
Placement of Runtime Checks to Counteract
Fault Injections

Benedikt Maderbacher[0000−0002−5834−352X], Anja F. Karl[000−0002−3062−7459],
and Roderick Bloem[0000−0002−1411−5744]

Graz University of Technology, Graz, Austria
firstname.lastname@iaik.tugraz.at

Abstract. Bitflips form an increasingly serious problem for the correct-
ness and security of software and hardware, whether they occur inadver-
tently as soft errors or on purpose as fault injections. Error Detection
Codes add redundancy and make it possible to check for faults during
runtime, making systems more resilient to bitflips. Codes require data
integrity to be checked regularly. Such checks need to be used sparingly,
because they cause runtime overhead.
In this paper, we show how to use static verification to minimize the
number of runtime checks in encoded programs. We focus on loops, be-
cause this is where it is important to avoid unnecessary checks. We intro-
duce three types of abstractions to decide correctness: depending on (i)
whether we keep track of errors precisely or of their Hamming weights,
(ii) how we check whether faults can still be detected, and (iii) whether
we keep track of the data or not. We show that checks in loops induce
simple and natural loop invariants that we can use to speed up the ver-
ification process.
The abstractions let us trade verification time against the number of re-
quired runtime checks, allowing us to find efficient sets of integrity checks
for critical program fragments in reasonable time. Preliminary experi-
mental data shows that we can reduce the number of runtime checks by
up to a factor of ten.

1 Introduction

Fault injection attacks and soft errors [BBKN12] are a significant and grow-
ing concern in software security. By flipping bits, an attacker can reveal cryp-
tographic secrets, change branching decisions, circumvent privilege evaluations,
produce system failures, or manipulate the outcome of calculations. For instance,
Boneh et al. [BDL97] showed how to break several implementations of crypto-
graphic algorithms by injecting register faults. To prevent such attacks, they
propose to protect the data integrity with error detection measures. Such coun-
termeasures have been studied in detail for cryptographic algorithms [LRT12]
[SFES18] [MAN+18], but not as much for secure software in general, where fault
attacks may also be problematic [YSW18]. Similarly, radiation can lead to ran-
dom bit flips known as soft errors or single event upsets. Such errors were initially

2 B. Maderbacher et al.

only problematic for hardware used in space, but with decreasing feature sizes,
they have also become relevant for consumer electronics [MER05].

We address error detection with Error Detecting Codes (EDCs) [Ham50,Dia55].
The fundamental principle of EDCs is an injective mapping of data words to
code words in an encoded domain. The mapping cannot be surjective, indeed, if
a code word is valid (the image of a data word), then flipping a few bits should
not yield another valid code word. Thus, limited faults can be detected using
runtime checks.

We are interested in error detecting codes that are homomorphic over certain
operations. For example, arithmetic codes preserve (some) arithmetic operations,
and binary linear codes preserve bitwise logical operations. Thus, we can execute
certain programs in an encoded domain, without the need to decode and reencode
in-between operations.

We define the distance between code words as their Hamming distance (we
will be more precise below). For a given code, the minimal distance between two
valid code words is called the distance of the code, denoted by dmin. The maximal
number of bitflips that a code can detect is thus dmin− 1. In a program, bitflips
may propagate and grow. For instance, if a variable a contains one bitflip, 3 * a

may contain two.

We need to ensure that errors are not masked, which happens if combining
two invalid code words results in a valid code word. We prevent masking by
inserting runtime checks in the program that halt the program if the variable
passed to the check is not a valid code word. Because checks cost runtime, we
want to insert as few checks as possible.

In this paper, we show how to use static reasoning to minimize the number
of runtime checks in encoded programs, building on the formal verification tech-
niques presented in [KSBM19]. We pay special attention to the verification of
checks inside loops, as their impact on correctness and on verification complexity
is especially high. In order to help minimize the placement of checks, we make
two contributions.

As a first contribution, we introduce a refined abstraction scheme. Where
[KSBM19] only tracks the weight of the errors, we introduce a four-tiered ab-
straction scheme in which an error is tracked either by weight or by precise value;
checks are performed either by checking the weight of error or by checking that a
fault is not a valid code word itself, and finally the actual values of the variables
are either abstracted away or kept precisely.

The second contribution is based on the observation that checks that are
placed in loops induce simple loop invariants. We thus propose invariants that
along with generated checks are used to reduce the verification of the runtime
checks in the program to straight-line code.

We show experimentally that our approach allows us to significantly minimize
the number of necessary runtime checks, by up to a factor of ten. The different
levels of abstraction allow us to trade off the number of runtime checks in the
program (we can prove programs with fewer checks correct if we have a finer
abstraction) against the scalability of the approach (which is better if we abstract

Placement of Runtime Checks to Counteract Fault Injections 3

more strongly). The resulting approach allows us to insert efficient sets of checks
into programs with reasonable computational effort.

