserve integrity. The
requirement for a high isolation level finally maps to the use
of strong passwords and two-factor authentication.

In case the cloud service does not only store data but does
also process it, the situation gets more complex. One promising
approach is the use of fully homomorphic encryption, which
enables operations on encrypted data. Other solutions require
provision of the used encryption key to the cloud-service
provider, which has an identical protection level as applying
no encryption at all. Unfortunately, also CMA concepts require
the processing of data by external cloud resources. Relevant
security requirements can hence not be assumed to be fulfilled
when CMA concepts are followed. The capabilities of cur-
rent CMA frameworks to meet relevant security requirements
are hence assessed in detail in the following subsections. A
summary of this assessment is provided in Table II. The table
contains three different symbols: ”3” for requirements which
are completely fulfilled, ”7” for requirements which are not
fulfilled and ”∼” for requirements which are partly fulfilled or
could be fulfilled based on the documentation. If table cells
are left blank, relevant information is not available for the
particular framework.

1) Reliability: Reliability can only be provided by systems
that do not have a single point of failure or that feature a
fallback mechanism. AlfredO is a distributed system and does
not maintain any uplink to central servers. From a user’s
perspective, the reliability of AlfredO can be regarded as high.
This is in stark contrast to Misco, where a central Misco
server coordinates all workers. Without the Misco server,
the workers can not proceed or deliver their results. The
approaches followed by MAUI, CloneCloud, ThinkAir, and
Cuckoo all focus on the offloading technique and development-
workflow integration. They do not tackle the issue of reliability
and assume that they are connected to their assigned resources.
We do not consider the reliability requirement as not fulfilled
for these frameworks, because the systems could be extended
easily to provide more reliability. COSMOS further constrains
and optimizes procedures by better utilizing available re-
sources. A central server, i.e. a single point of failure, which
manages the available resources, is introduced. The presented
web application based offloading technique is rather a concept
so far, and does not yet implement a complete system. We
therefore cannot evaluate the requirement for reliability for
the web application based offloading framework.

2) Integrity: The requirement for integrity refers to the
execution of the correct offloaded code. In fact, users cannot
verify if indeed the correct data is executed on the remote
resource. None of the described frameworks tackles this issue.
Only the Cuckoo framework has an exceptional position, as it
enables the execution of different implementations depending

on the execution location. One possible solution to mitigate the
issue of integrity is to utilize multiple resources and execute
the offloaded parts simultaneously on multiple sites. This might
raise some other issues like side effects of multiple executions,
but at least the issue of wrong response values is tackled. Still
it does not prevent the cloud-service provider from modifying
the offloaded code and executing code with side effects not
reproducible by the user.

3) Privacy and Confidentiality: Privacy and confidentiality
are closely related to the requirement for integrity as it also
concerns the respectability of the executed code. In contrast to
the requirement for integrity, it focuses rather on the data and
sensitive information provided by the user. Again, none of the
frameworks tackles this issue. The provider could inject code
in the offloaded parts without modifying the intended func-
tionality but extracting user-specific and sensitive information.
The only suitable solution seems to be the establishment of
trust relationships with providers and to only use resources
from trustworthy entities for critical offloading operations.

4) Non-Repudiation: In a development environment, the
requirement for non-repudiation is closely related to privacy
and confidentiality. When it comes to productive services,
non-repudiation is also of interest to resource providers, be-
cause they may charge the users based on their actual usage
of resources. This issue is not directly tackled by any of
the described frameworks, but seems achievable for systems,
where resources are exclusively bound to particular users,
or for systems, where a master is managing the available
resources and is assigning users to them. This applies to
MAUI, CloneCloud, ThinkAir, Cuckoo, or COSMOS. For
the web application based offloading approach, insufficient
information is available to decide on that issue. For AlfredO
and Misco, this requirement seems hard to achieve, due to
their distributed nature and their different goals compared to
the other frameworks.

5) High Isolation Level: The assessment of the requirement
for a high isolation level is based on the utilized offload-
ing technology. We cannot provide a statement for AlfredO,
because of the different goal of this framework. Similarly,
we cannot provide an assessment for the web application
based offloading approach, due to lack of relevant information.
Although the proposed Misco framework does not utilize
different virtual machines, a high isolation level is achievable
due to the very clear worker separation and structure of
the offloaded code. MAUI, in contrast, may use a single
resource for multiple users and without further measures,
it may be possible to access other processes on the same
resource. CloneCloud, ThinkAir, and Cuckoo are all based on
virtualization techniques, where a single machine is only used
by a single tenant. Therefore, a high isolation level is provided
by these frameworks. COSMOS extends the concepts of MAUI
and CloneCloud and better utilizes the available resources by
using the same resource for multiple users. This may lower
the isolation level.