2 Preliminaries

2.1 Fundamentals of Error Detecting Codes

Before introducing specific arithmetic codes, let us introduce some theory that
is common across these types of codes. The fundamental operating principle of
EDCs is the extension of every value with additional, redundant information.
The key component of each EDC is the encode function. This function defines
how a data word w of the decoded domainW, w ∈ W, is mapped to a code word
c in the encoded domain C:

encode :W 7→ C.

Typically, both domains are an interval of non-negative integers. The function
encode should be injective but not surjective, so that we can decode code words
and detect (some) corruptions of code words. We call a code word c valid, if it
is part of the image of encode, i.e., ∃w ∈ W : c = encode(w), and invalid
otherwise.

For the error detecting codes that are of interest here, we can define a dis-
tance function d : C × C ⇀ N on the encoded domain. (Distance functions fulfill
the usual properties of non-negativity, identity, symmetry, and the triangle in-
equality.) We use these distances to measure faults (as distances to the intended
value) and we will see below that they allow us to track these faults through
certain types of operations.

The error detection capabilities of an error detecting code are limited by
the minimum distance dmin between any two valid code words [Ham50]. We
define dmin as the minimum distance between any two valid code words, i.e.,
dmin = mincv,c′v

d(cv, c
′
v). We also define a weight function weight : C 7→ N as

the distance between a code word and the identity encode(0), i.e., weight(c) =
d(c, encode(0)). Finally, we define a partial function decode : C ⇀ W, as the
inverse of the encode function, and a function isvalid : C 7→ B, which maps
valid code words to true and invalid code words to false. The result of decode
is only defined for valid code words.

Most EDCs are homomorphic over a set of supported operations ◦, i.e.,

encode(w1 ◦ w2) = encode(w1) ◦ encode(w2),

which allows us to encode a whole program and execute the calculation directly
in the encoded domain.

2.2 Arithmetic Codes

Our work targets programs protected by codes that are homomorphic over arith-
metic operations.

4 B. Maderbacher et al.

Arithmetic Codes are homomorphic over operations like addition. The dis-
tance and weight functions are defined as the (base-2) arithmetic distance and
weight, resp. [Mas64]:

weightarit(c) = min
{
n
∣∣ c =

n∑
i=0

ai · 2ki for some ai ∈ {−1, 1} and ki ≥ 0
}

and
darit(c1, c2) = weightarit(|c2 − c1|).

For instance, darit(9, 2) = weightarit(7) = 2, because 7 = 8 − 1. The distance
between a value c and a value c′ that differ only in one bit is one.

For any linear operation ◦, we have the propagation laws darit(c1◦c2, c′1◦c′2) ≤
darit(c1, c

′
1) + darit(c2, c

′
2) and darit(c ◦ c, c′ ◦ c′) ≤ darit(c, c

′).

Example 1. Separate multiresidue codes. Separate multiresidue codes [Rao70,RG71]
are arithmetic codes. Every code word is a (k + 1)-tuple and operations are per-
formed separately on each element [Gar66,Pet58]. Every code is defined by k
constants, m1, . . . ,mk and we encode a data word as

encode(w) = (w, |w|m1
, . . . , |w|mk

),

where each check digit |w|mi equals w mod mi. Every operation on the check
digits is performed modulo its check base, so that

|w1 ◦ w2|mi
= ||w1|mi

◦ |w2|mi
|mi

,

making separate multiresidue codes are homomorphic over these operations. The
constant dmin depends on the choice of the check bases m1, . . .mk [MS09].

Example 2. AN-codes. For AN-codes, we fix a constant A and we define encode(w) =
A·w. A code word is valid if its residue after division by A is zero. Note that mul-
tiplication by A distributes over addition and subtraction. The dmin of the code
does not follow by easy inspection of A, but we often choose A to be a prime.
(Note that a power of two would be a particularly poor choice with dmin = 1.)

2.3 Error Propagation

When considering computations, we consider both the correct value c0 of a
variable c, which occurs in an execution in which no faults are introduced, and
its possible faulty counterpart c∗, which occurs in the corresponding execution
where faults have been introduced. The error weight ec is defined as the distance
d(c∗, c0) between the correct and actual code values. Recall that if ec ≥ dmin,
then c∗ may equal the encoding of a different data word, and it may no longer be
possible to detect a fault. On the other hand, if we can guarantee that ec < dmin

for all variables c, then faults will remain detectable.
We will assume that faults are introduced as one or more individual bitflips.

If a single bitflip is introduced in an otherwise correct variable c∗, we have that

Placement of Runtime Checks to Counteract Fault Injections 5

Table 1. Error propagation rules for arithmetic codes. The symbol ± stands for addi-
tion or subtraction.

ev±v′ ≤ ev + ev′

ev±v ≤ ev

e−v = ev

d(c0, c∗) = 1 and a bitflip introduced in an existing variable increases the error
weight by at most one. By the propagation laws stated above, for any operation
◦, we have that ec◦c′ ≤ ec + ec′ . Thus, faults may spread across an execution
and “grow up”: a variable may eventually have an error weight that is larger
than the total number of bitflips introduced into the program. For example:
e(c◦c′)◦c ≤ 2 ∗ ec + ec′ which can be larger than the sum of the injected errors
ec + ec′ .

Table 1 summarizes the propagation rules, where we use arithmetic error
weights.

2.4 Fault Model

Our approach is relatively independent of the precise fault model chosen, as long
as it can be modeled by a program transformation.

We illustrate our approach using a simple fault model in which faults consist
of bit flips on memory variables. We model faults to be transient in the sense that
the occurrence of a failure at a given program location does not mean the failure
will occur again when the program location is visited again. We do, however,
assume that errors persist in the sense that when the value of a variable has
changed, it does not automatically change back again. This models faults in
memory rather that faults on, say, the data path of a processor.

To model faults, we assume a minimal programming language with assign-
ments, arithmetic operations, jumps, conditionals, and a runtime check state-
ment. When called on a code word c, check(c) halts the program when c is not
a valid code word and continues otherwise. Note that this check will not detect
code words that contain such a large error that they equal a different code word.

We model faults by a simple program transformation in which a program P is
transformed to an annotated program Pf . In Pf , we add a new statement flip(v)
before every use of a variable v. This statement may nondeterministically flip
one bit of the value of v. We will also typically have an error assumption ϕε that
limits the number of bit flips that can be inserted into a run of the program.
An example would be a specification that says that the total number of inserted
bit flips is smaller than dmin. We refer to [KSBM19] for a formalization of this
approach.

We assume that the control flow of the program is protected using other
means [SWM18,WUSM18].

6 B. Maderbacher et al.

PfP Pfa Model Checker

3

7

Fig. 1. Overview of the verification algorithm.

3 Error Tracking

In this section and the next, we describe how we verify the correctness of the
checks in a program. We will thus define a code transformation from a program
with loops into a set of loop-free programs with assumptions and assertions such
that the correctness of the original program under the fault model is guaranteed
if all of the loop-free code fragments are correct. This is done by tracking the
the values of the arithmetic errors in addition to the values of the variables. This
section introduces increasingly precise abstractions for error variables, to make
the error tracking feasible. In the next section, we will describe how to generate
the invariants necessary to handle loops.

Figure 1 contains a schematic of our verification approach. Starting with an
encoded program P in the first step the fault model is made explicit resulting in
a program Pf . In the next step we apply one of the error abstractions described
in this section, abstract the control flow and add assertions. This program Pfa

is then given to a model checker, which gives a verdict whether the program is
secure.

The idea of the abstraction is to track the errors in the variables separately
from their (intended, uncorrupted) values. In order to do this, we need the
following property.

Definition 1. An error-correcting code is error-homomorphic for a set F of
operations, if for any f ∈ F there is an f ′ such that

f(a + εa) = f(a) + f ′(εa) and

f(a + εa, b + εb) = f(a, b) + f ′(εa, εb),

where + denotes addition, as we are dealing with arithmetic codes.

AN-codes and multiresidual codes are error-homomorphic for addition and mul-
tiplication with constants. Multiresidual codes are error-homomorphic for mul-
tiplication as well, but AN-codes are not.

In effect, these constraints state that we can track the values of the variables
separately from the errors. This is important for verification, because it means
we can distinguish between three situations: (1) a value may be correct, that is,
the error is zero. We denote this by corr(ε); (2) the error may be detectable in a
given code, denoted by detect(ε); (3) the error may be masked, meaning that it
is not zero but cannot be detected using the given code, denoted by masked(ε).
The third case is the one we want to avoid.

Placement of Runtime Checks to Counteract Fault Injections 7

Example 3. For an AN code with constant A, corr(ε) is defined as ε = 0,
detect(ε) = (ε mod A 6= 0) and masked(ε) = (ε > 0 ∧ ε mod A = 0)

We will construct a program Pfa from Pf . For every variable v in Pf , Pfa

will have two variables, v and εv. We distinguish our abstractions along three
dimensions:

1. The first question is how to keep track of errors that are introduced. We
can track the actual arithmetic error, or we can abstract it away by keeping
track of the weight of the error only.

2. We can vary how we check whether the induced errors can be handled by the
given code: we can either check whether the concrete error can be detected
by the given code, or we can abstract this to a check whether the weight of
the fault is greater than dmin.

3. Finally, we can keep the actual values of the variables or we can fully abstract
these away.

The abstractions are modeled as follows. In the following, we will assume
static single assignment form and we will introduce assumptions on relations
between variables when we cannot use assignments.

1. If we keep track of errors by their actual values, then for every v, εv is a
bitvector that models the error and the statement flip(v) is replaced by
a statement flipa(εv) that nondeterministically flips one of the bits in εv.
We replace an assignment u := f(v,w) in Pf by the two statements u :=

f(v,w); εu := f′(εv,εw), using error homomorphism.
If we keep only the weights of the errors, then εv is a positive number, and
flipa(εv) nondeterministically adds one to εv. In these cases we replace
an assignment u := f(v,w) by the statements u := f(v,w); assume(εu ≤
f′(εv,εw)). The value of εu can be anything satisfying the assumption. Note
that for arithmetic codes and additions, for instance, the weight of the error
of the sum of two variables can be smaller than the sum of the weights of
the errors.