6) Misuse of Provided Resources: The former requirements
all tackled issues affecting the users of a system. In con-
trast, this requirement concerns the security of the resource
provider. The best approach to prevent misuse of provided
resources is the analysis of offloaded parts. Although the issue
is not concerned by any of the discussed frameworks, we

TABLE II. EVALUATION OF THE REQUIREMENTS

AlfredO Misco MAUI CloneCloud ThinkAir Cuckoo COSMOS Web

R1 - Reliability 3 7 ∼ ∼ ∼ ∼ 7

R2 - Integrity 7 7 7 7 7 ∼ 7 7

R3 - Privacy and confidentiality 7 7 7 7 7 7 7 7

R4 - Non-repudiation 7 7 ∼ ∼ ∼ ∼ ∼

R5 - High isolation level 3 7 3 3 7 ∼

R6 - Prevent misuse of provided resources 7 ∼ ∼ ∼ ∼ ∼ ∼

consider systems exclusively utilizing mobile devices to not
have enough resources to conduct such an analysis. For cloud-
resource providers, it is easier to build a database of trusted
offloaded parts.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have surveyed, classified, and assessed
currently available CMA frameworks that enable development
and usage of CMA-based applications. The conducted survey
has revealed that current CMA frameworks differ significantly
in terms of implemented offloading approaches and employed
external resources. The conducted security assessment has
shown that none of the surveyed frameworks is able to meet
requirements of security-critical applications. We hence have
to conclude that currently available CMA frameworks are not
suitable and applicable for security-critical fields of application
so far.

For the near future, we plan to further intensify our work
on the application of CMA concepts in security-critical envi-
ronments. Concretely, we plan to develop a CMA framework
that meets relevant requirements of applications storing and
processing security-critical data. The work and the results
presented in this paper are a solid basis for these attempts.
This way, this paper represents a first and important step and
paves the way for a future use of CMA-based solutions in
security-critical fields of application.

REFERENCES

[1] B. Chun, S. Ihm, and P. Maniatis, “Clonecloud: elastic execution
between mobile device and cloud,” Proceedings of the sixth . . . , pp.
301–314, 2011. [Online]. Available: http://dl.acm.org/ft\ gateway.cfm?
id=1966473\&type=pdf

[2] S. Kosta, A. Aucinas, and R. Mortier, “ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile
code offloading,” 2012 Proceedings IEEE INFOCOM, pp. 945–953,
Mar. 2012. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6195845

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Stefan,
R. Chandra, and B. Paramvir, “MAUI : Making Smartphones Last
Longer with Code Offload,” Energy, vol. 17, pp. 49–62, 2010. [Online].
Available: http://dl.acm.org/citation.cfm?id=1814441

[4] J. S. Rellermeyer, O. Riva, and G. Alonso, “AlfredO : An Architecture
for Flexible Interaction with Electronic Devices,” pp. 22–41, 2008.

[5] A. Dou, “Misco : A MapReduce Framework for Mobile Systems ,”
2010.

[6] C. Rong, S. T. Nguyen, and M. G. Jaatun, “Beyond lightning: A survey
on security challenges in cloud computing,” Computers & Electrical
Engineering, vol. 39, no. 1, pp. 47–54, Jan. 2012. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0045790612000870

[7] M. D. Ryan, “Cloud computing security: The scientific challenge,
and a survey of solutions,” Journal of Systems and Software,
vol. 86, no. 9, pp. 2263–2268, Sep. 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121212003378

[8] M. Satyanarayanan, “Pervasice Computing: Vision and Challenges,” pp.
10–17, 2001.

[9] M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A Review
on Distributed Application Processing Frameworks in Smart Mobile
Devices for Mobile Cloud Computing,” vol. 15, no. 3, pp. 1294–1313,
2013.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case
for VM-Based Cloudlets in Mobile Computing,” Pervasive Computing,
IEEE, vol. 8, pp. 14–23, 2009.

[11] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloud-
Based Augmentation for Mobile Devices: Motivation, Taxonomies,
and Open Challenges,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 1, pp. 337–368, 2014. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6563280

[12] K. Sinha and M. Kulkarni, “Techniques for Fine-Grained, Multi-
site Computation Offloading,” 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 184–194,
May 2011. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5948609

[13] P. Höner, “Cloud Computing Security Requirements and Solutions : a
Systematic Literature Review.”

[14] I. Iankoulova, “Cloud Computing Security Requirements : a Systematic
Review,” 2011.

[15] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi : Distributed
Applications Through Software Modularization,” pp. 1–20, 2007.

[16] OSGi Alliance, OSGi Service Platform, Core Specification, Release 4,
Version 4.3, 2011. [Online]. Available: http://www.osgi.org/Download/
File?url=/download/r4v43/r4.core.pdf

[17] “Java Verified - Table of Supported Devices,” 2014. [Online]. Available:
http://javaverified.com/device\ matrix

[18] Microsoft, “Overview of the .NET Framework.” [Online].
Available: http://msdn.microsoft.com/en-us/library/zw4w595w\%28v=
vs.110\%29.aspx

[19] IDC, “Smartphone OS Market Share, Q2 2014.” [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[20] “Android Dashboards.” [Online]. Available: https://developer.android.
com/about/dashboards/index.html

[21] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo:
a computation offloading framework for smartphones,” Mobile
Computing, Applications, . . . , pp. 59–79, 2012. [Online]. Available:
http://www.springerlink.com/index/U6777405301NP063.pdf

[22] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,
“COSMOS : Computation Offloading as a Service for Mobile Devices,”
2014.

[23] I. Hwang and J. Ham, “Cloud Offloading Method for Web Appli-
cations,” 2014 2nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, pp. 246–247, Apr. 2014.

[24] “Web Worker Specification.” [Online]. Available: http://www.w3.org/
TR/workers/