2. A check whether the weight of a given error is greater than dmin is easily
implemented, whether or not we keep track of the concrete value of the error
or only of its weight. If we keep track of the concrete value of an error, we can
check make sure that the error value can be detected. For multiresidual codes
with constants m1, . . . ,mk, this is the case if εv is not a common multiple of
m1, . . . ,mk; for AN-codes it is the case if it is not a multiple of A.

3. Finally, if we abstract away the values of the concrete variable of the program,
we simply remove all assignments to the variables and replace conditionals
with nondeterministic choices.

Based on these three dimensions, we define four levels of abstraction, as
sketched in Table 2.

The abstract program is extended by adding assumptions and assertions.
Whenever a variable gets assigned it may not contain error masking. The error
must be either zero or detectable by the code.

8 B. Maderbacher et al.

Table 2. Abstraction Levels

Level Errors checks values

3 weight weight abstract
2 precise weight abstract
1 precise code word abstract
0 precise code word precise

– For only checking the weight of the variables the assertion for a variable v is
assert(weight(εv) < dmin).

– If we check the actual code words the assertion instead is assert(corr(εv)∨
detect(εv)).

After a check on variable we added an assumption that the error on this variable
is zero, as the program would abort otherwise. We can slightly reduce the number
of assertions by only checking the variables when they are checked or used in
some form of output.

Theorem 1. If no assertion in the abstract program Pfa is violated then either
the program Pf with faults conforming to the fault model ϕε raises an error or
the output of P and Pf is equal.

We overapproximate the control flow and the propagation of errors. Thus if no
assertion is violated we can guarantee that no fault can lead to error masking and
no manipulated values are in the program output. The other direction, however,
is not true. There are programs that are rejected by our approach, that are
secure against the fault model.

Example 4. The different behaviors of these abstraction levels can be demon-
strated with a simple example. Let the following program, P , be protected by
an AN code with A = 7, for which we have dmin = 2:

m := m + a;

check(m); check(a);

For the sake of a simpler presentation we only consider one error injection loca-
tion on the variable a at the beginning of the program, so that our annotated
program Pf becomes

flip(a);

m := m + a;

check(m); check(a);

Let us assume that at most one bit is flipped. Using Abstraction Level 3 we
obtain an abstract program Pfa. Combining that with the specification that
puts the error at zero at the beginning at the program and requires safe errors
at the end, we get the following.

Placement of Runtime Checks to Counteract Fault Injections 9

assume(εa = 0 ∧ εm = 0);
ε′a := flipa(εa); // ε′a = 1, εm = 0
assume(ε′m ≤ εm + ε′a); // ε′a = 1, ε′m = 1
assert(ε′m < dmin ∧ ε′a < dmin);

The variables a and m are replaced by their respective error weights and the
comments on the right side of the code show one possible execution in which a
bitflip is introduced in a and the bitflip propagates to m. The final checks are
replaced by checks whether both errors are not masked, i.e., smaller than dmin.
It it easy to verify (by hand or mechanically) that the assertion always holds.

To make things a little more interesting, let us extend the program by re-
peating the first statement:

m := m + a;

m := m + a;

check(m); check(a);

This program can no longer be verified using Abstraction Level 3, because a
single bitflip in a at the beginning can result in εm = 2 at the end, which is equal
to dmin. However, we can use Abstraction Level 2 to show that all errors will be
detected:

assume(εa = 0 ∧ εm = 0);
ε′a := flipa(εa); // ε′a = 2, εm = 0
ε′m := εm + ε′a; // ε′a = 2, ε′m = 2
ε′′m := ε′m + ε′a; // ε′a = 2, ε′′m = 4
assert(weight(ε′′m) < dmin ∧ weight(ε′a) < dmin);

The variables εa and εb now keep track of the precise faults. The comments show
possible values for one execution with a bitflip on the second bit, which in the
third line leads to a value with the third bit flipped. In general, injecting one bit
flip in a variable and adding it to itself always results in a value with only one
flipped bit, and such errors can be detected by a code with dmin = 2.

Extending our example once more, we get

m := m + a;

m := m + a;

m := m + a;

check(m); check(a);

An attempt to verify this program using Abstraction Level 2 fails, because the
error weight of m can reach dmin at the end. However, we can use Abstraction
Level 1 to show that the check on m is still sufficient to find all faults in this
program.

assume(εa = 0 ∧ εm = 0);
ε′a := flipa(εa); // ε′a = 2, εm = 0
ε′m := εm + ε′a; // ε′a = 2, ε′m = 2
ε′′m := ε′m + ε′a; // ε′a = 2, ε′′m = 4
ε′′′m := ε′′m + ε′a; // ε′a = 2, ε′′′m = 6

10 B. Maderbacher et al.

assert((ε′′′m = 0 ∨ ε′′′m mod A 6= 0) ∧ (ε′a = 0 ∨ ε′a mod A 6= 0));

Instead of checking only the weight of the error variables we check if the error
variable is zero or a valid code word in the AN code. This is done by testing if
the value is divisible by A. The comments again show one possible execution of
the program. It is also easy to see that this is correct in general. The value of m
at the end is m+3∗a; any error introduced at the beginning is also multiplied by
3. Error masking cannot occur, since 3 is not a factor of A = 7.

Abstraction Level 0 keeps the precise values of all variables. Essentially, this
amounts to not using any abstraction. We will not go into details for this ab-
straction level, but of course, it is easy to come up with an example in which
the concrete values of the variables are needed to show the program is secure.

4 Invariants

The abstract program defined in the last section can be passed to a model checker
as is. However, such programs may be difficult for off-the-shelf model checkers to
handle, especially in the presence of loops. It may, however, be easy to generate
loop invariants for the classes of faults that we use, thus reducing the verification
of an annotated program to the verification of a set of loop-free code segments
in order to reduce the number of runtime checks.

Let us assume our annotated program Pf contains a loop body L that uses
a set of variables V = {v1, . . . , vn} with the associated error variables εV =
{ε1, . . . , εn} and let E ⊆ Nn be the set of possible values for εV . Without loss of
generality, let us assume that at the end of each loop iteration, we check variables
{v1, . . . , vk} for a detectable error.

We will assume that we have an error specified by ϕε on the level of the
loop that limits the bit flips to l, i.e., l is the total number of bit flips that can
be inserted during the execution of the loop. We denote the resulting value of
variable vi (error εi) of executing L with variable values a = (a1, . . . , an) and
error values e = (e1, . . . , en) and the total number of bitflips introduced in this
iteration b by a′i(a, e, b) (e′i(a, e, b), resp.).

Definition 2. For a loop L, a set E∗ ⊆ E × N is an error invariant if the
following two conditions hold.

1. For any (e1, . . . , en, b) ∈ E∗, we have
∧

i≤k corr(ei) and
∧

i>k ¬masked(ei)
and b ≤ l.

2. For any (e, b) ∈ E∗, any valuation a of V , and any number of new bitflips
b′ ≤ l − b, one of two things holds

(a)
∨

i≤k detect(e′i(a, e, b
′)) or

(b) (e′1(a, e, b′), . . . , e′n(a, e, b′), b + b′) ∈ E∗.

Thus, if we start the loop body with the errors in the checked variables equal
to zero and no masked errors, we know that at the end of the loop the program
either terminates because it finds an error, or there are no masked errors. In

Placement of Runtime Checks to Counteract Fault Injections 11

addition to the errors on the variables the invariant also tracks the number of
introduced bitflips and limits them to conform to the program wide fault model.

We will consider a loop to be correct if it has an error invariant, noting that
if required, we can check for detectable error on variables vk+1, . . . , vn after the
loop has finished.

Theorem 2. Assume E∗ is an error invariant for a loop with body L. If L is
executed with error values and introduced bitfilps in E∗ and at the end either an
error is raised or the values are in E∗ then executing the loop while(*): { L }

with values in E∗ either results in raising an error or after the loop all values
are in E∗.

The general definition of invariants is independent of the abstraction level,
but the invariants differ in the actual value of E∗. The main challenge is to find
a good E∗. Many programs can be verified by using a few simple invariants.

– If all variables are checked at every loop iteration, we use {(0, . . . , 0, b) | b ∈
[0, l]} as a (candidate) error invariant.

– For Abstraction Level 3 we can use the invariant that all unchecked error
variables are below dmin. The same can be done for Abstraction Level 2, but
in this case we require that the Hamming weight of all variables be below
dmin.

– For Abstraction Level 1 we can define E∗ as the set of detectable errors,
according to the used code.

– Another stricter version for Abstraction Level 1 is to restrict the values to
only what can be introduced with a single error injection and no accumula-
tion.

These invariants assume a fault model that limits the amount of fault injec-
tions for one program execution. The invariants can be adapted to support other
fault models. For instance only the number of bitflips per loop iteration could
be bounded, without an upper limit for the whole execution.

Example 5. We use a variant of the example from the previous section to demon-
strate our invariants. A simple multiplication algorithm can be build from re-
peated addition. The following code multiples a and b and stores the result in
m.

m := 0;

while(i<b):

i := i + 1;

m := m + a;

check(m); check(a);

The variables i and b are assumed to be checked by the control flow protection.
We can therefore obtain the following program with abstracted control flow.

m := 0;

while(*):

m := m + a;

check(m); check(a);

12 B. Maderbacher et al.

Here both variables m and a are checked at the end of the loop body. Using
Abstraction Level 2, we keep track of the errors and check their weights, resulting
in the following program. In this case we can use the invariant that both εa and
εm are zero, which gives the following program Pfa using Definition 2.

assume(εa = 0 ∧ εm = 0);
ε′a := flipa(εa);
ε′m := εm + εa;
assert(0 < weight(ε′m) < dmin ∨ 0 < weight(ε′a) < dmin ∨ ε′m = 0 ∧ ε′a = 0);

We assume that both errors are zero at the start and we check that we can find
potential errors in the variables after executing the loop body.

Suppose we want to only check one of the variables. Using Abstraction Level 1
and checking only m, we can define an invariant inv(εa) that does not allow
masked values. We obtain the program:

assume(εm = 0 ∧ inv(εa));
ε′a := flipa(εa);
ε′m := εm + ε′a;
assert(detect(ε′m) ∨ ε′m = 0 ∧ inv(εa))

The last line in the listing can be realized by checking ε′m 6= 0 ∧ ε′m mod A 6=
0 ∨ ε′m = 0 ∧ inv(ε′a). For the invariant on εa we could use εa = 0. This invariant
holds, because any bitflip that is introduced in the second line will be found by
the check on m.

5 Experimental Results

In order to evaluate how the overhead of runtime checks can be minimized using
our method, we ran our technique on two examples, The CORDIC algorithm
for numerical trigonometry [Vol59] and a Fibonacci number generator [Bon02].
These algorithms contain a loop in which almost all of the work is done, so that
small performance improvements can have a large impact on the overall perfor-
mance of the programs. To further reduce the number of required runtime check
we also consider variants of these programs where the loop has been unrolled n
times. In these cases, checks are only inserted every n iterations. We also use
these two algorithms to compare the static verification results and performance
of our approaches.

In our experiments, we used CPAchecker version 1.9 [BK11] running on a
laptop with an Intel i5-6200U CPU under Ubuntu 18.04 with 12 GB of RAM.
To verify invariants, we use the following settings in CPAchecker: MATHSAT5
solver, disabled outputs and disabled Java assertions. For comparison, we also
verify the abstract programs when leaving the loops intact and not introduc-
ing invariants. Here we use the same settings with CPAchecker’s k-induction
configuration. 1

1 Our scripts are available at
https://extgit.iaik.tugraz.at/scos/rv20-fault-injection-checks.

https://extgit.iaik.tugraz.at/scos/rv20-fault-injection-checks

Placement of Runtime Checks to Counteract Fault Injections 13

Listing 1. CORDIC program and abstraction

// concrete program

for (k in 0 to n):

if (theta >=0):

t_cosin := cosin - (sin>>k);

t_sin := sin + (cosin>>k);

theta := theta - table[k];

else:

t_cosin := cosin + (sin>>k);

t_sin := sin - (cosin>>k);

theta := theta + table[k];

cosin := t_cosin;

sin := t_sin;

// abstraction

while(*):

if (*):

(cosin, sin) := (cosin - (sin>>k)), (sin + (cosin>>k));

else:

(cosin, sin) := (cosin + (sin>>k)), (sin - (cosin>>k));

5.1 CORDIC

The CORDIC algorithm is used to calculate sine and cosine on devices without
hardware support. It only requires addition, subtraction and right shifts. The
results of the algorithm become more precise the more iterations are performed.
Listing 1 shows an implementation for fixpoint arithmetic in two versions, first
the original program and second the program with abstract control flow. The
variable table refers to a precomputed array of constants that has been omit-
ted from this listing. The abstract version of the program no longer contains
the variables n and theta as they are already included in the control flow pro-
tection. The variable k is also checked as part of the control flow and we can
assume that it does not contain errors. This makes the shifts conform to the
error homomorphism property.

Our error assumption is that at most one arithmetic error is injected during
the execution of the program. Our baseline comparison is to check each variable
after each loop iteration. Using our abstractions we can show that it is sufficient
to only check the variables every three loop iterations without reducing the fault
resilience of the program, which reduces the runtime overhead by factor three.

Table 3 shows the experimental results for the CORDIC algorithm. It shows
the abstraction level, the number of iterations of the loop that are performed
before the variables are checked for errors, whether the technique can prove the
approach correct or not and how much time it needs. The latter two categories
are presented both for the techniques using invariants and for a plain run of
CPAchecker. The program is protected by an AN-code where A is the prime
number 7919, which results in dmin = 4. Using Abstraction Level 3 (only track-
ing the weight of the error) we can prove that performing checks every second

14 B. Maderbacher et al.

Table 3. CORDIC verification results

invariants loops

abstr. lvl iterations success time [s] success time [s]

3 1 3 2.71 3 3.43
2 3 3.19 3 4.78
3 7 3.77 7 6.82

2 1 7 4.37 7 4.47
1 1 3 9.25 3 15.26

2 3 224.00 3 200.33
3 3 2649.86 ? >3600
4 ? >3600 ? >3600

Listing 2. Fibonacci program

(a, b) := (1, 1);

while(*):

(a, b) := (a+b, a);

check(a); check(b);

iteration is sufficient. However, this abstraction level is not precise enough to ver-
ify that we can perform three iterations of the loop before checking the variables.
All these checks are completed in under four seconds.

A more precise abstraction allows us to prove programs with fewer checks,
at the cost of a longer verification time. We note that Abstraction Level 2 is
unsuitable for this specific program. Testing the Hamming weight instead of
the arithmetic weight performs worse than using Abstraction Level 3. However,
calculating the arithmetic weight during model checking is too expensive.

With Abstraction Level 1 we are able to establish that checks every three
loop iterations are sufficient. This takes around 45 minutes, significantly longer
than using the simpler abstraction. The runtime overhead of the checks, however,
is reduced by a further 33%. Although the runtime differences between a plain
run of CPAchecker and a run using invariants are not large, the most efficient
configuration (two checks for every three iterations) can only be proved using
invariants.

5.2 Fibonacci

As a second case study we analyze a Fibonacci number generator. The program
consists of a loop and two variables a and b. We compare our techniques based
on the static verification time and the number of required runtime checks. To
do this, we vary both the number of iterations before checks are performed and
the variables that are checked. The program is protected by an AN code with
A = 13 and dmin = 2. The error assumption is that at most one arithmetic error
is injected during the execution of the program. Our baseline comparison is a
check on variables a and b after every iteration of the loop, giving us two checks
per iteration. The code of the Fibonacci program with abstracted control flow
is shown in Listing 2.

Placement of Runtime Checks to Counteract Fault Injections 15

Table 4. Fibonacci experimental results

configuration invariants loops

abstr checked iter checks/iter success time [s] success time [s]
lvl vars

3 a,b 1 2 3 2.78 3 3.03
a,b 2 1 7 2.81 7 3.54
a 1 1 3 2.45 3 3.81
a 2 0.5 7 2.75 7 3.51

2 a,b 1 2 3 3.45 3 4.48
a,b 2 1 3 6.65 3 10.16
a,b 3 0.67 7 5.54 7 9.34
a 1 1 3 3.60 3 6.33
a 2 0.5 3 7.80 3 17.61
a 3 0.33 7 7.01 7 9.41

1 a,b 1 2 3 4.32 3 8.76
a,b 2 1 3 6.57 3 16.00
a,b 3 0.67 3 15.99 3 46.62
a,b 4 0.5 3 43.92 3 56.80
a,b 5 0.4 3 34.08 3 190.94
a,b 6 0.33 7 38.85 7 82.52
a 1 1 3 4.72 3 15.26
a 2 0.5 3 11.36 3 88.84
a 3 0.33 3 21.14 ? >600
a 4 0.25 3 132.25 ? >600
a 5 0.2 3 121.51 ? >600
a 6 0.17 7 14.06 7 85.99

Table 4 shows the results of the Abstraction Levels 3 to 1. As before, we
used both the approach with invariants and a vanilla run of CPAchecker. When
checking only one variable we use the error invariant that the unchecked variable
has a error weight less than dmin for both Abstraction Levels 2 and 3. The number
of checks per iteration is our final measure of runtime overhead.

We can observe that lower levels of abstraction allow us to verify programs
with fewer runtime checks. When using Abstraction Level 3 we need at least one
check per loop iteration on average. The verification time is around two to four
seconds and using invariants performs slightly better than loops.

Moving to Abstraction Level 2 allows us to reduce the number of runtime
checks per iteration to 0.5 checks when checking only one variable. The verifica-
tion time increases, but is still relatively low.

Abstraction Level 1 provides the greatest benefits in terms of reducing the
runtime overhead of the program. It allows us to reduce the required checks to
only one check in every 5 iterations, an improvement of a factor of 10 over the
original. These cases could not be verified using plain CPA within ten minutes.

For this algorithm, the final reduction in runtime overhead for checks is a
factor of 10.

16 B. Maderbacher et al.

Table 5. Fibonacci encoding parameter selection

A checks/iter checked vars max iter time [s]

7 0.33 a,b 6 61.03
0.2 a 5 93.39
0.25 b 4 36.43

10 0.67 a,b 3 17.05
0.33 a 3 12.36
0.33 b 3 22.53

11 0.25 a,b 8 68.07
0.2 a 5 74.20
0.25 b 4 39.45

13 0.4 a,b 5 33.02
0.2 a 5 127.20
0.25 b 4 27.34

17 0.29 a,b 7 189.06
0.2 a 5 472.71
0.25 b 4 29.55

Finding an Optimal Value for A. As a second experiment on the Fibonacci
program, we used invariants and Abstraction Level 1 to search for a good en-
coding parameter A and the optimal placement of runtime checks. We tried five
different values for A: 7, 10, 11, 13, and 17 that all have the same dmin of 2.
Three patterns for placing checks are explored: checking both the variables a and
b, only checking a and only checking b. In all cases we maximize the number of
loop iterations by increasing the iterations until the verification fails for the first
time.

The results of this experiment are presented in Table 5. The maximum num-
ber of loop iterations between checks varies greatly based on the used encoding
parameter. For A = 10 the program can only perform three iterations before it
needs to check the variables, whereas for A = 11 we can do eight iterations if
both variables are checked. The smallest runtime overhead can be achieved by
using one of the prime numbers and performing a check on the variable a every
five loop iterations. This results in only 0.2 checks per iteration, a significant
improvement over the 2 checks per iteration from the naive check placement. As
multiple coding parameters can achieve the same low runtime overhead we can
look at the memory overhead as a tiebreaker. A smaller encoding parameter also
results in a smaller memory overhead in the protected program. Thus, the most
runtime efficient protection for this program is to use A = 7 and place a check
on a every fifth iteration.

6 Conclusions

We have presented a method to analyze the necessity of runtime checks in pro-
grams using error correcting codes to achieve resilience against fault injections.
Our method uses a combination of novel abstractions and simple recipes for loop

Placement of Runtime Checks to Counteract Fault Injections 17

invariants to achieve scalable verification times. We have shown that for simple
examples we can reduce the overhead of runtime checks by factor of up to 10.

In future work, we will look at the use of different error detection codes, and
we will consider combinations of secure hardware and software design to shield
against fault injections.

Acknowledgements. We would like to thank Stefan Mangard and Robert
Schilling for contributing their expertise on error correcting codes. We gratefully
acknowledge the support of Graz University of Technology through the LEAD
Project “Dependable Internet of Things in Adverse Environments”.

References

BBKN12. A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault injection
attacks on cryptographic devices: Theory, practice, and countermeasures.
Proceedings of the IEEE, 100(11):3056–3076, 2012.

BDL97. Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the Importance
of Checking Cryptographic Protocols for Faults. In EUROCRYPT ’97,
pages 37–51, 1997.

BK11. Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable
software verification. In Lecture Notes in Computer Science, volume 6806
LNCS, pages 184–190, 2011.

Bon02. Leonardo Bonacci. Liber Abaci. 1202.

Dia55. Joseph M Diamond. Checking Codes for Digital Computers. Proceedings
of the IRE, 43(4):483–490, 1955.

Gar66. Harvey L Garner. Error Codes for Arithmetic Operations. IEEE Trans.
Electronic Computers, 15(5):763–770, 1966.

Ham50. R. W. Hamming. Error Detecting and Error Correcting Codes. Bell System
Technical Journal, 29(2):147–160, 4 1950.

KSBM19. Anja F. Karl, Robert Schilling, Roderick Bloem, and Stefan Mangard.
Small faults grow up - Verification of error masking robustness in arith-
metically encoded programs. In Verification, Model Checking, and Abstract
Interpretation 2019, pages 183–204. Springer, 2019.

LRT12. Victor Lomné, Thomas Roche, and Adrian Thillard. On the need of ran-
domness in fault attack countermeasures - application to AES. In Guido
Bertoni and Benedikt Gierlichs, editors, 2012 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Leuven, Belgium, September 9, 2012, pages
85–94. IEEE Computer Society, 2012.

MAN+18. Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. M&M: Masks and macs against physical attacks. Cryp-
tology ePrint Archive, Report 2018/1195, 2018. https://eprint.iacr.

org/2018/1195.

Mas64. James L Massey. Survey of residue coding for arithmetic errors. Interna-
tional Computation Center Bulletin, 3(4):3–17, 1964.

MER05. Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. The soft
error problem: An architectural perspective. In 11th International Sympo-
sium on High-Performance Computer Architecture, pages 243–247, 2005.

https://eprint.iacr.org/2018/1195
https://eprint.iacr.org/2018/1195

18 B. Maderbacher et al.

MS09. Marcel Medwed and Jrn Marc Schmidt. Coding schemes for arithmetic
and logic operations - How robust are they? In Lecture Notes in Computer
Science, volume 5932 LNCS, pages 51–65, 2009.

Pet58. W. W. Peterson. On Checking an Adder. IBM Journal of Research and
Development, 2(2):166–168, 4 1958.

Rao70. Thammavarapu R N Rao. Biresidue Error-Correcting Codes for Computer
Arithmetic. IEEE Transactions on Computers, 19(5):398–402, 1970.

RG71. Thammavarapu R N Rao and Oscar N Garcia. Cyclic and Multiresidue
Codes for Arithmetic Operations. IEEE Trans. Information Theory,
17(1):85–91, 1971.

SFES18. Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth, and Rainer
Steinwandt. Extending glitch-free multiparty protocols to resist fault in-
jection attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):394–
430, 2018.

SWM18. Robert Schilling, Mario Werner, and Stefan Mangard. Securing conditional
branches in the presence of fault attacks. In 2018 Design, Automation &
Test in Europe Conference & Exhibition, pages 1586–1591. IEEE, 2018.

Vol59. Jack Volder. The cordic computing technique. In Papers presented at the
the March 3-5, 1959, Western Joint Computer Conference, pages 257–261,
1959.

WUSM18. Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan
Mangard. Sponge-based control-flow protection for IoT devices. In 2018
IEEE European Symposium on Security and Privacy, pages 214–226, 2018.

YSW18. Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. Fault attacks on
secure embedded software: Threats, design, and evaluation. J. Hardware
and Systems Security, 2(2):111–130, 2018.

	Placement of Runtime Checks to Counteract Fault Injections

